Главная » Засолка грибов » Что называют обменной емкости ионитов. Определение емкости ионообменной смолы

Что называют обменной емкости ионитов. Определение емкости ионообменной смолы

Полная (общая) обменная емкость катионита определяется при нейтрализации раствором NaOH или КОН в статических или динамических условиях и выражается в эквивалентах на 1 г сухого или 1 дм 3 набухшего катионита.

Реакции обмена катионов (К- катионит) имеют вид:

Вещества, не диссоциирующие в растворах, адсорбируются ионитами, как на активном угле, по законам молекулярной адсорбции.

Полная обменная емкость различных марок сильнокислотных катионитов, применяемых в сахарной промышленности, колеблется от 4 до 6 мг-экв/г. Например, отечественный катионит КУ-2-8/Н, Na ионная форма/ имеет полную обменную емкость 5,1 /Н/мг-экв/г.

Цель анализа - оценить качество и пригодность катионита для очистки сахарных растворов.

Принцип метода анализа основан на титровании образовавшейся в результате реакции ионного обмена кислоты 0,1 н. раствором NaOH в присутствии метилоранжа как индикатора.

Реактивы:

5%-ный раствор NaCl;

0,1 н. раствор NaOH;

Индикатор - метилоранж.

Приборы и материалы:

Стеклянная колонка диаметром 18 мм, высотой 250см с оттянутым концом;

Капельная воронка;

Мерная колба вместимостью 200 см 3 ;

Мерный цилиндр вместимостью 100 см 3 ;

Бюретка для титрования;

Химический стакан;

Катионообменная смола.

Ход определения

5 г приготовленного для анализа катионита в Н-форме переводят в стеклянную колонку диаметром 18 мм с помощью дистиллированной воды, избыток воды спускают через резиновую трубку с зажимом, одетую на оттянутый конец нижней части колонки. Для предотвращения уноса катионита на стеклянную решетку колонки помещают тампон из стеклянной ваты.

После этого из капельной воронки, установленной над колонкой с катионом, в течение 30 мин равномерно пропускают 100 см 3 5%-ного раствора химически чистого NaCl, поддерживая уровень раствора над слоем катионита равным 1 см. Затем катионит промывают двойным по его объему количеством воды. Фильтрат и промывные воды собирают в мерную колбу, где доводят их объем до 200 см 3 . Из этого объема отбирают 50 см 3 в отдельный стакан и титруют 0,1н. раствором NaОН в присутствии метилоранжа как индикатора.

Расчеты:

1. Для получения сравнимых результатов обменную емкость катионита выражают через миллиграмм-эквивалент ионов / или число активных групп/, приходящихся на 1 г сухого ионита. Поэтому, если расход 0,1н. раствора NaOH для нейтрализации кислоты, выделенной 1 г абсолютно сухого катионита, можно выразить формулой

,

а в 1 см 3 1 н. раствора NaОН содержится 0,1 мг-экв, то полная обменная емкость катионита может быть рассчитана из формулы

где Ек - полная обменная емкость, в мг-экв/г абсолютно сухого катионита;

b - общее количество фильтрата, см 3 ;

V - количество 0,1 н. раствора NaOH, пошедшее на титрование фильтрата, см 3 ;

a – количество фильтрата, отобранного для титрования, см 3 ;

g – количество сухогого катионита, взятого для определения его полной обменной емкости, г;

W – влажность катионита, %. Определяют методом высушивания в течение 3-х часов при температуре 95-100ºС.

2. Обменную емкость катионита можно выразить также по натрию. В этом случае расчет ведется по формуле

или, так как 1 см 3 0,1 н. раствора NaОН содержит 0,0023 г натрия, то
.

6. Ограничение срока действия снято по протоколу N 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

7. ИЗДАНИЕ (январь 2002 г.) с Поправкой (ИУС 3-91)


Настоящий стандарт распространяется на иониты и устанавливает методы определения динамической обменной емкости с полной регенерацией ионита и с заданным расходом регенерирующего вещества.

Методы заключаются в определении количества ионов, поглощаемых из рабочего раствора единицей объема набухшего ионита при непрерывном протекании раствора через слой ионита.

1. МЕТОД ОТБОРА ПРОБ

1. МЕТОД ОТБОРА ПРОБ

1.1. Метод отбора проб указывают в нормативно-технической документации на конкретную продукцию.

1.2. Для ионитов, у которых массовая доля влаги менее 30%, отбирают пробу (100±10) г. Для набухания пробу помещают в стакан вместимостью 600 см и заливают насыщенным раствором хлористого натрия, который должен с избытком покрывать слой ионита с учетом его набухаемости. Через 5 ч ионит промывают дистиллированной водой.

1.3. Для ионитов с массовой долей влаги более 30% отбирают пробу (150±10) г в стакан вместимостью 600 см и приливают 200 см дистиллированной воды.

2. РЕАКТИВЫ, РАСТВОРЫ, ПОСУДА, ПРИБОРЫ

Вода дистиллированная по ГОСТ 6709 или деминерализованная, отвечающая требованиям ГОСТ 6709 .

Барий хлористый по ГОСТ 742 , х.ч., раствор с массовой долей 10%.

Кальций хлористый 2-водный, х.ч., растворы концентраций (СаСl=0,01 моль/дм (0,01 н.) и (СаСl)=0,0035 моль/дм (0,0035 н.).

Кислота соляная по ГОСТ 3118 , х.ч., растворы с массовой долей 5% и концентраций (НСl)=0,5 моль/дм (0,5 н.), (НСl)=0,1 моль/дм (0,1 н.) и (НСl)=0,0035 моль/дм (0,0035 н.).

Кислота серная по ГОСТ 4204 , х.ч., растворы с массовой долей 1%, концентрации (HSO)=0,5 моль/дм (0,5 н.).

Натрия гидроокись по ГОСТ 4328 , х.ч., растворы с массовой долей 2, 4, 5%, концентраций (NaOH)=0,5 моль/дм (0,5 н.), (NaOH)=0,1 моль/дм (0,1 н.), (NaOH)=0,0035 моль/дм (0,0035 н.).

Натрий хлористый по ГОСТ 4233 , х.ч., насыщенный раствор и раствор концентрации (NaCI)=0,01 моль/дм (0,01 н.).

Индикатор смешанный, состоящий из метилового красного и метиленового голубого или из метилового красного и бромкрезолового зеленого, готовят по ГОСТ 4919.1 .

Индикатор метиловый оранжевый или метиловый красный, раствор с массовой долей 0,1%, готовят по ГОСТ 4919.1 .

Индикатор фенолфталеин, спиртовой раствор с массовой долей 1%, готовят по ГОСТ 4919.1 .

Поглотитель химический известковый ХПИ-1 по ГОСТ 6755 или известь натронная.

Трубка (хлоркальциевая) по ГОСТ 25336 .

Мензурка 1000 по ГОСТ 1770 .

Цилиндры по ГОСТ 1770 исполнений 1-4 вместимостью 100 и 250 см и исполнений 1, 2 вместимостью 500 и 1000 см.

Стаканы В или Н по ГОСТ 25336 в любом исполнении вместимостью 600 и 1000 см.

Колбы Кн-1-250 по ГОСТ 25336 .

Пипетки 2-2-100, 2-2-25, 2-2-20 и 2-2-10 по НТД.

Бюретки по НТД типов 1, 2, исполнений 1-5, классов точности 1, 2, вместимостью 25 или 50 см, с ценой деления не более 0,1 см и бюретки типов 1, 2, исполнения 6, классов точности 1, 2, вместимостью 2 или 5 см, с ценой деления не более 0,02 см.

Колбы мерные исполнений 1, 2 по ГОСТ 1770 , классов точности 1, 2, вместимостью 10, 25 и 100 см.

Сито с контрольной сеткой 0315К по ГОСТ 6613 с обечайкой диаметром 200 мм.

Чашка ЧКЦ-5000 по ГОСТ 25336 или из полимеризационного материала, достаточная для помещения в нее сита.

Установка лабораторная (см. чертеж) состоит из бутыли 1 и стеклянной колонки 6 внутренним диаметром (25,0±1,0) мм и высотой не менее 600 мм для определения динамической обменной емкости в условиях полной регенерации ионита и внутренним диаметром (16,0±0,5) мм и высотой не менее 850 мм для определения в условиях заданного расхода регенерирующего вещества. В нижнюю часть колонки впаян фильтр 7 типа ФКП ПОР 250 ХС по ГОСТ 25336 или другое фильтрующее устройство, устойчивое к действию кислот и щелочей, не пропускающее зерен ионита размером более 0,25 мм и обладающее малым сопротивлением фильтрации. Колонку соединяют с бутылью с помощью стеклянной трубки 3 и резинового шланга 4 с винтовым зажимом 5. Для предотвращения попадания углекислого газа из воздуха в раствор гидроокиси натрия в пробку бутыли устанавливают хлоркальциевую трубку 2 с поглотителем ХПИ-1.

Лабораторная установка

Допускается применение других средств измерения с метрологическими характеристиками не хуже указанных, а также реактивов по качеству не ниже указанных.

3. МЕТОД ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОЙ ОБМЕННОЙ ЕМКОСТИ С ПОЛНОЙ РЕГЕНЕРАЦИЕЙ ИОНИТА

3.1. Подготовка к испытанию

3.1.1. Подготовку к испытанию проводят по ГОСТ 10896 и после подготовки ионит хранят в закрытой колбе под слоем дистиллированной воды.

Катионит марки КУ-2-8чС и анионит марки АВ-17-8чС к испытанию по ГОСТ 10896 не готовят.

3.1.2. Пробу ионита из колбы в виде водной суспензии переносят в цилиндр вместимостью 100 см и уплотняют слой ионита постукиванием о твердую поверхность дна цилиндра до прекращения усадки. Объем ионита доводят до 100 см и с помощью дистиллированной воды переносят ионит в колонку, следя за тем, чтобы между гранулами ионита не попали пузырьки воздуха. Избыток воды из колонки сливают, оставляя над уровнем ионита слой высотой 1-2 см.

3.1.3. Ионит в колонке промывают дистиллированной водой, пропуская ее сверху вниз со скоростью 1,0 дм/ч. При этом анионит отмывают от щелочи (по фенолфталеину), а катионит от кислоты (по метиловому оранжевому).

3.1.4. Сильноосновные аниониты в гидроксильной форме быстро загружают и промывают водой, не содержащей углекислый газ.

3.2. Проведение испытания

3.2.1. Определение динамической обменной емкости ионитов состоит из нескольких циклов, каждый из которых включает три последовательные операции - насыщение, регенерацию, отмывку, условия проведения которых приведены в табл.1.

Таблица 1

Условия определения динамической обменной емкости с полной регенерацией ионита

Показатель

Класс ионитов

Рабочий раствор для насыщения ионитов

Контроль насыщения

Регенери-
рующий раствор

насыще-
ние

отмыв-
ка

регене-
рация

Динамическая обменная емкость до проскока ()

Сильно-
кислотные катиониты

Кальций хлористый (CaCl)=0,01 моль/дм (0,01 н.)

До концентрации ионов кальция в фильтрате (Са)=0,05 ммоль/дм (0,05 мг·экв/дм) определяют по ГОСТ 4151

Соляная кислота, раствор с массовой долей 5%

Сильно-
основные аниониты

Натрий хлористый (NaCl)=0,01 моль/дм (0,01 н.)

До снижения концентрации щелочи на 0,5 ммоль/дм (0,5 мг·экв/дм) в сравнении с максимально устойчивым ее значением в фильтрате [индикатор смешанный, титрующий раствор, соляная кислота концентрации (НСl)=0,01 моль/дм (0,01 н.)] и до повышения содержания ионов хлора в сравнении с его устойчивым содержанием в фильтрате (определяют по ГОСТ 15615)

Гидроокись натрия, раствор с массовой долей 5%

Слабо-
основные аниониты

До появления в фильтрате кислоты (по метиловому оранжевому)

Полная динамическая обменная емкость ()

Слабо-
основные аниониты

Соляная кислота (НСl)=0,1 моль/дм (0,1 н.)

До уравнивания концентрации фильтрата с концентрацией рабочего раствора

Гидроокись натрия, раствор с массовой долей 2%

Примечания:

1. При определении концентрации ионов Ca по ГОСТ 4151

2. Удельная нагрузка - это объем раствора, пропускаемый через объем ионита за 1 ч. Например, 5 дм/дм·ч соответствует скорости фильтрации, при которой через 100 см ионита за 1 ч проходит 500 см раствора (8,3 см/мин).

3. Скорость фильтрации устанавливают измерением в мерном цилиндре объема фильтрата, полученного за определенный интервал времени.


Растворы и воду подают сверху вниз. При насыщении анионита марок АН-1 и АН-2ФН растворы подают снизу вверх.

3.2.2 Перед проведением операций насыщения, регенерации и отмывки колонку заполняют соответствующим раствором. Слой раствора над ионитом должен быть (15±3) см.

3.2.3. После насыщения, регенерации и отмывки в колонке над ионитом оставляют слой жидкости высотой 1-2 см.

3.2.4. Колонку с ионитом заполняют рабочим раствором для конкретного класса ионита (см. табл.1) так, чтобы слой раствора над ионитом составлял (15±3) см, и выбирают соответствующую скорость фильтрации.

При пропускании через колонку с ионитом рабочих растворов концентрации 0,1 моль/дм (0,1 н.), фильтрат собирают в цилиндры вместимостью 250 см, при концентрации 0,01 моль/дм (0,01 н.) - в цилиндры вместимостью 1000 см. Во втором и последующих циклах насыщения перед появлением ионов рабочего раствора в фильтрате (определяют после первого цикла) фильтрат собирают порциями по 100 и 250 см соответственно концентрациям рабочего раствора.

3.2.5. От каждой порции фильтрата отбирают пробу и контролируют насыщение в соответствии с табл.1.

3.2.6. После появления в порции фильтрата ионов рабочего раствора вычисляют общий объем фильтрата.

3.2.7. Для определения полной динамической обменной емкости продолжают пропускать раствор до выравнивания концентрации фильтрата с концентрацией рабочего раствора. Контроль насыщения в этом случае проводят титрованием пробы раствором кислоты (гидроокиси натрия) со смешанным индикатором до изменения окраски.

3.2.8. Перед проведением регенерации ионит в колонке взрыхляют током дистиллированной воды снизу вверх так, чтобы все зерна ионита были в движении. Взрыхление катионита марки КУ-1 и анионитов марок АН-1 и АН-2ФН проводят перед операцией насыщения.

3.2.9. Регенерацию ионита проводят раствором кислоты (гидроокиси натрия) со скоростью, указанной в табл.1. Фильтрат непрерывно собирают порциями цилиндром объемом 250-1000 см, добавляя 3-4 капли индикатора. При появлении кислоты (гидроокиси натрия) в фильтрате в последующих порциях определяют ее концентрацию. Для контроля фильтрата отбирают пипеткой или мерной колбой пробу и титруют раствором кислоты (гидроокиси натрия) концентрации (НСl, HSO)=0,5 моль/дм (0,5 н.), (NaOH)=0,5 моль/дм (0,5 н.) в присутствии индикатор

3.2.10. Раствор кислоты (гидроокиси натрия) пропускают до уравнивания концентрации фильтрата с концентрацией регенерирующего раствора.

3.2.11. Ионит после регенерации промывают дистиллированной водой до нейтральной реакции по метиловому оранжевому (фенолфталеину) со скоростью, указанной в табл.1. Затем ионит выдерживают в дистиллированной воде в течение 1 ч и снова проверяют фильтрат. Если фильтрат не имеет нейтральной реакции, ионит промывают повторно.

3.2.12. Определение динамической обменной емкости заканчивают, если в двух последних циклах получены результаты, расхождение между которыми не превышает 5% среднего результата.

3.2.13. Динамическую обменную емкость анионита АВ-17-8чС определяют на двух параллельных пробах по первому циклу насыщения, перед появлением ионов рабочего раствора в фильтрате. Фильтрат собирают порциями по 250 см. За результат принимают среднее арифметическое результатов двух определений, допускаемое расхождение между которыми не превышает 5% среднего результата.

(Поправка, ИУС 3-91).

4. МЕТОД ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОЙ ОБМЕННОЙ ЕМКОСТИ С ЗАДАННЫМ РАСХОДОМ РЕГЕНЕРИРУЮЩЕГО ВЕЩЕСТВА

4.1. Подготовка к испытанию

4.1.1. Ионит, отобранный в соответствии с пп.1.2 и 1.3, отделяют от мелких фракций методом мокрого рассева по ГОСТ 10900 , используя сито с сеткой N 0315К.

4.1.2. Отсеянный анионит помещают в стакан, приливают 500 см раствора гидроокиси натрия с массовой долей 4% и перемешивают. Через 4 ч раствор гидроокиси сливают, а анионит промывают водой до слабощелочной реакции по фенолфталеину и переносят в колонку, как указано в п.3.1.2.

4.1.3. Отсеянный катионит промывают от взвеси и мути дистиллированной водой декантацией до появления светлой промывной воды и переносят в колонку в соответствии с п.3.1.2.

4.2. Проведение испытания

4.2.1. Определение динамической обменной емкости ионитов до появления ионов рабочего раствора в фильтрате () состоит из нескольких циклов, каждый из которых включает три последовательные операции - насыщение, регенерацию, отмывку, условия проведения которых приведены в табл.2. Растворы и воду подают сверху вниз. Высоту слоя жидкости над уровнем ионита устанавливают, как указано в пп.3.2.2 и 3.2.3.

Таблица 2

Условия определения динамической обменной емкости ионитов при заданном расходе регенерирующего вещества

Класс ионитов

Регенери-
рующий раствор

Норма удельного расхода регене-
рирующего вещества (), г/моль (г/г·экв) погло-
щенных ионов

Контроль отмывки

Рабочий раствор для насыщения ионита

Контроль насыщения

Скорость фильтрации

насы-
щение

отмывка

реге-
нера-
ция

Сильно
кислотные катиониты

До остаточной концентрации кислоты в фильтрате не более
(HSO)=1 ммоль/дм
(1 мг·экв/дм) и концентрации ионов кальция (Са)=0,05 ммоль/дм
(0,05 мг·экв/дм), определяют
по ГОСТ 4151

Кальций хлористый (СаСl=0,0035 моль/дм (0,0035 н.)

До концентрации ионов кальция в фильтрате более (Ca)=0,05 ммоль/дм
(0,05 мг·экв/дм), определяют
по ГОСТ 4151

Слабо-
кислотные катиониты

Серная кислота, раствор с массовой долей 1%

До отсутствия в фильтрате сульфатионов (проба с BaCl в присутствии НСl)

Гидроокись натрия (NaOH)=0,0035 моль/дм (0,0035 н.)

До концентрации в фильтрате гидроокиси натрия (NaOH)=0,1 ммоль/дм
(0,1 мг·экв/дм) (по фенолфталеину)

Сильно-
основные аниониты

Гидроокись натрия с массовой долей 4%

До остаточной концентрации гидроокиси натрия в фильтрате не более (NaOH)=0,2 ммоль/дм
(0,2 мг·экв/дм) по фенолфталеину

Натрий хлористый (NaCI)=0,01 моль/дм (0,01 н.)

До снижения концентрации щелочи на (NaOH)=0,7 ммоль/дм
(0,7 мг·экв/дм) в сравнении с максимально устойчивым ее значением в фильтрате

Слабо-
основные аниониты

Гидроокись натрия, раствор с массовой долей 4%

До остаточной концентрации гидроокиси натрия в фильтрате не более (NaOH)=0,2 ммоль/дм (0,2 мг·экв/дм) по фенолфталеину

Соляная (серная) кислота (НСl,HSO)=0,0035 моль/дм (0,0035 н.)

До остаточной концентрации кислоты в фильтрате не более (Н)=0,1 ммоль/дм (0,1 мг·экв/дм), индикатор смешанный, титрующий раствор - гидроокись натрия концентрации (NaOH)=0,01 моль/дм (0,01 н.)

Примечания:

1. При выражении нормы удельного расхода регенерирующего вещества () в граммах на моль под словом "моль" имеется в виду молярная масса эквивалента иона (Na, K, Са, Mg, Сl, NO, НСО, HSO, СО, SO

И т.д.).

2. Фактический расход регенерирующего вещества не должен отличаться от заданной нормы более чем на 5%.

3. При определении концентрации ионов Са по ГОСТ 4151 допускается использование 2-3 капель индикатора хром-темно-синего и титрование раствором трилона Б концентрации (NaHCON·2HO)=0,01 моль/дм (0,01

4. Удельная нагрузка - это объем раствора, пропускаемый через объем ионита за 1 ч. Например, 5 дм/дм·ч соответствует скорости фильтрации, при которой через 100 см ионита за 1 ч проходит 500 см раствора (8,3 см/мин).

5. Скорость фильтрации устанавливают измерением в мерном цилиндре объема фильтрата, полученного за определенный интервал времени.


Во избежание загипсовывания катионита регенерацию кислотой и отмывку от продуктов регенерации проводят без остановок, не допуская разрыва между операциями.

Перед проведением каждого последующего цикла ионит взрыхляют током воды снизу вверх так, чтобы все зерна ионита были в движении.

4.2.2. Через ионит в колонке пропускают регенерирующий раствор, объем которого () в кубических сантиметрах вычисляют по формуле

где - заданная норма удельного расхода регенерирующего вещества, г/моль (г/г·экв);

- динамическая обменная емкость; выбирают по нормативно-технической документации на конкретный ионит, моль/м (г·экв/м); для ионитов марок АВ-17-8, АН-31 и ЭДЭ-10П допускается для первой регенерации увеличенное значение динамической обменной емкости до 3;

- объем пробы ионита, см;

- концентрация регенерирующего раствора, г/дм.

Количество регенерирующего раствора измеряют на выходе из колонки цилиндром или мензуркой. Затем колонку отсоединяют, уровень раствора над ионитом в колонке опускают до 1-2 см и закрывают нижний за

4.2.3. Иониты после регенерации промывают дистиллированной водой от избытка кислоты (гидроокиси натрия) со скоростью, указанной в табл.2.

Периодически отбирают пробу фильтрата и титруют растворами гидроокиси натрия (кислоты) концентрации (NaOH, HCl, HSO)=0,1 моль/дм (0,1 н.) в присутствии метилового оранжевого (фенолфталеина).

Отмывку контролируют по табл.2.

4.2.4. После отмывки колонку заполняют рабочим раствором и устанавливают по табл.2 скорость насыщения.

При пропускании через колонку рабочих растворов концентрации 0,01 моль/дм (0,01 н.) фильтрат собирают в цилиндр вместимостью 250 см, при концентрации 0,0035 моль/дм (0,0035 н.) используют цилиндр вместимостью 1000 см. Во втором и последующих циклах насыщения перед появлением ионов рабочего раствора в фильтрате (определяют после первого цикла) фильтрат собирают по 100 и 250 см соответственно концентрациям рабочего раствора.

4.2.5. Для контроля насыщения от порции фильтрата отбирают пробу и анализируют ее в соответствии с табл.2. Если результат анализа показывает, что уровень насыщения не достиг значений, указанных в табл.2, все предыдущие пробы фильтрата можно не анализировать.

4.2.6. После появления в порции фильтрата ионов рабочего раствора в количествах, указанных в табл.2, насыщение заканчивают и вычисляют общий объем фильтрата () и динамическую обменную емкость.

4.2.7. Ионит подвергают второй регенерации и отмывают в соответствии с пп.4.2.2 и 4.2.3.

При расчете регенерирующего вещества, необходимого для второго цикла, используют значение динамической обменной емкости, полученное в первом цикле в соответствии с п.4.2.6.

Перед проведением последующих циклов насыщения расход регенерирующего вещества вычисляют по величине динамической обменной емкости, полученной в предыдущем цикле.

4.2.8. Определение заканчивают, если в двух последних циклах получены результаты, допускаемые расхождения между которыми не превышают 5% среднего результата, при фактическом удельном расходе регенерирующего вещества, отличающемся от заданной нормы не более чем на 5%.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Динамическую обменную емкость () в молях на кубический метр (г·экв/м) до появления ионов рабочего раствора в фильтрате вычисляют по формуле

где - общий объем фильтрата, пропущенный через ионит до появления ионов рабочего раствора, см;


- объем ионита, см.

5.2. Фактический расход регенерирующего вещества () в граммах на моль (г/г·экв) поглощенных ионов вычисляют по формуле

где - объем регенерирующего раствора, см;

- концентрация регенерирующего раствора, г/дм;

- общий объем фильтрата, пропущенного через ионит до появления ионов рабочего раствора, см;

- концентрация рабочего раствора, моль/дм (н.

5.3. Полную динамическую обменную емкость () в молях на кубический метр (г·экв/м) вычисляют по формуле

где - общий объем фильтрата, пропущенный через ионит до уравнивания концентраций фильтрата и рабочего раствора, см;

- концентрация рабочего раствора, моль/дм (н.);

- объем порции фильтрата после появления ионов рабочего раствора (проскока), см;

- концентрация раствора в порции фильтрата после появления ионов рабочего раствора (проскока), моль/дм (н.);

- объем ионита,

5.4. За результат определения принимают среднее арифметическое результатов двух последних циклов, допускаемые расхождения между которыми не превышают ±5%, при доверительной вероятности =0,95.

Примечание. При выражении динамической обменной емкости ионитов в молях на кубический метр под словом "моль" имеется в виду молярная масса эквивалента иона (Na, K, Ca, Mg, Сl, NO, НСО, HSO, CO, SO и т.д.).



Текст документа сверен по:
официальное издание
Иониты. Методы определения
обменной емкости: Сб. ГОСТов. -
М.: ИПК Издательство стандартов, 2002

Ионный обмен протекает на тех адсорбентах, которые являются полиэлектролитами (ионообменники, иониты, ионообменные смолы).

Ионный обменом называется процесс эквивалентного обмена ионов, находящихся в ионообменнике, на другие ионы того же знака, находящиеся в растворе. Процесс ионного обмена обратим.

Иониты подразделяются на катиониты, аниониты и амфотерные иониты.

Катиониты – вещества, содержащие в своей структуре фиксированные отрицательно заряженные группы (фиксированные ионы), около которых находятся подвижные катионы (противоионы), которые могут обмениваются с катионами, находящимися в растворе (рис. 81).

Рис. 81. Модель матрицы полиэлектролита (катионита) с фиксированными анионами и подвижными противоионами, где – – фиксированные ионы;

– коионы, – противоионы

Различают природные катиониты: цеолиты, пермутиты, силикагель, целлюлоза, а также искусственные: высокомолекулярные твердые нерастворимые ионогенные полимеры, содержащие чаще всего сульфогруппы, карбоксильные, фосфиновокислые, мышьяковокислые или селеновокислые группы. Реже применяются синтетические неорганические катиониты, являющиеся чаще всего алюмосиликатами.

По степени ионизации ионогенных групп катиониты делят на сильнокислотные и слабокислотные. Сильнокислотные катиониты способны обменивать свои подвижные катионы на внешние катионы в щелочной, нейтральной и кислой средах. Слабокислотные катиониты обменивают противоионы на другие катионы только в щелочной среде. К сильнокислотным относят катиониты с сильно диссоциированными кислотными группами – сульфокислотными. К слабокислотным относят катиониты, содержащие слабодиссоциированные кислотные группы – фосфорнокислотные, карбоксильные, оксифенильные.

Аниониты – ионообменники, которые содержат в своей структуре положительно заряженные ионогенные группы (фиксированные ионы), около которых находятся подвижные анионы (противоионы), которые могут обмениваться с анионами, находящимися в растворе (рис. 82). Различают природные и синтетические аниониты.



Рис. 82. Модель матрицы полиэлектролита (анионита) с фиксированными катионами и подвижными противоионами, где + – фиксированные ионы;

– коионы, – противоионы

Синтетические аниониты содержат в макромолекулах положительно заряженные ионогенные группы. Слабоосновные аниониты имеют в своем составе первичные, вторичные и третичные аминогруппы, сильноосновные аниониты содержат группы четвертичных ониевых солей и оснований (аммониевых, пиридиниевых, сульфониевых, фосфониевых). Сильноосновные аниониты обменивают подвижные анионы в кислой, нейтральной и щелочной средах, слабоосновные – только в кислой среде.

Амфотерные иониты содержат и катионные, и анионные ионогенные группы. Эти иониты могут сорбировать одновременно и катионы и анионы.

Количественной характеристикой ионита является полная обменная емкость (ПОЕ). Определение ПОЕ можно осуществить статическим или динамическим методом, основанном на реакциях, протекающих в системе «ионит – раствор»:

RSO 3 – H + + NaOH → RSO 3 – Na + + H 2 O

RNH 3 + OH – + HCl → RNH 3 + Cl – + H 2 O

Емкость определяется числом ионогенных групп в ионите и поэтому теоретически должна быть постоянной величиной. Однако практически она зависит от ряда условий. Различают статическую обменную емкость (СОЕ) и динамическую обменную емкость (ДОЕ). Статическая обменная емкость - полная емкость, характеризующая общее количество ионогенных групп (в миллиэквивалентах), приходящихся на единицу массы воздушно-сухого ионита или нa единицу объема набухшего ионита. Природные иониты имеют небольшую статическую обменную емкость, не превышающую 0,2-0,3 мэкв/г. Для синтетических ионообменных смол она находится в пределах 3-5 мэкв/г, а иногда достигает 10,0 мэкв/г.

Динамическая, или рабочая, обменная емкость относится только к той части ионогеппых групп, которые участвуют в ионном обмене, протекающем в технологических условиях, например, в ионообменной колонке при определенной относительной скорости движения ионита и раствора. Динамическая емкость зависит от скорости движения, размеров колонки и других факторов и всегда меньше статической обменной емкости.

Для определения статической обменной емкости ионитов применяют различные методы. Все эти методы сводятся к насыщению ионита каким-либо ионом, затем вытеснению его другим ионом и анализу первого в растворе. Например, катионит удобно полностью перевести в Н + -форму (противоионами являются ионы водорода), затем промыть его раствором хлорида натрия и полученный кислый раствор оттитровать раствором щелочи. Емкость равна отношению количества перешедшей в раствор кислоты к навеске ионита.

При статическом методе титруют кислоту или щелочь, которые в результате ионообменной адсорбции появляются в растворе.

При динамическом методе ПОЕ определяется с помощью хроматографических колонок. Через колонку, заполненную ионообменной смолой, пропускают раствор электролита и регистрируют зависимость концентрации поглощаемого иона в выходящем растворе (элюате) от объема прошедшего раствора (выходная кривая). ПОЕ рассчитывают по формуле

, (337)

где V общ – суммарный объем раствора, содержащий вытесненную из смолы кислоту; с – концентрация кислоты в этом растворе; m – масса ионообменной смолы в колонке.

Константу равновесия ионного обмена можно определить из данных о равновесном распределении ионов в статических условиях (равновесное состояние при ионном обмене описывается законом действия масс), а также динамическим методом по скорости перемещения зоны вещества по слою смолы (элюентная хроматография).

Для реакции ионного обмена

константа равновесия равна

, (338)

где , – концентрация ионов в ионите; , – концентрация ионов в растворе.

Применяя иониты, можно умягчить воду или опреснять засоленную воду и получать пригодную для фармацевтических целей. Другое применение ионообменной адсорбции в фармации состоит в использовании его для аналитических целей как метода извлечения из смесей того или другого анализируемого компонента.

Примеры решения задач

1. В 60 мл раствора с концентрацией некоторого вещества 0,440 моль/л поместили активированный уголь массой 3 г. Раствор с адсорбентом взбалтывали до установления адсорбционного равновесия, в результате чего концентрация вещества снизилась до 0,350 моль/л. Вычислите величину адсорбции и степень адсорбции.

Решение:

Адсорбция рассчитывается по формуле (325):

По формуле (326) определяем степень адсорбции

2. По приведенным данным для адсорбции димедрола на поверхности угля рассчитайте графически константы уравнения Ленгмюра:

Рассчитайте адсорбцию димедрола при концентрации 3,8 моль/л.

Решение:

Для графического определения констант уравнения Ленгмюра используем линейную форму этого уравнения (327):

.

Рассчитаем значения 1/а и 1/с :

Строим график в координатах 1/а – 1/с (рис. 83).

Рис. 83. Графическое определение констант уравнения Ленгмюра

В том случае, когда точка х = 0 расположена за пределами рисунка, используют второй способ y=ax+b . Вначале выбираем две любые точки, лежащие на прямой (рис. 83) и определяем их координаты:

(·)1(0,15; 1,11); (·)2 (0,30; 1,25).

b= y 1 – ax 1 = 0,11 – 0,93· 0,15 = 0,029.

Получаем, что b = 1/а ¥ = 0,029 мкмоль/м 2 , следовательно а ¥ = 34,48 мкмоль/ м 2 .

Константа адсорбционного равновесия K определяется следующим образом:

;

Рассчитаем адсорбцию димедрола при концентрации 3,8 моль/л по уравнению Ленгмюра (327):

3. При изучении адсорбции бензойной кислоты на твердом адсорбенте получены следующие данные:

Решение:

Для расчета констант уравнения Фрейндлиха необходимо использовать линейную форму уравнения (332), в координатах lg(х/т ) lgс изотерма имеет вид прямой.

Найдем значения lg c и lg x/m , входящие в линеаризованное уравнение Фрейндлиха.

lg c –2,22 –1,6 –1,275 –0,928
lg x/m –0,356 –0,11 0,017 0,158

Строим график в координатах lg(х/т ) lgс (рис. 84).

Рис. 84. Графическое определение констант уравнения Фрейндлиха

Так как точка х = 0 расположена за пределами рисунка (84), используем второй способ определения коэффициентов прямой y=ax+b (См. «Вводный блок. Основы математической обработки экспериментальных данных»). Вначале выбираем две любые точки, лежащие на прямой (например, точки 1 и 2) и определяем их координаты:

(·)1 (–2,0; –0,28); (·)2 (–1,0; 0,14).

Затем рассчитываем угловой коэффициент по формуле:

b= y 1 – ax 1 = –0,28 – 0,42 · (–2,0) = 0,56.

Константы уравнения Фрейндлиха равны:

lgK = b= 0,56; K = 10 0,56 = 3,63;

1/n = а = 0,42.

Рассчитаем адсорбцию бензойной кислоты при концентрации 0,028 моль/л, используя уравнение Фрейндлиха (330):

4. Используя уравнение БЭТ, рассчитайте удельную поверхность адсорбента по данным об адсорбции газообразного азота:

Площадь, занимаемая молекулой азота в плотном монослое, равна 0,08 нм 2 , плотность азота 1,25 кг/м 3 .

Решение:

Уравнение изотермы полимолекулярной адсорбции БЭТ в линейной форме имеет вид (333)

Для построения графика определим значения:

Строим график в координатах – p/p s (рис. 85).

Используем первый способ (См. «Вводный блок. Основы математической обработки экспериментальных данных») определения коэффициентов прямой y=ax+b. По графику определяем значение коэффициента b , как ординату точки, лежащей на прямой, у которой абсцисса равна 0 (х = 0): b = 5.Выбираем точку на прямой и определяем ее координаты:

(·)1 (0,2; 309).

Затем рассчитываем угловой коэффициент:

Рис. 85. Графическое определение констант уравнения изотермы полимолекулярной адсорбции БЭТ

Константы уравнения изотермы полимолекулярной адсорбции БЭТ равны.

Определение динамической обменной емкости

и полной динамической обменной емкости катионита

Способность ионитов к ионному обмену характеризуется обменной емкостью, т.е. количеством функциональных групп, принимающих участие в обмене, которое выражается в эквивалентных единицах и относится к единице количества ионитов. Обменная емкость может быть определена как в статических, так и в динамических условиях, поэтому существуют понятия статической обменной емкости и динамической обменной емкости.

Цель работы : определить обменную емкость катионита в динамических условиях (ДОЕ и ПДОЕ).

ДОЕ (динамическая обменная емкость) – обменная емкость ионита, определяемая по появлению данного иона в вытекающем из колонки раствора (по «проскоку») (мг-экв/дм 3).

ПДОЕ (полная динамическая обменная емкость) – определяется по полному прекращению извлечения данного иона из раствора, т.е. в момент выравнивания концентрации поглощаемого иона в растворе и фильтрате при пропускании раствора через колонку с ионитом (мг-экв/дм 3).

Сущность динамического метода определения обменной емкости заключается в том, что через уплотненный слой ионита, находящегося в колонке, непрерывно пропускают раствор насыщающего иона до установления сорбционного равновесия между исходным раствором и сорбентом. По мере пропускания раствора через колонку в ней образуется сорбционный слой, т.е. в верхней ее части наступает полное насыщение ионита, затем фронт сорбции передвигается вниз по колонке. Когда фронт достигает конца колонки, наступает «проскок» насыщающего иона в фильтрат.

С момента сформирования насыщенного слоя сорбция происходит при режиме параллельного переноса фронта сорбции. Дальнейшее пропускание исходного раствора приводит к тому, что по всей толщине сорбента достигается полной насыщение, т.е. наступает равновесие. С этого времени концентрация фильтрата становится равной концентрации исходного раствора.

В данной работе в качестве насыщающего иона применяют ион меди (сульфат меди). При этом в колонке реакция ионного обмена:

CuSO 4 + 2HR = CuR 2 + H 2 SO 4

«Проскок» иона меди в фильтрат определяют с помощью качественной реакции на Cu 2+ с раствором аммиака. При этом протекает реакция:

2CuSO 4 + 2NH 4 OH = ↓(CuOH) 2 SO 4 + (NH 4) 2 SO 4

(

комплекс ярко-синего цвета

CuOH) 2 SO 4 + (NH 4) 2 SO 4 + 6NH 4 OH = 2SO 4 + 8H 2 O

Реагенты и оборудование

    Сульфат меди, 0,05н раствор.

    Иодистый калий КJ, 20 % раствор.

    Тиосульфат натрия Na 2 S 2 О 3 ,

0,05н раствор.

    Крахмал, 1% раствор.

    Серная кислота, 2н раствор

    Катионообменная смола КУ-2.

    Стеклянная хроматографическая колонка с краном длиной 20 см, диаметром 1 - 1,5 см.

    Штатив химический с лапками.

    Мерный цилиндр на 25 мл – 10 шт.

    Колба коническая для титрования на 250 мл – 2 шт

    Бюретка для титрования на 25 мл.

    Пипетки на 2, 5 и 10 мл

Ход анализа

Колонку заполняют заранее подготовленным катионитом, строго соблюдая требования равномерной и плотной упаковки. Колонку закрепляют в штативе строго вертикально. Поворотом крана устанавливают требуемую скорость истечения (3...4 мл/мин). При проведении анализа необходимо следить, чтобы над слоем катионита всегда находился слой жидкости и чтобы в колонке не образовывались воздушные пузырьки, и катионит не всплывал.

1. Определение объема раствора, пропущенного через ионит до момента проскока

Через колонку непрерывно пропускают раствор сульфата меди, собирая вытекающий из колонки фильтрат в стакан. Периодически отбирают несколько капель фильтрата в капельную пластинку и проводят качественную реакцию на присутствие ионов меди. Появление ярко-синего окрашивания свидетельствует о «проскоке» ионов меди в фильтрат. С помощью мерного цилиндра измеряют объем фильтрата, собранного до «проскока» ионов меди и записывают его (V проскок).

2. Определение объема раствора, пропущенного через ионит

до момента выравнивания концентраций

После наступления «проскока» продолжают пропускать раствор сульфата меди, но вытекающий из колонки фильтрат при этом собирают в мерные цилиндры порциями по 25 мл. В каждой порции фильтрата определяют содержание ионов меди методом йодометрического титрования.

Для этого отбирают аликвоту фильтрата (10 мл), переносят в колбу для титрования, добавляют 4 мл 2н раствора серной кислоты и 10 мл 20 %-го раствора йодистого калия. Титруют 0,05 н раствором тиосульфата натрия до светло-желтого окрашивания раствора, затем добавляют 3-4 капли крахмала и продолжают титрование до обесцвечивания синего раствора. (Если раствор после добавления йодистого калия имеет светло-желтую окраску, то крахмал добавляют сразу).

Пропускание раствора сульфата меди через колонку прекращают после того, как содержание иона меди в фильтрате сравняется с его концентрацией в исходном растворе. Записывают объем раствора, пропущенного через колонку до момента выравнивания концентраций (V полный).

По окончании эксперимента проводят регенерацию катионита, пропуская через колонку 150 мл 5 %-ного раствора соляной кислоты. Полноту регенерации проверяют качественной реакцией на ионы меди (при отсутствии синего окрашивания пробы фильтрата при добавлении к ней аммиака регенерация считается законченной). После пропуска регенерационного раствора колонку промывают дистиллированной водой до нейтральной реакции фильтрата (проверяют добавлением метилоранжа или бромтимолового синего).

Вычисления

1. Расчет концентрации ионов меди в фильтрате проводят по формуле:

Мг-экв/дм 3

2. По результатам анализа строят выходную хроматограмму (график в координатах: С – f(V раствора)), откладывая по оси абсцисс объем фильтрата (в миллилитрах), а по оси ординат – концентрацию ионов меди в порциях фильтрата (в мг-экв/дм 3).

3. Рассчитывают ДОЕ и ПДОЕ по формулам:


,

где: С – концентрация ионов (катионов для катионита, анионов для анионита) в пропускаемом растворе, мг-экв/дм 3 ;V проскок – количество воды, пропущенной через фильтр до проскока поглощаемого иона, дм 3 ;V полный – количество воды, пропущенной через фильтр до момента выравнивания концентраций, дм 3 ;V ионита – объём ионита, дм 3 .

Объем ионита рассчитывают по формуле:

,

где: r – радиус колонки, дм; h – высота слоя ионита, дм.

Вопросы для защиты:

    Что лежит в основе ионного обмена? Что такое иониты?

    Какие иониты называются макропористыми, гелевыми, изопористыми?

    Какие обменные группы содержат в своей структуре катиониты и аниониты?

    Что такое ионообменные смолы ядерного класса?

    Дайте характеристику показателям качества ионитов (гранулометрический состав, механическая прочность, химическая стойкость, осмотическая стабильность, термическая стойкость, набухаемость).

    Почему высоких температурах ухудшаются ионообменные свойства ионитов? С образованием каких веществ происходит разрушение катионита КУ-2-8 и анионита АВ-17-8 при высоких температурах?

    Сорбционная способность ионитов характеризуется коэффициентом распределения К. Что это такое?

    Что такое ПОЕ ионитов?

    Дайте определение ДОЕ. В каких единицах выражается ДОЕ? Как рассчитывается ДОЕ ионита?

    Дайте определение ПДОЕ. В каких единицах выражается ПДОЕ? Как рассчитывается ПДОЕ ионита?

    Какой обменной емкости принимается равной рабочая обменная емкость и почему?

    Какие факторы влияют на обменную емкость ионита?

    Чем производится регенерация катионитов и анионитов?

    Почему над слоем ионита в колонке всегда должен находиться слой жидкости?

    Приведите расчет для приготовления 0,05 н раствора сульфата меди.

    Напишите реакцию, протекающую в колонке между катионитом и пропускаемым через него раствором.

    Когда наступает «проскок» ионов в фильтрат? Как проверяется «проскок» ионов меди в фильтрат? Напишите реакцию.

    До какого момента пропускают раствор сульфата меди через колонку после наступления «проскока»? Чем этот момент характеризуется?

    Каким методом определяют содержание меди в фильтрате? Напишите уравнения протекающих реакций, используя метод ионно-электронного баланса. Назовите титрант, индикатор. Какую роль выполняет 2 н серная кислота? По какому принципу действует индикатор? Почему крахмал добавляют в конце титрования?

    Чем регенерируют катионит после проведения эксперимента? Приведите расчет для приготовления регенерационного раствора.

Обменная емкость ионитов является их важнейшей технологической характеристикой. Способность к ионному обмену определена, как известно, наличием в ионитах функциональных групп, которые у катионитов носят кислотный характер -SO 3 H (сульфогруппа), -COOH (карбоксильная группа), у анионитов - основной. Монофункциональные катионы, содержащие сульфогруппы, являются сильнокислотными (сильно диссоциирующими), а содержащие карбоксильные группы - слабокислотными (слабо диссоциирующими). Сильнокислотные катиониты(например, КУ-2-8) осуществляют обмен ионов практически при любых значениях pH среды, так как их функциональные группы диссоциируют, как и сильные кислоты, при любыхзначениях pH. Слабокислотные функциональные группы в кислой среде практически остаются в недиссоциированном состоянии, что резко уменьшает способность карбоксильных катионитов (типа КБ) к ионному обмену в таких условиях, поэтому их рекомендуется применять при обработке растворов с pH ³ 7. Отечественный катионит "сульфоуголь" содержит оба типа функциональных групп, поэтому его относят к среднекислотным катионитам.

Функциональными группами анионитов являются различные амины (-NH 2 , =NH, ºN), расположенные в порядке возрастания силы их основности, а также группы четвертичного аммониевого основания (-NR 3 OH). При присоединении первых трех групп образуются слабоосновные аниониты, а группа -NR 3 OH придает аниониту сильноосновной характер. Аминогруппы способны присоединять ион водорода с образованием комплексов -NH 3 , =NH 2 (потенциалообразующих ионов) с последующим образованием диффузного слоя противоионов. Из-за низкой основности функциональных аминогрупп слабоосновные аниониты работоспособны лишь в кислых средах и могут осуществлять ионный обмен только с анионами сильных кислот(Cl - , SO 4 2- , NO 3 -).

Сильноосновные (сильно диссоциирующие) аниониты с группой -NR 3 OH вступают в обменные реакции с анионами как сильных, так и слабых кислот (например, HCO 3 - , HSiO 3) в широкой области значений pH. Среди сильноосновных анионитов различают - аниониты типа 1 с функциональной группой -N(CH 3) 3 OH и типа 2 с группой -N(CH 3) 2 · (CH 2 · CH 2 OH)OH. Их отличие состоит в том, что анионит типа 2 хуже поглощает анион HSiO 3 - , но имеет более высокую обменную емкость и лучшую регенерируемость по сравнению с анионитом типа 1.

Возвращаясь к понятию "обменная емкость" ионитов, отметим, что на практике различают полную обменную емкость и рабочую обменную емкость . Полная обменная емкость ионита, выраженная в эквивалентах на единицу объема смолы, определяется числом привитых к матрице функциональных групп. Примерные значения полных обменных емкостей (E п) для ионитов различных типов приведены в табл. 4.2.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта