Главная » Засолка грибов » Что такое кариотип дайте определение. Не получается забеременеть? Анализ на кариотип: что это такое

Что такое кариотип дайте определение. Не получается забеременеть? Анализ на кариотип: что это такое

Кариотип -диплоидный набор хромосом данного вида организ­ма, характеризующийся постоянным числом, величиной и формой хромо­сом. В кариотипе человека 46хромосом или 23пары. Парные хромо­сомы называют гомологичными, они имеют одинаковою длину и форму, со­держат аллельные гены. В состав хромосом входит 40 % ДНК, 40 % гистоновых белков и 20 % негистоновых белков. Комплекс всех химических веществ, входящих в состав хромосом, называется хроматином. Хромосомы могут находиться в клетках в двух структурных и функциональных состояниях – спирализованном и деспирализованном. В период интерфазы они находятся в деспирализованном состоянии. В спирализованном состоянии они находятся в период митоза. Максимальной спирализации хромосомы достигают в метафазе митоза. Метафазная хромосома состоит из двух хроматид, соединенных в области первичной перетяжки (центромеры). Некоторые хромосомы имеют вторичные перетяжки и спутники. Центромера делит хроматиду на два плеча. Короткое плечо принято обозначать буквойpа длинное буквойq.

Строение метафазной хромосомы.

вторичная

перетяжка p

центромера

В 1960 г. английский генетик Па­тау предложил классифицировать хромосомы человека на осно­вании относительной длины и положения центромеры (центромерного индекса). Центромерный индекс -отношение длины короткого плеча к длине всей хромосомы. В соответствии с центромерным индексом различают метацентрические (перетяжка посередине), субметацентрические (одно плечо длиннее второго), и акроцентрические хромосомы (с непропорционально очень коротким одним плечом).

метацентрические субметацентрические акроцентрические

В 1960 г на международном генетическом симпозиуме в Денвере (США) была принята Международная (Денверская) классификация хромосом человека. Основные принципы классификации разработал Патау. В классификации учтены длина и форма хромосом. Все пары аутосом нумеруют арабскими цифрами от 1до 22 в порядке уменьшения их длины. Половые хромосомы обозначают латинскими буквами Х и У и располагают в конце раскладки. У женщин в норме половые хромосомы ХХ, а у мужчин ХУ.

Все пары аутосом распределяются на 7групп в соответствии с длиной и формой хромосом. Группы обозначают латинскими буквами от А до G. Группы четко отличаются друг от друга.

Группа А (1,2,3 пары) самые длинныеметацентрические (1,3) и субметацентрическая (2) хромосомы. Хромосома 1 -самая большая метацентрическая хромосома, центромера расположена посередине. Самой большой субметацентрической хромосомой являет­ся хромосома 2. Хромосома 3почти на 20%короче хромосомы 1и, сле­довательно, легко идентифицируется. Абсолютная длина от 11 мкм (1 пара) до 8,3 мкм (2 пара).

Группа В (4и 5 пары)длинные субметацентрические хромосомы.Онине различаются между собой без дифференцированного окрашивания. Абсолютная длина 7,7 мкм.

Группа С (6 – 12 пары).Хромосомы среднего размера, субметацентрические. При стандартном (рутинном) окрашивании Х-хромосому нельзя отличить от других хромосом этой группы. Она по размерам сходна с хромосомами 6и 7пары. Абсолютная длина от 7,7 мкм (6 пара) до 5,8 мкм.

Группа D (13 - 15 пары).Эти акроцентрические хромосомы по фор­ме сильно отличаются от всех других хромосом человека. Все три пары на коротком плече содержат спутники. Длина проксимальных участков коротких плеч варьирует, спутники могут отсутствовать, а могут быть очень большими, могут ярко флуоресцировать, а могут и не давать флуоресценции. Абсолютная длина от 4,2 мкм.

Группа Е (16 - 18 пары).Относительно короткие субметацентрические хромосомы. Абсолютная длина 3,6-3,5 мкм.

Группа F - (19 – 20 пары) маленькие метацентрические хромосомы.В препаратах при рутинной окраске они выглядят одинаково, но при дифференциальном окрашивании резко различаются. Абсолютная длина 2,9 мкм.

Группа G (21 – 22 пары) – две пары самыхмаленьких акроцентрических хро­мосом. На коротком плече имеют спутник. Изменчивость их коротких плеч так же значительна, как и в хромосомах группыD. Абсолютная длина 2,9 мкм.

Y-хромосома маленькая акроцентрическая хромосома длиной 2,8 мкм.Обычно (но не всегда) больше, чем хромосомы группыG, и хроматиды ее длинного плеча, как правило, лежат параллельно одна другой. Этим она отличается от хромосом группы G,у которых хроматиды длинных плеч образуют широкий угол.

Х хромосома сходна при рутинном окрашивании с хромосомами гриппы С, отличается при использовании дифференцированного окра­шивания. Х - хромосома субметацентрическая, длиной 6,8 мкм.

Классификация хромосомных болезней.

В настоящее время описано более 1000 болезней. Около ста из них имеют четкую клиническую картину и называются синдромами. Все хромосомные болезни можно разделить на три группы в зависимости от характера изменения кариотипа.

Хромосомные болезни .

Полиплоидии Заболевания, связанные Заболевания, связанные

с изменением числа и с изменением числа и

структуры аутосом структуры половых

хромосом.

В зависимости от процента пораженных клеток различают полные хромосомные болезни имозаичные. Полные являются следствие генеративной мутации у родителей (т.е. мутации происходят при образовании половых клеток у родителей). Все клетки эмбриона имеют измененный кариотип. Мозаичные являются следствием соматической мутации, которая возникает у самого эмбриона в процессе эмбрионального периода развития. Поэтому часть клеток больного имеют нормальный набор хромосом, а часть клеток измененные.

Выделяют также спорадические хромосомные болезни (следствие новой мутации) инаследуемые (наследуются от родителей со сбалансированной мутацией или от родителей с хромосомной болезнью). Описаны случаи рождения детей у больных с синдромами Клайнфельтера, полисомии Х у женщин, полисомии У у мужчин, у женщин с синдромом Дауна. Мужчины с синдромом Дауна бесплодны, т.к. у них нарушается сперматогенез.

Кариотип можно определить как совокупность хромосом соматических клеток, в том числе особенности строения хромосом. У многоклеточных организмов все соматические клетки содержат одинаковый набор хромосом, т. е. обладают одинаковым кариотипом. У диплоидных организмов кариотип представляет собой диплоидный набор хромосом клетки.

Понятие кариотипа употребляется не столько по отношению к индивиду, сколько по отношению к виду. В этом случае говорят, что кариотип видоспецифичен , то есть каждый вид организмов обладает своим особым кариотипом. И хотя количество хромосом у разных видов может совпадать, но по своему строению они всегда имеют те или иные отличия.

Хотя кариотип в первую очередь является видовой характеристикой, он может несколько различаться у особей одного вида. Наиболее явное отличие - это неодинаковые половые хромосомы у женских и мужских организмов. Кроме того могут возникать различные мутации, приводящие к аномалии кариотипа.

Количество хромосом и уровень организации вида не коррелируют друг с другом. Другими словами, большое количество хромосом не свидетельствует об высоком уровне организации. Так у рака-отшельника их 254, а у дрозофилы только 8 (оба вида принадлежат к членистоногим); у собаки 78, а у человека 46.

Кариотипы диплоидных (соматических) клеток состоят из пар гомологичных хромосом. Гомологичные хромосомы идентичны по форме и генному составу (но не по аллелям). В каждой паре одна хромосома достается организму от матери, другая является отцовской.

Кариотипы клеток исследуют на стадии метафазы митоза. В этот период клеточного деления хромосомы максимально спирализованы и хорошо видны в микроскоп. Кроме того, метафазные хромосомы состоят из двух хроматид (сестринских), соединенных в области центромеры.

Участок хроматиды между центромерой и теломерой (находится на конце с каждой стороны) называется плечом. У каждой хроматиды два плеча. Короткое плечо обозначают p, длинное - q. Различают метацентрические хромосомы (плечи примерно равны), субметацентрические (одно плечо явно длиннее другого), акроцентрические (фактически наблюдается только плечо q).

При анализе кариотипа хромосомы идентифицируются не только по их размерам, но и по соотношению плеч. У всех организмов одного вида нормальные кариотипы по этим признакам (размеры хромосом, соотношение плеч) совпадают.

Цитогенетический анализ подразумевает идентификацию всех хромосом кариотипа. При этом цитологический препарат подвергают дифференциальной окраске с использованием специальных красителей, специфически связывающихся с разными участками ДНК. В результате хромосомы приобретают специфический рисунок исчерченности, что позволяет их идентифицировать.

Метод дифференциальной окраски был открыт в 60-х годах XX века и позволил в полной мере анализировать кариотипы организмов.

Кариотип обычно представляют в виде идиограммы (своеобразной схемы), где каждая пара хромосом имеет свой номер, а хромосомы одного морфологического типа объединены в группы. В группе хромосомы располагают по размеру от больших к меньшим. Таким образом, каждая пара гомологичных хромосом кариотипа на идиограмме имеет свой номер. Часто изображают только одну хромосому из пары гомологов.

Для человека, многих лабораторных и сельскохозяйственных животных разработаны схемы исчерченности хромосом для каждого метода окраски.

Хромосомные маркеры представляют собой полосы, появляющиеся при окраске. Полосы группируют в районы. Как полосы, так и районы нумеруют от центромеры к теломере. На некоторых полосах могут быть обозначены локализованные на них гены.

Запись кариотипов

Запись кариотипа несет определенную его характеристику. Вначале указывается общее число хромосом, затем набор половых хромосом. При наличии мутаций сначала указывают геномные, затем - хромосомные. Наиболее часто встречающиеся: + (дополнительная хромосома), del (делеция), dup (дупликация), inv (инверсия), t (транслокация), rob (робертсоновская транслокация).

Примеры записи кариотипов:

48, XY - нормальный кариотип самца шимпанзе;

44, XX, del (5)(p2) - кариотип самки кролика, в котором произошла деления второго участка короткого (p) плеча пятой хромосомы.

Кариотип человека

Кариотип человека состоит из 46 хромосом, что было точно определено в 1956 году.

До открытия дифференциальной окраски хромосомы классифицировались по общей длине и своему центромерному индексу, который представляет собой отношение длины короткого плеча хромосомы к ее общей длине. В кариотипе человека были найдены метацентрические, субметацентрические и акроцентрические хромосомы. Также были идентифицированы половые хромосомы.

Позже использование методов дифференциальной окраски позволило идентифицировать все хромосомы кариотипа человека. В 1970-х годах были разработаны правила (стандарт) их описания и обозначения. Так аутосомы делились на обозначаемые буквами группы, к каждой из которых относились хромосомы с определенным номером: A (1-3), B (4, 5), C (6-12), D (13-15), E (16-18), F (19, 20), G (21, 22). Половые хромосомы являются 23-й парой.

Нормальный кариотип человека записывается так:

46, XX - для женщины,

46, XY - для мужчины.

Примеры кариотипов человека с аномалиями:

47, XX, 21+ — женщина с лишней 21-й хромосомой;

45, XY, rob (13, 21) - мужчина, у которого произошла робертсоновская транслокация 13-й и 21-й хромосом.

Клиника кариотипа 46XY у девочек и женщин

В следующих статьях на нашем сайте рассматриваются аномальные состояния , при которых у индивидуумов, имеющих в кариотипе Y-хромосому, наружные половые органы развиваются не так, как это происходит в норме у лиц мужского пола. Во многих руководствах этот феномен описывается как мужской ложный гермафродитизм.

У большинства пациентов рассматриваемой группы отклонения от нормального развития остаются нераспознанными до наступления половой зрелости, когда обнаруживается первичная аменорея и отсутствие развития вторичных половых признаков (подобно больным с XY дисгенезией гонад) или первичная аменорея при наличии вторичных половых признаков [как это имеет место при синдроме полной нечувствительности к андрогенам (СПНА)].

Другие клинические признаки , свидетельствующие о нарушении развития, могут появиться уже в раннем детстве, например потеря соли при некоторых дефектах биосинтеза андрогенов. Для пациентов с СПНА важным ранним симптомом является наличие паховой грыжи.

При этом синдроме она встречается у 50 % больных, и поэтому у всех девочек препубертатного возраста, у которых обнаружена паховая грыжа, рекомендуется определять кариотип, хотя большинство из них будут иметь 46ХХ.

Что такое кариотипирование

Иногда реверсию пола у ребенка выявляют неожиданно, когда онтогенетический анализ проводят по другим показаниям. В самое последнее время именно таким путем мне удалось обнаружить изменение пола у двух детей. Один ребенок имел тяжелую задержку развития, глухоту и кариотип 46XY; причина реверсии пола остается неизвестной.

Другой новорожденной девочке с отечностью стоп был поставлен диагноз синдрома Тернера. Цитогенетический анализ крови и кожи показал, что все исследованные клетки имели кариотип 46XY. В этом случае весьма вероятно присутствие необнаруженной клеточной линии 45Х.

  1. Бактериальный вагинит у детей — причины, диагностика, лечение
  2. ВИЧ-инфекция у детей — причины, диагностика, лечение
  3. Болезни передаваемые половым путем после изнасилования — причины, диагностика, лечение
  4. Распространенность обрезаний у женщин. Типы женских обрезаний
  5. Причины обрезания у женщин
  6. Осложнения женского обрезания — физические, психологические
  7. Законность женского обрезания. Тактика врача
  8. Клиника кариотипа 46XY у девочек и женщин
  9. Генетика нормального полового развития
  10. Генетический контроль половой дифференцировки — половые хромосомы

МКБ-10 / Q00-Q99 КЛАСС XVII Врожденные аномалии пороки развития, деформации и хромосомные нарушения / Q90-Q99 Хромосомные аномалии, не классифицированные в других рубриках / Q97 Другие аномалии половых хромосом, женский фенотип, не классифицированные в других рубриках

Определение и общие сведения[править]

Смешанной дисгенезией гонад называют состояние, при котором у фенотипических женщин или мужчин с одной стороны есть яичко (testis), а с другой — гонодальный тяж (streak). Впервые термин предложен в 1963 г. Sohvab.

Этиология и патогенез[править]

Клинические проявления[править]

Фенотипически 60% детей считают девочками, а из 40% фенотипических мальчиков подавляющее большинство вирилизованы не полностью. Гениталии чаще имеют амбисексуальное строение в сочетании с урогенитальным синусом или влагалищем, мошонка расщеплена, яичко располагается чаще в брюшной полости или паховом канале, реже в мошонке. Почти всегда у пациентов со смешанной дисгенезией гонад есть матка, влагалище и маточная труба.

В тех случаях, когда яичко располагается в мошонке или паховом канале, принято считать пациентов мальчиками.

У большинства больных выявляют мозаицизм 45Х/46ХY, реже встречают пациентов с кариотипом 46XY. Направление полового развития зависит от количества клеток с кариотипом 46XY. Если во внутриутробном периоде яичко функционирует, формируются половые органы амбисексуального типа.

Кариотипы - это…. Где сдать анализ на кариотип?

По статистическим данным, на втором месте по частоте амбисексуальных гениталий после врождённой дисфункции коры надпочечников стоит смешанная дисгенезия гонад.

До пубертатного возраста яичко, как правило, кажется относительно нормальным. В пубертатном и постпубертатном возрасте оно содержит множество зрелых клеток Ляйдига, но семенные канальцы лишены зародышевых элементов и содержат лишь клетки Сертоли. В этом возрасте яичко синтезирует андрогены, обусловливающие вирилизацию и рост кавернозных тел полового члена. В тех случаях, когда отмечают феминизацию гениталий, необходимо исключить эстрогенпродуцирующую опухоль гонады. Содержание тестостерона после введения ХГЧ близко к нормальному, поэтому у таких детей возможна адаптация в мужском поле после соответствующей коррекции наружных гениталий.

При смешанной дисгенезии установление половой принадлежности зависит от выраженности вирилизации и возраста постановки диагноза. При регистрации ребёнка в мужском поле и установлении диагноза в возрасте, когда ребёнок уже чётко идентифицирует себя как мальчик, также выполняют гонадэктомию и в возрасте полового созревания (12-14 лет) назначают заместительную терапию мужскими половыми гормонами.

Женщина с 46,XY-кариотипом: Диагностика[править]

Дифференциальный диагноз[править]

Женщина с 46,XY-кариотипом: Лечение[править]

Лечение детей со смешанной дисгенезией гонад сопряжено с высоким риском развития опухолей яичка. Общая частота развития опухоли мужской гонады составляет 25-30%.

Гонадэктомия при данном заболевании обязательна, так как гонадобластомы и семиномы развиваются в 10-30% случаев дисгенезии гонад с кариотипом 46ХY. Причём опухоли могут возникать в любом возрасте.

Статистически отмечено, что чаще опухолевый процесс поражает интроабдоминальное яичко.

По настоятельному желанию родителей и пациентов со смешанной дисгенезией гонад в сочетании с мужским фенотипом (отказ от смены пола) можно сохранить яичко, если оно расположено в мошонке либо его удалось туда низвести. Но им необходимо знать, что любой вариант ретенции яичка повышает вероятность малигнизации гонады в несколько раз. Амбисексуальное строение гениталий у этой группы больных требует хирургической коррекции по принципам, описанным в разделе Гипоспадия.

При дисгенезии гонад с кариотипом 46ХХ опухоли развиваются не чаще, чем в популяции в целом.

Детям с женским фенотипом и абдоминальным расположением гонад производят лапароскопическую гонадэктомию и сохраняют женский пол. Увеличенный половой член следует резецировать одновременно с сохранением сосудисто-нервного пучка головки полового члена с целью сохранения её чувствительности.

Техника феминизирующей операции гениталий .

По дорсальной поверхности проводят разрез, равный половине длины окружности ствола полового члена, в поперечном направлении, отступя 5-8 мм от венечной борозды от 3 до 9 ч по условному циферблату. Затем разрез продолжают продольно по срединной линии до пеносимфизарного угла.

Кавернозные тела мобилизуют до места их расхождения, не пересекая вентрального кожного лоскута. Затем рассекают фасцию Buck латеральнее сосудисто-нервного пучка и мобилизуют его на всём протяжении вместе с головкой полового члена. Мобилизованные кавернозные тела прошивают у основания и отсекают.

Головку полового члена подшивают в верхний угол кожной раны. Излишки кожи ствола полового члена иссекают, а края раны сшивают узловыми швами. В мочевой пузырь устанавливают уретральный катетер на 3-5 дней. На промежность накладывают пластырную давящую повязку с глицерином.

В дальнейшем такие пациенты нуждаются в применении эстрогенов с целью поддержки феминизации организма.

Профилактика[править]

Прочее[править]

Источники (ссылки)[править]

Детская хирургия [Электронный ресурс] / Под ред. Ю.Ф. Исакова, А.Ф. Дронова — М. : ГЭОТАР-Медиа, 2009. — http://www.rosmedlib.ru/book/ISBN9785970406793.html

Действующие вещества[править]

Генетические явления, характеризующие наследственность и биологическую изменчивость, биологи достаточно давно связывают с особыми ядерными образованиями — хромосомами, которые с полными основаниями рассматриваются в качестве структур, в которых размещаются гены. В истории генетики как науки на протяжении длительного времени при отсутствии реальных знаний о материальном носителе свойств наследственности и изменчивости и благодаря опережающему развитию микроскопической техники хромосомы были фактически единственным объектом для непосредственных наблюдений. Это привело к появлению цитогенетического метода генетического анализа, которому и сейчас принадлежит важное место, а также особого понятия — кариотип.

Кариотип — это диплоидный набор хромосом (2n), свойственный соматическим клеткам организмов данного вида, представляющий собой видоспецифический сложный признак и характеризующийся определенным числом, строением и генным составом хромосом.

Кариотипы организмов различных видов: I — скерда; II — дрозофила; III — человек

Если число хромосом в одинарном гаплоидном наборе хромосом половых клеток обозначить n, то формула кариотипа будет выглядеть как 2n. Значение n обычно различно у разных видов. Таким образом, гаплоидное количество хромосом в гаметах людей равно 23 (n = 23), а диплоидное, соответствующее кариотипу, — 46 (2n = 46).

Каждая хромосома представлена в кариотипе парой гомологов. Одна из гомологичных хромосом пары унаследована от отца, другая — от матери через половые клетки родителей, принявшие участие в оплодотворении. Генный состав пары гомологичных хромосом одинаков. Вместе с тем один и тот же ген в гомологах может быть представлен разными его альтернативными формами или аллелями (аллельными генами). Учитывая известные отношения между аллелями в виде доминантности и рецессивности, а также присутствие в гомологичных хромосомах одинаковых, либо доминантных, либо рецессивных аллелей или же разных аллелей (доминантного и рецессивного), возможны состояния:

  • доминантной гомозиготности,
  • рецессивной гомозиготности,
  • гетерозиготности.

В кариотипах строго гомологичными хромосомами (аутосомы) представлены все пары, кроме одной (гетерохромосомы или половые хромосомы).

14. Кариотип, определение, методы изучения

В клетках пара половых хромосом у особей одного пола (гомогаметный пол, у человека — женский) представлена двумя одинаковыми хромосомами (у человека — ХХ), тогда как у другого (гетерогаметный пол, у человека — мужской) двумя разными хромосомами (у человека — ХY). В первом случае генный состав пары половых хромосом совпадает. Поэтому в зависимости от совпадения или несовпадения в двух хромосомах Х аллелей соответствующих генов воспроизводятся известные состояния доминантной или рецессивной гомозиготности и гетерозиготности. Большинство генов разных половых хромосом особей гетерогаметного пола различны. В связи с этим возможно состояние гемизиготности, когда у особей гетерогаметного пола (у людей мужской — ХY), ген хромосомы Х, не имея гомолога в хромосоме У, присутствует в кариотипе в единственном экземпляре. Такой ген обязательно проявит себя в фенотипе, даже если он представлен рецессивным аллелем. Существуют виды, у которых самки и самцы различаются числом гетерохромосом, соответственно ХХ и ХО.

Правила кариотипа :

  • постояноство,
  • парности,
  • индивидуальности,
  • непрерывности.

Число хромосом в клетках определённого вида всегда неизменно. Число хромосом – видовой признак. Это особенность известна как правило постоянства числа хромосом . В соматических клетках представителей любого биологического вида число хромосом четное, по сколько хромосомы составляют пары. Парные хромосомы называются гомологичными. Они совпадают по величине, форме, другим деталям строения, порядку расположения наследственного материла. Это правило справедливо для всех аутосом и геторосом гомогаметного пола. Половые хромосомы гетерогаметного пола не совпадают по всем деталям строения и набор генов. Негомологичные хромосомы всегда имеют морфологические и функциональные отличия.

Социальные кнопки для Joomla

Дискуссионный Клуб Русского Медицинского Сервера > Форумы врачебных консультаций > Генетика > Кариотип плода 46 XX der (14) — что это?

Просмотр полной версии: Кариотип плода 46 XX der (14) — что это?

По результатам амниоцентеза генетики определили кариотип плода 46 xx der (14).

Что такое кариотип. Его определение

Как они пояснили — в микроскоп увидели лишний кусок, который прицепился к 14й хромосоме.
А на что влияет этот лишний кусок?

Похоже, речь о несбалансированной транслокации.
К такому результату должен быть основательный комментарий и рекомендации как можно быстрее получить консультацию генетика.

сейчас ждем результаты нашего кариотипирования. Генетик говорит, что, возможно, это особенность одного из родителей.

При чем остальные хромосомы нормальные, откуда этот кусок на 14й взялся — не понятно.

Допустим выяснится, что это особенность одного из родителей, но дальше, что делать? Как выяснить влияние на ребенка этого доп.куска на 14й хромосоме?

Для того, что б попытаться продолжить разговор — нужны все данные
Возраст родителей, срок беременности, результаты обследований, что послужило показанием к инвазивной диагностике полностью заключение и очень желательно скан (фото) заключения о кариотипе плода.

Возраст — 29 лет мать, 32 лет отец
Срок — 19 нед. Вторая беременность. Первый ребенок здоров, девочка.
Результаты обследований: первый скрининг высокий риск по Дауну 1;170, что и послужило показанием к амниоцентезу. Второй скрининг риск по Дауну 1:150 (по нервной трубке риск низкий).
Все УЗИ — норма, развитие плода по сроку.
Скан выкладываю:
[Ссылки могут видеть только зарегистрированные и активированные пользователи]

Заключение пока не выдано, генетик ждет результаты нашего кариотипирования.

Заключение важно — важно знать сколько клеток было проанализировано.
Думаю, что сейчас у Ваших врачей два основных предположения
— либо это унаследованная особенность одного из родителей,
— либо это новая перестройка.
В первом случае кариотип, скорее всего, является вариантом нормы.
Во втором, скорее всего, кариотип следует считать патологическим.

Для уточнения что собой представляет дополнительный фрагмент необходимо применение уточняющих методов диагностики — молекулярных.

Да, нам так и сказали про два варианта.

А молекулярный анализ в любом случае требуется или если это унаследованная особенность, то на этом мы можем успокоиться?

Более вероятно, что в случае унаследования можно надеяться на хорошее. Я так понимаю материала после амниоцентеза не осталось и уточняющий анализ плода провести не возможно.

Давайте дождемся ваши кариотипы. Сейчас гадать нет смысла.

Материал есть.

Спасибо за консультацию!

Кариотип

Всем клеткам живого организма свойственны определенное число, размеры и форма хромосом. Совокупность признаков хромосомного набора (число, размер, форма хромосом), характерных для того или иного вида живых организмов, называется кариотипом. Постоянство кариотипа поддерживается закономерностями митоза и мейоза. Обычно описание кариотипа проводится на стадии метафазы и сопровождается подсчетом числа хромосом, морфометрией, идентификацией центромеры и т. д.

Соматические клетки большинства организмов содержат двойное число хромосом (диплоидный набор), обозначаемое 2n. Парные хромосомы, т.

Что такое кариотип? Дайте определение

е. одинаковые по форме, структуре и размерам, но имеющие разное происхождение (одна из них материнская, другая отцовская), являются гомологичными.

Число хромосом в зрелых половых клетках называют гаплоидным и обозначают латинской буквой n. Количество хромосом в кариотипе не связано с уровнем организации живых организмов: примитивные формы могут иметь большее число хромосом, чем высокоорганизованные, и наоборот. Например, клетки радиолярий содержат 1000-1600 хромосом, а клетки шимпанзе — всего 48. Однако следует помнить, что все организмы одного вида имеют одинаковое количество хромосом, т. е. для них характерна видовая специфичность кариотипа. В клетках человека диплоидный набор составляет 46 хромосом (это 44 аутосомы и 2 половые хромосомы: XX у женщин и XY у мужчин); лошади — 64, коровы — 60, собаки — 78, мухи домашней — 12, плодовой мушки дрозофилы — 8, картофеля — 48, томата — 24, пшеницы мягкой — 42, кукурузы — 20. Однако, клетки разных тканей даже одного организма в зависимости от выполняемой функции могут иногда содержать разное число хромосом. Так, например, в клетках печени животных бывает разное число наборов хромосом (4n, 8n). По этой причине понятия «кариотип» и «хромосомный набор» не совсем идентичны.

Кариотип человека состоит из 46 хромосом. Само определение кариотипа подразумевает не только анализ количества хромосом, но и описание их строения. Дело в том, что у разных видов живых организмов количество хромосом может совпадать, а вот полное совпадение их строения - никогда. Таким образом, кариотип (в том числе и человека) видоспецифичен, т. е. уникален для каждого вида живых организмов, что позволяет их отличать от других.

С другой стороны, некоторые особи одного вида могут иметь незначительные отклонения от нормального кариотипа, т. е. иметь аномальный кариотип. У человека нередко встречаются кариотипы с 47-ю и 45-ю хромосомами.

46 хромосом, составляющих кариотип человека, присутствуют почти в каждой соматической (не половой) клетке организма и представляют собой 23 пары гомологичных хромосом. Точнее, 22 пары аутосом и одну пару половых хромосом. Причем у женщин половые хромосомы гомологичны (XX), а у мужчин - нет (XY).

Таким образом, кариотип - это диплоидный (2n) набор хромосом . (Исключением являются кариотипы гаплоидных (n) организмов.) Половина хромосом кариотипа достается организму от матери, другая - от отца.

Следует различать понятия кариотипа, генотипа и генома. В основном под кариотипом понимают особенности строения полного набора хромосом особи или вида. Генотип - это совокупность всех генов особи, что также предполагает анализ диплоидного набора хромосом, но уже на генном уровне (анализ совокупности генов организма), а не на уровне строения хромосом. Под геномом часто понимают совокупность наследственного материала гаплоидного набора хромосом (в случае диплоидных эукариот). Геном представляется собой набор генов, «описывающий» видовые характеристики организма. Например, у всех людей есть гены, обусловливающие развитие глаз, рук, ног, сложного мозга и др. Такие общие особенности плана строения и функционирования особей вида задаются геномом. Но люди различаются между собой по цвету глаз, темпераменту, длине тела и др. Для анализа таких вариаций в пределах одного генома используют понятие генотипа.

Правильное количество хромосом кариотипа человека было впервые определено в 50-х годах XX века. В это время была возможность только измерять длину самих хромосом и длину их плеч (p - короткое плечо, q - длинное). На основе этих данных ученые классифицировали хромосомы.

Позже (в 60-х, начале 70-х) был изобретен метод дифференциальной окраски хромосом разными красителями. Использование определенных красителей приводило к поперечной исчерченности хромосом (появлению на них множества чередующихся полос). Причем для каждой пары гомологичных хромосом полосы имели исключительно свои особенности (количество, толщину), но всегда одинаковые независимо от типа клеток и особей вида.

На основе метода дифференциальной окраски были разработаны карты-схемы (кариограммы, идиограммы ) кариотипа человека, на которых каждой хромосоме из гаплоидного набора (или двум гомологичным хромосомам из диплоидного набора) присваивался номер, прорисовывалась исчерченность хромосом. Аутосомы нумеровались по убыванию размеров (самая большая хромосома имела номер 1, самая маленькая - 22). Половые хромосомы имели номер 23. Кроме того, хромосомы объединялись в группы.

В кариотипе человека присутствуют все три типа хромосом: метацентрические (равноплечие: p = q), субметацентрические (p акроцентрические (в основном есть только плечо q).

Плечо хромосомы - это ее область от центромеры (первичной перетяжки) до теломеры (расположенной на конце). На идиограммах кариотипа человека (а также многих домашних и лабораторных живых организмов) каждое плечо каждой хромосомы имеет свою утвержденную стандартом нумерацию полос (причем используется два уровня нумерации: нумеруются групп, в каждой группе нумеруются отдельные полосы). Нумерация идет от центромеры к теломерам. В настоящее время в ряде полос ученым удалось определить локализацию определенных генов.

Кроме кариограмм используется специальный стандарт записи кариотипа. В случае человека нормальные кариотипы записываются так: 46, XX (для женщины) и 46, XY (для мужчины). В случае геномных (не путать с генными) лишние или недостающие аутосомы указываются с помощью числа-номера хромосомы и знака «+» или «-», половые хромосомы указываются явно. Например:

  • 47, XX, 21+ (женщина с дополнительной 21 хромосомой),
  • 47, XXY (мужчина с дополнительной X-хромосомой).

Аномалии кариотипа могут касаться не только количества хромосом, но и изменения их строения (хромосомные мутации). Какой-либо участок хромосомы может перевернуться (инверсия), удалиться (делеция), перенестись на другую хромосому (транслокация) и др. Для таких случаев также предусмотрен свой стандарт записи. Например:

  • 46, XY, 5p- (произошла делеция всего короткого плеча 5-й хромосомы),
  • 46, XX, inv (3)(q1.1-1.4) (в длинном плече 3-й хромосомы произошла инверсия участка, начинающегося с номера 1.1 и заканчивающегося номером 1.4).

Что такое исследование кариотипа?

Кариотипирование – как метод выявления генетических нарушений, приводящих к бесплодию

Каждый из супругов при вступлении в брак мечтает о том, что рано или поздно в их доме будет раздаваться звонкий смех малыша. Однако не всем суждено познать, что такое быть родителями. Бесплодные пары сегодня (к сожалению!!!) не редкость. Однако медицинская наука постоянно разрабатывает и внедряет в практику новые информативные методики, позволяющие выявить точную причину заболевания. И исследования кариотипа – одна из них.

Нарушения в генетическом материале одного из супругов (или сразу у обоих) нередко приводит к бесплодию. При этом какой-либо особой клинической картиной такие изменения не проявляются.

Что такое кариотип человека

Все живые организмы на земле отличаются не только внешне. Для каждого вида характерен определенный, свойственный только ему, набор хромосом, получивший название кариотип. В кариотипе человека — 46 хромосом. 44 (или 22 пары) – это аутосомы, которые присутствуют в соматических клетках и являются одинаковыми у мужчин и у женщин. И 2 – это половые хромосомы, которые определяют пол человека. У женщины половые хромосомы одного типа (ХХ), у мужчины – разных (ХY). Соответственно, женский кариотип – 46, ХХ; мужской кариотип – 46, ХY.

Хромосомный набор содержит всю генетическую информацию о своем обладателе. Он остается неизменным на протяжении всей жизни человека. Кариотип будущего ребенка несет в себе половину генетической информации от отца, и половину – от матери.

При бесплодии это необходимое исследование!

Кариотипирование – необходимое обследование при бесплодии

Чаще всего исследование кариотипа проводят при бесплодии в том случае, когда другие причинные факторы были исключены. Но в последнее время все чаще данное исследование назначается как обязательное при комплексном обследовании, так как генетический дефект может сочетаться с иными причинами, и играть среди прочих роковую роль. Ведь именно нарушения в строении и количестве хромосом зачастую приводят к невозможности зачатия и порокам плода.

Исследование кариотипа относится к группе цитогенетических методов. Выделяют 2 вида кариотипирования:

  • пренатальное – исследование хромосомного набора плода;
  • изучение генетического материала пациента.

Показания

Основными показаниями к исследованию кариотипа являются:

  • наличие в анамнезе 2 и более самопроизвольных выкидышей;
  • бесплодие;
  • олигозооспермия;
  • необструктивная форма азооспермии
  • первичная (или вторичная) аменорея;
  • замершая беременность;
  • случаи детской смертности на первом году жизни или рождения в семье мертвого ребенка;
  • рождение ребенка с врожденными сочетанными пороками;
  • задержка развития малыша (как физического, так и умственного;
  • генетические заболевания у родителей и близких родственников;
  • подозрение на генетическую патологию по имеющимся внешним признакам (например: специфическая форма черепа, пальцев рук, аномалии наружных половых органов, глаз, носа и т.д.);
  • обследование доноров генетического материала.

Какие бывают отклонения от нормы?

Кариотип: отклонения от нормы

Кариотип закладывается на начальных стадиях формирования организма. И уже тогда может произойти неправильная закладка кариотипа. В случае, когда сбои возникают в процессе оогенеза или сперматогенеза соответственно у женщины и у мужчины образования (при гаметогенезе) у будущих родителей, генетический материал зиготы, который поступает от родителей, уже поврежден. И как только такая зигота начинает делиться, все клетки получают «бракованный» кариотип.

Чаще всего зародыши с «неправильным» кариотипом погибают на маленьких сроках беременности. Это происходит по причине наличия у них различных сочетанных пороков, при которых невозможно дальнейшее развитие. У женщины происходит выкидыш. В некоторых случаях (их доля составляет 1,5-2%), плод все же выживает, и беременность заканчивается рождением ребенка с аномальным кариотипом. При этом уже в первые часы жизни определяются признаки врожденных генетических аномалий, что приводит к необходимости исследования кариотипа такого малыша.

К основным генетическим аномалиям относятся:

  • болезнь Дауна;
  • синдром Патау;
  • синдром Эдвардса;
  • синдром Клайнфельтера;
  • синдром Шерешевского – Тернера;
  • синдром кошачьего крика;
  • полисомии по X хромосоме.

К нарушениям кариотипа относятся так же изменения, затрагивающие непосредственно структуру хромосом:

  • транслокации – перестройки, происходящие между разными хромосомами, и характеризующиеся переносом фрагмента одной хромосомы на другую;
  • делеции – утрата хромосомой определенного участка;
  • инверсии – разворот фрагмента хромосомы на 180°;
  • дупликации – появление дополнительной копии определенного участка хромосомы, которая может располагаться непосредственно за дуплицируемым участком, либо в другом месте этой же хромосомы, либо совсем в другой хромосоме.

Подготовка к кариотипированию

Анализ не стоит сдавать на голодный желудок. За 3-4 недели до его проведения стоит исключить прием антибактериальных препаратов.

Как проводят кариотипирование?

Проведение кариотипирования

Пациенту производят забор крови, из которой в последующем выделяются лимфоциты. Биологический материал анализируется на стадии, когда клетка вступает в процесс деления. Для этого клетки помещают в пробирку и стимулируют, чтобы запустить механизмы митоза. Через несколько дней, когда можно рассмотреть хромосомы, процесс останавливают (для этого используют определенные вещества).

Клетки помещают на предметное стекло, окрашивают с помощью специальных красителей и рассматривают под световым микроскопом. Такая методика исследования позволяет рассмотреть структурные особенности хромосом, их форму и размеры, наличие неоднородных зон и мест нахождения перетяжек.

Полученное в микроскопе изображение фиксируется с помощью фотоаппарата (для получения более точной картины — несколько раз). Далее снимки изучаются и анализируются.

Чтобы получить максимально достоверный результат, исследуется кариотип нескольких клеток (11 или 13).

Полученные результаты изучают специалисты генетики. Если в кариотипе обоих портеров (или одного) выявляются какие-либо отклонения, специалист определяет, является ли она причиной бесплодия. В случае положительного ответа, чтобы минимизировать действие данного фактора и избавиться от диагноза «бесплодие», для данной пары составляется индивидуальная схема дальнейших действий.

Если риск врожденных аномалий у будущего малыша остается высоким, рекомендуется при наступлении беременности провести исследование генетического материала плода. Данная процедура проводится на ранних сроках, является высокоинформативной и позволяет не допустить рождения ребенка с комплексными, тяжелыми и даже не совместимыми с жизнью пороками.

Пренатальная диагностика бывает нескольких видов:

Неинвазивная – включает в себя УЗИ плода и биохимическое исследование крови на присутствие в ней специфических маркеров. Все эти методы являются безопасными, однако не дают возможности «увидеть» кариотип ребенка.

Инвазивная – включает в себя забор генетического материала плода (например, околоплодных вод, пуповинной крови) посредством проникновения в матку. Данная методика позволяет исследовать кариотип и выявить генетические заболевания будущего ребенка. Из-за риска осложнений, инвазивное вмешательство проводится только при наличии показаний.

Определение кариотипа

Внешний вид хромосом существенно меняется в течение клеточного цикла : в течение интерфазы хромосомы локализованы в ядре , как правило, деспирализованы и труднодоступны для наблюдения, поэтому для определения кариотипа используются клетки в одной из стадий их деления - метафазе митоза .

Процедура определения кариотипа

Для процедуры определения кариотипа могут быть использованы любые популяции делящихся клеток. Для определения человеческого кариотипа используют, как правило, лимфоциты периферической крови, переход которых от стадии покоя G0 к пролиферации провоцируют добавлением митогена фитогемагглютинина . Для определения кариотипа могут быть использованы также клетки костного мозга или первичная культура фибробластов кожи. Для увеличения числа клеток на стадии метафазы к культуре клеток незадолго перед фиксацией добавляют колхицин или нокадазол , которые блокируют образование микротрубочек , тем самым препятствуя расхождению хроматид к полюсам деления клетки и завершению митоза.

После фиксации препараты метафазных хромосом окрашивают и фотографируют; из микрофотографий формируют так называемый систематизированный кариотип - нумерованный набор пар гомологичных хромосом, изображения хромосом при этом ориентируются вертикально короткими плечами вверх, их нумерация производится в порядке убывания размеров, пара половых хромосом помещается в конец набора (см. Рис. 1).

Исторически первые недетализованные кариотипы, позволявшие проводить классификацию по морфологии хромосом, получали окраской по Романовскому - Гимзе , однако дальнейшая детализация структуры хромосом в кариотипах стала возможной с появлением методик дифференциального окрашивания хромосом. Наиболее часто используемой методикой в медицинской генетике является метод G-дифференциального окрашивания хромосом.

Классический и спектральный кариотипы

Рис. 2. Пример определения транслокации по комплексу поперечных меток (полоски, классический кариотип) и по спектру участков (цвет, спектральный кариотип).

Для получения классического кариотипа используется окраска хромосом различными красителями или их смесями: в силу различий в связывании красителя с различными участками хромосом окрашивание происходит неравномерно и образуется характерная полосчатая структура (комплекс поперечных меток, англ. banding ), отражающая линейную неоднородность хромосомы и специфичная для гомологичных пар хромосом и их участков (за исключением полиморфных районов, локали­зуются различные аллельные варианты генов). Первый метод окраски хромосом, позволяющий получить такие высокодетализированные изображения, был разработан шведским цитологом Касперссоном (Q-окрашивание) Используются и другие красители, такие методики получили общее название дифференциального окрашивания хромосом:

  • Q-окрашивание - окрашивание по Касперссону акрихин-ипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом (быстрое определения генетического пола, выявление транслокаций между X- и Y-хромосомами или между Y-хромосомой и аутосомами, скрининг мозаицизма с участием Y-хромосом)
  • G-окрашивание - модифицированное окрашивание по Романовскому - Гимзе . Чувствительность выше, чем у Q-окрашивания, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы)
  • R-окрашивание - используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. Используется для выявления деталей гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.
  • C-окрашивание - применяется для анализа центромерных районов хромосом, содержащих конститутивный гетерохроматин и вариабельной дистальной части Y-хромосомы.
  • T-окрашивание - применяют для анализа теломерных районов хромосом.

В последнее время используется методика т. н. спектрального кариотипирования (флюоресцентная гибридизация in situ , англ. Fluorescence in situ hybridization , FISH), состоящая в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом . В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что не только существенно облегчает выявление таких пар, но и облегчает обнаружение межхромосомных транслокаций , то есть перемещений участков между хромосомами - транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.

Анализ кариотипов

Сравнение комплексов поперечных меток в классической кариотипии или участков со специфичными спектральными характеристиками позволяет идентифицировать как гомологичные хромосомы, так и отдельные их участки, что позволяет детально определять хромосомные аберрации - внутри- и межхромосомные перестройки, сопровождающиеся нарушением порядка фрагментов хромосом (делеции , дупликации , инверсии , транслокации). Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры или множественностью клеточных кариотипов в организме (мозаицизмом).

Номенклатура

Рис.3. Кариотип 46,XY,t(1;3)(p21;q21), del(9)(q22) : показаны транслокация (перенос фрагмента) между 1-й и 3-й хромосомами, делеция (потеря участка) 9-й хромосомы. Маркировка участков хромосом дана как по комплексам поперечных меток (классическая кариотипизация, полоски) так и по спектру флуоресценции (цвет, спектральная кариотипизация).

Для систематизации цитогенетических описаний была разработана Международная цитогенетическая номенклатура (International System for Cytogenetic Nomenclature, ISCN), основанная на дифференциальном окрашивании хромо­сом и позволяющая подробно описывать отдельные хромосомы и их участки. Запись имеет следующий формат:

[номер хромосомы] [плечо] [номер участка].[номер полосы]

длинное плечо хромосомы обозначают буквой q , короткое - буквой p , хромосомные аберрации обозначаются дополнительными символами.

Таким образом, 2-я полоса 15-го участка короткого плеча 5-й хромосомы записывается как 5p15.2 .

Для кариотипа используется запись в системе ISCN 1995 , имеющая следующий формат:

[количество хромосом], [половые хромосомы], [особенности] .

Аномальные кариотипы и хромосомные болезни

Нормальные кариотипы человека - 46,XX (женский) и 46,XY (мужской). Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе , в котором продуцируются половые клетки родителей, кариотип зиготы , образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма обладают одинаковым аномальным кариотипом.

Однако нарушения кариотипа могут возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипами, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизмом .

Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводят к самопроизвольным абортам на ранних стадиях беременности. Однако достаточно большое число плодов (~2.5 %) с аномальными кариотипами донашивается до окончания беременности.

Некоторые болезни человека, вызванные аномалиями кариотипов ,
Кариотипы Болезнь Комментарий
47,XXY; 48,XXXY; Синдром Клайнфельтера Полисомия по X-хромосоме у мужчин
45X0; 45X0/46XX; 45,X/46,XY; 46,X iso (Xq) Синдром Шерешевского - Тёрнера Моносомия по X хромосоме, в том числе и мозаицизм
47,ХХX; 48,ХХХХ; 49,ХХХХХ Полисомии по X хромосоме Наиболее часто - трисомия X
47,ХХ, 21+; 47,ХY, 21+ Синдром Дауна Трисомия по 21-й хромосоме
47,ХХ, 18+; 47,ХY, 18+ Синдром Эдвардса Трисомия по 18-й хромосоме
47,ХХ, 13+; 47,ХY, 13+ Синдром Патау Трисомия по 13-й хромосоме
46,XX, 5р- Синдром кошачьего крика делеция короткого плеча 5-й хромосомы
46 XX или ХУ, 15р-. Синдром Прадера-Вилли Аномалия 15 хромосомы

Кариотип некоторых биологических видов

Каждый вид организмов обладает характерным и постоянным набором хромосом. Количество диплоидных хромосом разнится от организма к организму:

Кариотип гоминидов

См. также

  • Теория наследственности

Примечания

Ссылки

  • Barbara J. Trask , Human Cytogenetics: 46 Chromosomes, 46 Years and Counting. Nature reviews, October 2002, vol. 3, pp. 769-778 (полный текст обзора на сайте лаборатории автора в Fred Hutchinson Cancer Research Center)


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта