Главная » Засолка грибов » Что такое проводники в физике. Что такое проводник и диэлектрик

Что такое проводники в физике. Что такое проводник и диэлектрик

Каждый человек, постоянно пользуясь электроприборами, сталкивается с со свойствами электропроводности, а именно:

Все вещества в зависимости от электропроводности делятся на проводники, полупроводники и диэлектрики:

1. проводники - которые пропускают электрический ток;

2. диэлектрики - обладают изоляционными свойствами;

3. полупроводники - сочетают в себе характеристики первых двух типов веществ и изменяют их в зависимости от приложенного управляющего сигнала.

К проводникам относят те вещества, которые имеют в своей структуре большое количество свободных, а не связанных электрических зарядов, способных начинать движение под воздействием приложенной внешней силы. Они могут быть в твердом, жидком или газообразном состоянии.Самыми отличными проводниками электрического тока являются металлы. Растворы солей и кислот, влажная почва, тела людей и животных - также хорошие проводники электрических зарядов.

Если взять два проводника, между которыми образована разность потенциалов и подключить внутри них металлическую проволоку, то сквозь нее потечет электрический ток. Его носителями станут свободные электроны, не удерживаемые связями атомов. Они характеризуют величину электрической проводимости или способность любого вещества пропускать через себя электрические заряды - ток.

Значение электрической проводимости обратно пропорционально сопротивлению вещества и измеряется соответствующей единицей: сименсом (См).

1 См=1/1 Ом.

В природе носителями зарядов могут быть:

электроны;

ионы;

дырки.

По этому принципу электропроводность подразделяют на:

электронную;

ионную;

дырочную.

Качество проводника позволяет оценить зависимость протекающего в нем тока от значения приложенного напряжения. Ее принято называть по обозначению единиц измерения этих электрических величин - вольтамперной характеристикой.

Проводники с электронной проводимостью (проводники 1-го рода)

Наиболее распространенным представителем этого типа являются металлы. У них электрический ток создается исключительно за счет перемещения потока электронов.

При прохождении электрического тока через металлические проводники не изменяются ни их масса, ни их химический состав. Следовательно, атомы металлов не участвуют в переносе электрических зарядов. Исследования природы электрического тока в металлах показали, что перенос электрических зарядов в них осуществляется только электронами.

Внутри металлов они находятся в двух состояниях:

связанные силами атомного сцепления;

свободные.

Электроны, удерживаемые на орбите силами притяжения ядра атома, как правило, не участвуют в создании электрического тока под действием внешних электродвижущих сил. Иначе ведут себя свободные частицы.

Если к металлическому проводнику не приложена ЭДС, то свободные электроны движутся хаотически, беспорядочно, в любых направлениях. Такое их перемещение обусловлено тепловой энергией. Оно характеризуется различными скоростями и направлениями перемещения каждой частицы в любой момент времени.

Когда к проводнику приложена энергия внешнего поля с напряженностью Е, то на все электроны вместе и каждый в отдельности действует сила, направленная противоположно действующему полю. Она создает строго ориентированное движение электронов, или другим словами - электрический ток.

Вольтамперная характеристика металлов представляет собой прямую линию, укладывающуюся в действие закона Ома для участка и полной цепи.

Кроме чистых металлов электронной проводимостью обладают и другие вещества. К ним относят:

сплавы;

отдельные модификации углерода (графит, уголь).

Все вышеперечисленные вещества, включая металлы, относят к проводникам 1-го рода . У них электропроводность никоим образом не связана с переносом массы вещества за счет прохождения электрического тока, а обусловливается только движением электронов.

Если металлы и сплавы поместить в среду сверхнизких температур, то они переходят в состояние сверхпроводимости.

Проводники с ионной проводимостью (проводники 2-го рода)

К этому классу относятся вещества, у которых электрический ток создается за счет движения зарядов ионами. Они классифицируются как проводники второго рода.

растворы щелочей, кислот солей;

расплавы различных ионных соединений;

различные газы и пары́.

Электрический ток в жидкости

Проводящие электрический ток жидкие среды, в которых происходит электролиз - перенос вещества вместе с зарядами и осаждение его на электродах, принято называть электролитами, а сам процесс - электролизом.

Он происходит под действием внешнего энергетического поля за счет приложения положительного потенциала к электроду-аноду и отрицательного - к катоду.

Ионы внутри жидкостей образуются за счет явления электролитической диссоциации, которая заключается в расщеплении части молекул вещества, обладающих нейтральными свойствами.

Под действием приложенного напряжения к электролиту катионы начинают двигаться строго к катоду, а анионы - к аноду. Таким способом получают химически чистую, без примесей медь, которая выделяется на катоде.

Кроме жидкостей в природе существуют еще твердые электролиты. Их называют суперионными проводниками (супер-иониками), обладающими кристаллической структурой и ионной природой химических связей, обусловливающую высокую электропроводность за счет движения ионов одного типа.

Проводники с дырочной проводимостью

К ним относятся:

германий;

селен;

кремний;

соединения отдельных металлов с теллуром, серой, селеном и некоторыми органическими веществами.

Они получили название полупроводников и относятся к группе №1, то есть не образуют переноса вещества при протекании зарядов. Для увеличения концентрации свободных электронов внутри них необходимо потратить дополнительную энергию на отрыв связанных электронов. Она получила название энергии ионизации.

В составе полупроводника работает электронно-дырочный переход. За счет его полупроводник пропускает ток в одном направлении и блокирует в обратном, когда к нему приложено противоположное внешнее поле.

Структура полупроводника

Проводимость у полупроводников бывает:

1. собственной;

2. примесной.

Первый тип присущ конструкциям, у которых в процессе ионизации атомов своего вещества появляются носители зарядов: дырки и электроны. Их концентрация взаимно уравновешена.

Электрический проводник

Электрический провод

Проводник - вещество, проводящее электрический ток. Среди наиболее распространённых твёрдых проводников известны металлы , полуметаллы. Пример проводящих жидкостей - электролиты . Пример проводящих газов - ионизированный газ (плазма). Некоторые вещества при нормальных условиях являющиеся изоляторами при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п.

Проводниками также называют части электрических цепей - соединительные провода и шины.

Микроскопическое описание проводников связано с электронной теорией металлов. Наиболее простая модель описания проводимости известна с начала прошлого века и была развита Друде .

Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов). К проводникам второго рода относят проводники с ионной проводимостью (электролиты)

См. также

  • Полианилин - полимер с электронной проводимостью

Литература

  • Жан М. Рабаи, Ананта Чандракасан, Боривож Николич 4. Проводник // Цифровые интегральные схемы. Методология проектирования = Digital Integrated Circuits. - 2-ое изд. - М.: «Вильямс» , 2007. - С. 912. - ISBN 0-13-090996-3

Wikimedia Foundation . 2010 .

Смотреть что такое "Электрический проводник" в других словарях:

    электрический проводник - elektros laidininkas statusas T sritis chemija apibrėžtis Medžiaga, laidi elektros srovei. atitikmenys: angl. conductor of electricity; electric conductor; electrical conductor rus. электрический проводник … Chemijos terminų aiškinamasis žodynas

    электрический проводник - elektros laidininkas statusas T sritis fizika atitikmenys: angl. conductor of electricity vok. elektrischer Leiter, m rus. электрический проводник, m pranc. conducteur électrique, m … Fizikos terminų žodynas

    Заряд количество электричества, содержащееся в данномтеле. Электрический ток. Если погрузить в проводящую жидкость, напр.,в раствор серной кислоты, два разнородных металла, напр., Zn и Сu, исоединить эти металлы между собой металлической… … Энциклопедия Брокгауза и Ефрона

    Электрический контакт поверхность соприкосновения проводящих электрический ток материалов, обладающая электропроводностью, или приспособление, обеспечивающее такое соприкосновение (соединение). В зависимости от природы соприкасающихся… … Википедия

    проводник - (1) Вещество, основным электрическим свойством которого является электропроводность. [ГОСТ Р 52002 2003] проводник (2) Всё то, что используется (предназначается) для проведения электрического тока: провод; кабель; шина; шинопровод; жила провода… …

    проводник питающей линии - Параллельные тексты EN RU Unless a plug is provided with the machine for the connection to the supply, it is recommended that the supply conductors are terminated at the supply disconnecting device. Если проводники питающей… … Справочник технического переводчика

    электрический провод - провод Кабельное изделие, содержащее одну или несколько скрученных проволок или одну или более изолированных жил, поверх оторых в зависимости от условий прокладки и эксплуатации может иметься легкая неметаллическая оболочка, обмотка и (или)… … Справочник технического переводчика

    ПРОВОДНИК, вещество или предмет, по которым легко проходят свободные ЭЛЕКТРОНЫ, то есть, создается поток тепловой энергии или заряженных частиц. У проводников низкое электрическое СОПРОТИВЛЕНИЕ. Самыми лучшими проводниками являются металлы,… … Научно-технический энциклопедический словарь

    Символы обозначения предохранителя У этого термина существуют и другие значения, см. Предохранитель. Электрический предохранитель электрический апп … Википедия

    Основная статья: Электрическая машина Электродвигатели разной мощности (750 Вт, 25 Вт, к CD плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения Электрический двигатель … Википедия


Проводники, диэлектрики и поток электронов

Электроны различных типов атомов обладают разными степенями свободы перемещения. В некоторых материалах, таких как металлы, внешние электроны атомов настолько слабо связаны с ядром, что легко могут покидать свои орбиты и хаотично двигаться в пространстве между соседними атомами даже при ком натной температуре. Такие электроны часто называют свободными электронами .

В других типах материалов, таких как стекло, у электронов в атомах существует очень небольшая свобода перемещени я. Однако внешние силы, например физическое трение, могут заставить некоторые из этих электронов покинуть собственные атомы и перейти к атомам другого материала, но они не могут свободно перемещаться между атомами материала.

Эта относительная подвижность электронов в материале известна как электропроводность . Электропроводность определяется типами атомов материала (количество протонов в ядре атома, определяющее его химическую идентичность) и способом соединения атомов друг с друг ом. Материалы с высокой подвижностью электронов (много свободных электронов) называются проводниками, а материалы с низкой подвижностью электронов (мало или совсем нет свободных электронов) называются диэлектриками.

Ниже приведено несколько примеров наиболее распространенных проводников и диэлектриков:

Проводники:

  • серебро
  • медь
  • золото
  • алюминий
  • железо
  • сталь
  • латунь
  • бронза
  • ртуть
  • графит
  • грязная вода
  • бетон


Диэлектрики:

  • стекло
  • резина
  • нефть
  • асфальт
  • стекловолокно
  • фарфор
  • керамика
  • кварц
  • (сухой) хлопок
  • (сухая) бумага
  • (сухая) древесина
  • пластмасса
  • воздух
  • алмаз
  • чистая вода

Следует понимать, что не у всех проводящих материалов одинаковый уровень проводимости, и не все диэлектрики одинаково сопротивляются движению электронов . Электрическая проводимость аналогична прозрачности некоторых материалов: материалы, которые легко "пропускают" свет, называют "прозрачными", а те, которые его не пропускают, называют "непрозрачными ". Однако, не все прозрачные материалы одинаково пропускают св ет. Оконное стекло - лучше чем органическое стекло, и конечно лучше чем "прозрачное" стекловолокно. Так же и с электрическими проводниками, некоторые из них лучше пропускают электроны, а некоторые - хуже.

Например, серебро является лучшим проводником в представленном выше списке "проводников", обеспечивая более легкий проход электронов чем любой другой материал из этого списка. Грязная вода и бетон также значатся как проводники, но эти материалы являются существенно менее проводящими чем любой металл.

Некоторые материалы изменяют свои электрические свойства при различных температурных условиях. Например, стекло является очень хорошим диэлектриком при комнатной температуре, но становится проводником, если его нагреть до очень высокой температуре. Газы, такие как воздух, в обычном состоянии - диэлектрики, но они также становятся проводниками при нагревании до очень высоких температур. Большинство металлов, наоборот, становятся менее проводимыми при нагревании, и увеличивают свою проводимость при охлаждении. Многие проводники становятся идеально проводящими (сверхпроводимость ) при экстремально низких температурах.

В обычном состоянии движение "свободных" электронов в проводнике хаотично, без определенного направления и скорости. Однако, путем внешнего воздействия можно заставить эти электроны двигаться скоординировано через проводящий материал. Такое направленное движение электронов мы называем электричеством , или электрическим током . Чтобы быть более точным, его можно назвать динамическим электричеством в отличие от статического электричества, в котором накопленный электрический заряд неподвижен. Электроны могут перемещаться в пустом пространстве внутри и между атомами проводника точно так же, как вода течет через пустоту трубы. Приведенная аналогия с водой в нашем случае уместна, потому что движение электронов через проводник часто упоминается как "поток".

Поскольку электроны двигаются через проводник равномерно, то каждый из них толкает находящиеся впереди электроны. В результате все электроны движутся одновременно. Начало движения и остановка электронного потока на всем протяжении проводника фактически мгновенны, даже несмотря на то, что движение каждого электрона может быть очень медленным. Приблизительную аналогию мы можем увидеть на примере трубки, заполненной мраморными шариками:

Трубка заполнена мраморными шариками точно также, как проводник заполнен свободными электронами, готовыми к перемещению под воздействием внешних факторов. Если вставить еще один мраморный шарик в эту заполненную трубку слева, то последний шарик сразу выйдет из нее справа . Несмотря на то, что каждый шарик прошел короткое расстояние, передача движения через трубку в целом произошла мгновенно от левого конца до правого, независимо от длины труб ки. В случае с электричеством, передача движения электронов от одного конца проводника к другому происходит со скоростью света: около 220 000 км. в секунду!! ! Каждый отдельный электрон проходит через проводник в гораздо более медленном темпе.

Если мы хотим, чтобы электроны текли в определенном направлении к определенному месту, мы должны проложить для них соответствующий путь из проводов, точно так же, как водопроводчик должен проложить трубопровод, чтобы подвести воду к нужному месту. Для облегчения этой задачи, провода изготавливаются из хорошо проводящих металлов, таких как медь или алюминий.

Электроны могут течь только тогда, когда у них есть возможность перемещаться в пространстве между атомами материала . Это означает, что электрический ток может быть только там, где существует непрерывный путь из проводящего материала, обеспечивающего передвижение электронов. По аналогии с мраморными шариками мы можем видеть, что шарики будут "течь" через трубку только в том случае, если она будет открыта с правой стороны. Если трубку заблокировать, то мрамор будет "накапливаться" в ней, а со ответственно не будет и "потока". То же самое верно и для электрического тока: непрерывный поток электронов требует непрерывного пути для обе спечения этого потока. Давайте посмотрим на схему, чтобы понять, как это работает:

Тонкая, сплошная линия (показанная выше) является схематическим обозначением непрерывной части провода. Так как провод сделан из проводящего материала, такого как медь, у составляющих его атомов существует много свободных электронов, которые могут свободно перемещаться по нему. Однако, в пределах такого провода никогда не будет направленного и непрерывного потока электронов, если у него не будет места, откуда приходят электроны и места, куда они идут. Давайте в нашу схему добавим гипотетические "Источник" и "Получатель" электронов:

Теперь, когда Источник поставляет новые электроны в провод, через этот провод пойдет поток электронов (как показано стрелками, слева-направо ). Однако, поток будет прерван, если проводящий путь, образованный проводом, повредить:

В связи с тем, что воздух является диэлектриком, образовавшийся воздушный разрыв разделит провод на две части . Некогда непрерывный путь нарушается, и электроны не могут течь от Источника к Получателю . Аналогичная ситуация получится, если водопроводную трубу разрезать на две части, а концы в месте разреза закупорить: вода в этом случае течь не сможе т. Когда провод был одним целым, у нас была электрическая цепь, и эта цепь была нарушена в момент повреждения.

Если мы возьмем еще один провод и соединим им две части поврежденного провода, то снова будем иметь непрерывный путь для потока электроно в. Две точки на схеме показывают физический (металл-металл) контакт между проводами:


Теперь у нас снова есть цепь, состоящая из Источника, нового провода (соединяющего поврежденный) и Получателя электронов . Если рассматривать аналогию с водопроводом, то установив тройник на одной из закупоренных туб, мы можем направить воду через новый сегмент трубы к месту назначени я. Обратите внимание, что в правой части поврежденного провода нет потока электронов, потому что он больше не является частью пути от Источника до получателя электронов.

Следует отметить что проводам, в отличие от водопроводных труб, которые в конечном итоге разъедаются ржавчиной, никакой "износ" от воздействия потока электронов не грозит. При движении электронов, в проводнике возникает определенная сила трения, которая может вырабатывать тепло. Подробнее эту тему мы рассмотрим несколько позже.

Краткий обзор:

  • В проводниках , электроны находящиеся на внешних орбитах атомов могут легко покинуть эти атомы, или наоборот присоединится к ним. Такие электроны называются свободными электронами .
  • В диэлектриках внешние электроны имеют намного меньше свободы передвижения, чем в проводниках.
  • Все металлы являются электрически проводящими.
  • Динамическое электричество , или электрический ток - это направленное движение электронов через проводник.
  • Статическое электричество - это неподвижный (если на диэлектрике), накопленный заряд, сформированный избытком или недостатком электронов в объекте.
  • Для обеспечения потока электронов нужен целый, неповрежденный проводник, который обеспечит приём и выдачу электронов.


Источник : Lessons In Electric Circuits

Электроскоп - это простейший прибор для обнаружения электрических зарядов и приблизительного определения их величины.

Простейший школьный электроскоп изображён на рисунке. В нём металлический стержень (3) с листочками (4) пропущен через пластмассовую пробку (5) (втулку), вставленную в металлический корпус (1). Корпус с обеих сторон закрыт стёклами (2).

Если к положительно заряженному электроскопу поднести тело, заряженное таким же знаком, как электроскоп, то его листочки разойдутся сильнее.

Обрати внимание!

Приближая к электроскопу тело, заряженное противоположным по знаку зарядом, заметим, что угол между листочками электроскопа уменьшится.

Таким образом, заряженный электроскоп позволяет обнаружить, каким зарядом наэлектризовано то или иное тело.

По отклонению листочков электроскопа можно определить также, увеличился или уменьшился его заряд. Чем больше угол, на который разойдутся листочки электроскопа при его электризации, тем сильнее он наэлектризован. Значит, тем больший электрический заряд на нём находится.

Существует ещё один вид электроскопа - электрометр .

В нём вместо лепестков на металлическом стержне укреплена стрелочка. Она, заряжаясь от стержня, отталкивается от него на некоторый угол.

По способности передавать электрические заряды вещества делятся на проводники, полупроводники и непроводники электричества.

Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному.

Хорошие проводники электричества - это металлы, почва, вода с растворёнными в ней солями, кислотами или щелочами, графит. Тело человека также проводит электричество. Это можно обнаружить на опыте. Дотронемся до заряженного электроскопа рукой. Листочки тотчас опустятся. Заряд с электроскопа уходит по нашему телу через пол комнаты в землю.
Из металлов лучшие проводники электричества - серебро, медь, алюминий.

Непроводниками называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному.

Непроводниками электричества, или диэлектриками, являются эбонит, янтарь, фарфор, резина, различные пластмассы, шёлк, капрон, масла, воздух (газы). Изготовленные из диэлектриков тела называют изоляторами.

Полупроводниками называют тела, которые по способности передавать электрические заряды занимают промежуточное положение между проводниками и диэлектриками.

К полупроводникам относятся кремний, германий, селен и др. У полупроводников способность проводить электрические заряды резко увеличивается при повышении температуры.

Термин имеет два значения: 1) электропроводящее вещество (например, металл или электролит), 2) деталь, изделие или конструкция, позволяющие передавать электричество.

Первое значение используется в физике и в материаловедении, где все материалы по своей электропроводности делятся на проводники, диэлектрики и полупроводники. В энерготехнике чаще пользуются вторым значением этого термина. Передача электрической энергии по проводникам может происходить - от одного элемента источника, преобразователя или приемника электрической энергии к другому по соединяющим проводникам на расстояние от нескольких нанометров (например, в интегральных схемах) до нескольких метров (например, в мощном силовом оборудовании); - от одного элемента электроустановки к другому или от одной электроустановки к другой по электрическим линиям на расстояние от нескольких метров (например, в пределах одной установки) до нескольких тысяч километров (между крупными энергосистемами).

Совокупность линий и их узлов в электроустановке называется электропроводкой , а совокупность линий и их узлов, связывающая между собой электроустановки, – электрической сетью . По назначению и протяженности в энергосистемах различают системообразующие (основные) и распределительные сети, на предприятиях межцеховые и цеховые сети и др.

Передачу электрического заряда по проводнику (льняной нити) обнаружил в 1663 г. мэр города Магдебурга Отто фон Гюрике (Otto von Guericke, 1602–1686), который перед этим в том же году изготовил первый в мире электростатический генератор. Более подробное исследование электрических явлений началось в 18-м веке, и 2 июля 1729 года английский физик-любитель Стивен Грей (Stephen Gray, 1666–1735) проложил, использовав для проверки передаваемости электричества, конопляную веревку длиной в 80,5 футов на горизонтальных шелковых шнурах (рис. 4.5.1); этим он создал первую в мире электрическую линию. 14 июля он провел публичную демонстрацию линии, длина которой была уже 650 футов, а проводом в которой по-прежнему служила конопляная веревка, проложенная по шелковым шнурам, натянутым между опорами (первая воздушная линия). Опыт, несмотря на очень плохую проводимость провода, удивительным образом удался; веревка, очевидно, была (благодаря английскому климату) достаточно влажной. Грей впервые ввел также классификацию веществ на проводящие и непроводящие. Спустя 10 лет (в 1739 году) другой английский физик Жан Теофил Дезагюлье (Jean Theophile Desaguliers, 1683–1744) ввел понятие проводник (англ. conductor). Первую воздушную линию с металлическими (железными) проводами построил в 1744 году в Эрфурте (Erfurt, Германия) немецкий профессор философии Андреас Гордон (Andreas Gordon, 1712–1751), а первую опытную кабельную (телеграфную) линию проложил в 1841 году в Санкт-Петербурге Борис Семенович Якоби (Moritz Hermann Jacobi).

Рис. 1. Принцип устройства первой электрической линии Стивена Грея. 1 конопляная веревка (провод), 2 шелковые шнуры (изоляторы)

В технике электропередачи находят применение как гибкие, так и жесткие проводники. К первым относятся различные провода и кабели , ко вторым шины . Провода и шины могут быть изолированными или неизолированными (голыми). Изолированные провода и кабели могут содержать от одной до нескольких токоведущих жил , изолированных друг от друга.

Отличительным признаком кабеля является герметичная оболочка, изготовленная из полимерных материалов (например, из поливинилхлорида) или из металла (в настоящее время чаще всего из алюминия, раньше главным образом из свинца), защищающая жилы от вредных воздействий окружающей среды. Упрощенная классификация проводников по их гибкости, изоляции и области применения приведена на рис. 2.

Рис. 2. Классификация проводников (упрощенно)

Металлическая часть жил, в зависимости от сечения и требуемой гибкости, может быть массивной или состоять из проволок; диаметр проволок может при этом составлять от десятых долей миллиметра (в тонкопроволочных жилах) до нескольких миллиметров. От проводников требуется

Высокая электропроводность,
- хорошие контактные свойства,
- высокая электрическая прочность изоляции,
- достаточная механическая прочность,
- достаточная гибкость (в случае проводов и кабелей),
- долгосрочная химическая стабильность,
- достаточная стойкость при нагреве,
- достаточная теплоемкость,
- защищенность от внешних воздействий,
- безвредность для окружающей среды,
- простота использования в электромонтажных работах,
- умеренная стоимость.

Из электропроводных материалов этим требованиям лучше всех соответствуют
- чистая (без каких-либо примесей) медь,
- чистый алюминий (по соображениям надежности начиная с сечения 16 mm2),
- в проводах воздушных линий
- комбинации алюминия и стали.
Из изоляционных материалов наиболее часто используют
- полиэтилен n ,
- поливинилхлорид n , который лучше других материалов сопротивляется воспламенению, но который содержит ядовитый и опасный для окружающей среды хлор, - синтетические (в том числе особо нагревостойкие кремнийорганические) каучуки.

Проводники (и жилы многожильных проводников) делятся по их назначению
- на рабочие проводники (к которым в случае переменного тока относятся фазные и нейтральные проводники; в некоторых сетях или установках нейтральные проводники могут отсутствовать);
- на защитные проводники , необходимые для обеспечения безопасности людей;
- на вспомогательные проводники (например, для управления, связи или сигнализации). Рабочие проводники могут быть все изолированы от земли, но часто один из них (обычно нейтральный) заземлен. Таким рабочим заземлением достигается более низкое и равномерно распределенное напряжение фазных проводников относительно земли, что, например, в сетях высокого напряжения позволяет снизить стоимость изоляции.

Защитные проводники предусмотрены для надежного заземления тех частей электроустановок, которые при нарушении изоляции могут оказаться под напряжением (открытых проводящих частей). Такое защитное заземление должно исключить возникновение опасного напряжения между этими частями и землей и тем самым исключить возможность поражения людей электрическим током. В электрических сетях низкого напряжения ранее практиковалось совмещение защитного и нейтрального проводников; в настоящее время эти проводники, по соображениям надежности и безопасности, друг от друга отделены.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта