Главная » Засолка грибов » Что такое теорема и доказательство теоремы? Доказательство теоремы Пифагора. Значение слова теорема

Что такое теорема и доказательство теоремы? Доказательство теоремы Пифагора. Значение слова теорема

греч. ???????, от?????? – рассматриваю, исследую) – доказанное предложение нек-рой дедуктивной теории. В содержательных (неформальных) теориях Т. доказываются весьма приблизительно фиксируемыми (чаще – молчаливо подразумеваемыми) средствами "обычной логики" и часто противопоставляются "не требующим доказательства" (принимаемым за истинные в силу своей "очевидности") аксиомам. Впрочем, если даже точный перечень аксиом и не фиксируется, то в (полном) доказательстве каждой Т. все же проводится различение посылок на доказанные ранее Т. и аксиомы; фактически статус последних может специально и не оговариваться – этой цели может служить к.-л. косвенная мотивировка применяемой аргументации или даже сам факт умолчания о причинах, позволяющих пользоваться данной посылкой. Такой, напр., характер имеют Т. в большей части учебных руководств по различным разделам (неаксиоматизированной) математики. Если же данная дисциплина строится на аксиоматич. основе (хотя бы и в содержат. форме), то (нелогические) аксиомы явно перечисляются, как, напр., при изложении различных разделов абстрактной алгебры или топологии, а из нематематич. дисциплин – теоретич. механики или термодинамики. В формальных аксиоматич. системах (исчислениях) Т. наз. доказуемая формула, т.е. формула, выводимая по правилам вывода данной системы из ее аксиом. При этом аксиомы теории также причисляются к Т. (доказательство каждой такой Т. состоит из одной формулы – из нее самой); это вполне естеств. соглашение оправдывается не только индуктивным характером определения понятия доказательства (см. раздел Рекурсивные и индуктивные определения в ст. Определение), но и тем обстоятельством, что один и тот же класс доказуемых формул может задаваться различными системами аксиом, и в ряде случаев выбор определенных формул (фиксированной теории) в качестве аксиом диктуется чисто технич. соображениями, так что противопоставление к.-л. аксиомы и (дедуктивно) эквивалентной ей Т. оказывается весьма относительным. Иногда Т., играющие вспомогат. роль и нужные лишь для доказательства к.-л. другой Т., наз. леммами; Т., доказательство к-рых весьма просто получается посредством ссылки на другие Т., наз. с л е д с т в и я м и этих других Т. Ввиду недостаточной определенности таких понятий, как "вспомогательный" и "просто", термины "лемма" и "следствие" также носят несколько условный характер, и эти наименования свидетельствуют не столько о характере самих Т., сколько о стиле или уровне изложения предмета. Т., доказываемые содержат. средствами метатеории к.-л. теории, наз. м е т а т е о р е м а м и, относящимися к данной ("предметной") теории. Примеры метатеорем: теорема о дедукции для исчисления высказываний или предикатов, теорема Геделя о полноте исчисления предикатов, теорема Геделя о неполноте формальных систем, включающих формальную арифметику, теорема Черча о неразрешимости разрешения проблемы для исчисления предикатов, теорема Тарского о невыразимости (неопределимости, см. Определимость) предиката истинности для широкого класса логич. исчислений средствами самого исчисления (см. Логическая истинность) и др. Вообще метатеоремами являются любые Т. о Т., какими бы средствами и в рамках какой бы теории они не доказывались; примерами могут служить т.н. принципы двойственности, играющие важную роль во мн. разделах математики. См. Вывод(в математической логике), Доказательство, Метод аксиоматический и лит. при этих статьях. Ю. Гастев. Москва.

Чаще всего, термин «теорема» можно найти в различной научной литературе. Он многократно встречается как в математических науках (алгебре, геометрии, тригонометрии, математическом анализе и т.д.), так и в разных разделах физики и химии.

Итак, рассмотрим, что такое теорема.

Значение термина

Слово «теорема» происходит от древнегреческого слова «доказательство». Теорема — это определенное утверждение, для которого существует доказательство в определенной теории. Наряду с термином «теорема» необходимо рассматривать и термин аксиома. Аксиома отличается от теоремы тем, что она не требует доказательств и является заведомо истинной.

В математике теоремой называется только доказанное утверждение, которое может иметь широкое применение в решении различных математических задач. Чаще всего доказательство теоремы уже найдено. Исключение составляют теоремы по логике, в которых исследуется само понятие доказательства. Самые знаменитые и значимые теоремы: Птолемея, Ферма, Пифагора.

Применение теорем

Теоремы применяются для решения определенных теоретических задач. Они позволяют с разных сторон изучить те или иные явления. Давайте рассмотрим несколько примеров применения теорем в физике:

  • В физике большой популярностью пользуется теорема Штейнера. Обычно её изучают студенты физических и технических факультетов, так как она позволяет наглядно объяснить понятия момента инерции и влияния массы тела на момент инерции. Также теорема Штейнера позволяет изучить значение ускорения свободного падения.
  • Теорема Ампера или теорема о циркуляции магнитного поля — данная теорема является базовой в предмете классической электродинамики. Эта теорема позволяет точно определить величину магнитного поля проводника по заданным токам.

Примеры использования теорем в математике:

  • - позволяет изучить свойства подобия треугольников для решения различных теоретических и практических задач.
  • Остальные свойства треугольников можно изучить по теоремам .
  • Одна из самых важных математических теорем - . Теорема Пифагора имела огромное влияние на развитие математики и геометрии. Также эта теорема нашла применение в искусстве и архитектуре.

Теорема - высказывание, правильность которого установлена при помощи рассуждения, доказательства. Примером теоремы может служить утверждение о том, что сумма величин углов произвольного треугольника равна 180°. Проверить это можно было бы опытным путем: начертить треугольник, измерить транспортиром величины его углов и, сложив их, убедиться, что сумма равна 180° (во всяком случае, в пределах той точности измерения, которую допускает транспортир). Такую проверку можно было бы повторить несколько раз для различных треугольников. Однако справедливость этого утверждения устанавливается в курсе геометрии не опытной проверкой, а при помощи доказательства, которое убеждает нас в том, что это утверждение справедливо для любого треугольника. Таким образом, утверждение о сумме углов треугольника является теоремой.

В формулировках теорем, как правило, встречаются слова «если..., то...», «из... следует...» и т. д. В этих случаях для сокращения записи используют знак ⇒. Возьмем в качестве примера теорему о том, что точка М, одинаково удаленная от двух точек А и В, принадлежит оси симметрии этих точек (рис. 1). Ее можно подробнее сформулировать так: (для любых точек А, В, М) (MA = MB) ⇒ (М принадлежит оси симметрии точек А и В).

Аналогичным образом могут быть записаны и другие геометрические теоремы: сначала идет разъяснительная часть теоремы (описывающая, какие точки или фигуры рассматриваются в теореме), а затем - два утверждения, соединенные знаком ⇒. Первое из этих утверждений, стоящее после разъяснительной части и перед знаком ⇒, называется условием теоремы, второе, стоящее после знака ⇒, называется заключением теоремы.

Меняя местами условие и заключение и оставляя без изменения разъяснительную часть, мы получаем новую теорему, которая называется обратной первоначальной. Например, для рассмотренной выше теоремы обратной будет следующая: (для любых точек А, В, М) (точка М принадлежит оси симметрии точек A и В) ⇒ (MA = MB). Короче: если точка М принадлежит оси симметрии точек А и В, то точка М одинаково удалена от точек А и В. В данном случае и исходная теорема, и обратная ей теорема справедливы.

Однако из того, что некоторая теорема верна, не всегда следует, что обратная ей теорема также верна. Например, теорема: (точка С не принадлежит прямой АВ) ⇒ (АВ < АС + ВС) справедлива, но обратная ей теорема: (АВ < АС + ВС) => (точка С не принадлежит прямой АВ) - неверна, так как при условии (АВ < АС + ВС) точка С может быть расположена на прямой АВ, но вне отрезка АВ (рис. 2).

Таким образом, доказав некоторую теорему, мы еще не можем утверждать, что верна и обратная теорема. Справедливость обратной теоремы требует отдельного доказательства.

В алгебре примерами теорем могут служить различные тождества, например равенства:

(а + b) 2 = а 2 + 2ab + b 2 ,

a 2 - b 2 = (a + b)(a - b),

a n - b n = (a - b)(a n-1 + a n-2 b + a n-3 b 2 + ... + ab n-2 + b n-1).

Они выводятся (доказываются), исходя из аксиом, и потому являются теоремами. Другим примером теорем в алгебре может служить теорема Виета о свойствах корней квадратного уравнения.

Большую роль в математике играют так называемые теоремы существования, в которых утверждается лишь существование какого-либо числа, фигуры и т.п., но не указывается, как это число (или фигура) могут быть найдены. Например: всякое уравнение х n + a 1 x n-1 + а 2 х n-2 + ... + а n-1 х + а n = 0 с действительными коэффициентами имеет при нечетном n хотя бы один действительный корень, т.е. существует число x 0 ∈ R, являющееся корнем этого уравнения.

Некоторым видам теорем дают особые названия, например лемма, следствие. Они имеют дополнительный оттенок. Леммой обычно называют вспомогательную теорему, саму по себе мало интересную, но нужную для дальнейшего. Следствием называют утверждение, которое может быть легко выведено из чего-то ранее доказанного.

Иногда теоремой называют то, что правильнее было бы называть гипотезой. Например, «великая теорема Ферма» (см. Ферма великая теорема), утверждающая, что уравнение х n + у n = z n не имеет целых положительных решений при n > 2, пока не доказана.

Наряду с аксиомами и определениями теоремы являются основными типами математических предложений. Важные факты каждой математической науки (геометрии, алгебры, теории функций, теории вероятностей и т.д.) формулируются в виде теорем. Однако овладение математикой не сводится к тому, чтобы изучить аксиомы, определения и основные теоремы. Математическое образование включает также умение ориентироваться в богатстве фактов математической теории, владение основными методами решения задач, понимание лежащих в основе математики идей, умение применять математические знания при решении практических задач.

Не менее важны пространственное представление, навыки графического «видения», умение находить примеры, иллюстрирующие то или иное математическое понятие, и т.д. Таким образом, теоремы составляют только формальный «остов» математической теории, и знакомство с теоремами представляет собой лишь начало глубокого овладения математикой.

Теорема - высказывание, правильность которого установлена при помощи рассуждения, доказательства. Примером теоремы может служить утверждение о том, что сумма величин углов произвольного треугольника равна 180°. Проверить это можно было бы опытным путем: начертить треугольник, измерить транспортиром величины его углов и, сложив их, убедиться, что сумма равна 180° (во всяком случае, в пределах той точности измерения, которую допускает транспортир). Такую проверку можно было бы повторить несколько раз для различных треугольников. Однако справедливость этого утверждения устанавливается в курсе геометрии не опытной проверкой, а при помощи доказательства, которое убеждает нас в том, что это утверждение справедливо для любого треугольника. Таким образом, утверждение о сумме углов треугольника является теоремой.

В формулировках теорем, как правило, встречаются слова «если..., то...», «из... следует...» и т.д. В этих случаях для сокращения записи используют знак . Возьмем в качестве примера теорему о том, что точка , одинаково удаленная от двух точек и , принадлежит оси симметрии этих точек (рис. 1). Ее можно подробнее сформулировать так: (для любых точек ) ( принадлежит оси симметрии точек и ).

Аналогичным образом могут быть записаны и другие геометрические теоремы: сначала идет разъяснительная часть теоремы (описывающая, какие точки или фигуры рассматриваются в теореме), а затем - два утверждения, соединенные знаком . Первое из этих утверждений, стоящее после разъяснительной части и перед знаком , называется условием теоремы, второе, стоящее после знака , называется заключением теоремы.

Меняя местами условие и заключение и оставляя без изменения разъяснительную часть, мы получаем новую теорему, которая называется обратной первоначальной. Например, для рассмотренной выше теоремы обратной будет следующая: (для любых точек ) (точка принадлежит оси симметрии точек и ) . Короче: если точка принадлежит оси симметрии точек и , то точка одинаково удалена от точек и . В данном случае и исходная теорема, и обратная ей теорема справедливы.

Однако из того, что некоторая теорема верна, не всегда следует, что обратная ей теорема также верна. Например, теорема: (точка не принадлежит прямой ) справедлива, но обратная ей теорема: (точка не принадлежит прямой ) - неверна, так как при условии точка может быть расположена на прямой , но вне отрезка (рис. 2).

Таким образом, доказав некоторую теорему, мы еще не можем утверждать, что верна и обратная теорема. Справедливость обратной теоремы требует отдельного доказательства.

В алгебре примерами теорем могут служить различные тождества, например равенства:

,

,

Они выводятся (доказываются), исходя из аксиом, и потому являются теоремами. Другим примером теорем в алгебре может служить теорема Виета о свойствах корней квадратного уравнения.

Большую роль в математике играют так называемые теоремы существования, в которых утверждается лишь существование какого-либо числа, фигуры и т.п., но не указывается, как это число (или фигура) могут быть найдены. Например: всякое уравнение с действительными коэффициентами имеет при нечетном хотя бы один действительный корень, т.е. существует число , являющееся корнем этого уравнения.

Некоторым видам теорем дают особые названия, например лемма, следствие. Они имеют дополнительный оттенок. Леммой обычно называют вспомогательную теорему, саму по себе мало интересную, но нужную для дальнейшего. Следствием называют утверждение, которое может быть легко выведено из чего-то ранее доказанного.

Иногда теоремой называют то, что правильнее было бы называть гипотезой. Например, «великая теорема Ферма» (см. Ферма великая теорема), утверждающая, что уравнение не имеет целых положительных решений при , пока не доказана.

Наряду с аксиомами и определениями теоремы являются основными типами математических предложений. Важные факты каждой математической науки (геометрии, алгебры, теории функций, теории вероятностей и т.д.) формулируются в виде теорем. Однако овладение математикой не сводится к тому, чтобы изучить аксиомы, определения и основные теоремы. Математическое образование включает также умение ориентироваться в богатстве фактов математической теории, владение основными методами решения задач, понимание лежащих в основе математики идей, умение применять математические знания при решении практических задач.

Не менее важны пространственное представление, навыки графического «видения», умение находить примеры, иллюстрирующие то или иное математическое понятие, и т.д. Таким образом, теоремы составляют только формальный «остов» математической теории, и знакомство с теоремами представляет собой лишь начало глубокого овладения математикой.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта