Главная » Засолка грибов » Как смоделировать случайную величину имея распределение пуассона. Распределение Пуассона

Как смоделировать случайную величину имея распределение пуассона. Распределение Пуассона

В любой системе связи через канал передается информация. Скорость передачи информации была определена в § 2.9. Эта скорость зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации. Попытаемся найти способ оценки способности канала передавать информацию. Рассмотрим вначале дискретный канал, через который передаются в единицу времени символов из алфавита объемом При передаче каждого символа в среднем по каналу проходит следующее количество информации [см. (2.135) и (2.140)]:

где случайные символы на входе и выходе канала. Из четырех фигурирующих здесь энтропий -собственная информация передаваемого символа - определяется источником дискретного сигнала и не зависит от свойств канала. Остальные три энтропии в общем случае зависят как от источника сигнала, так и от канала.

Представим себе, что на вход канала можно подавать символы от разных источников, характеризуемых различными распределениями вероятностей (но, конечно, при тех же значениях . Для каждого такого источника количество информации, переданной по каналу, принимает свое значение. Максимальное количество переданной информации, взятое по всевозможным

источникам входного сигнала, характеризует сам канал и называется пропускной способностью канала. В расчете на один символ

где максимизация производится по всем многомерным распределениям вероятностей Можно также определить пропускную способность С канала в расчете на единицу времени (секунду):

Последнее равенство следует из аддитивности энтропии. В дальнейшем везде, где это особо не оговорено, будем под пропускной способностью понимать пропускную способность в расчете на секунду.

В качестве примера вычислим пропускную способность симметричного канала без памяти, для которого переходные вероятности заданы формулой (3.36). Согласно (3.52) и (3.53)

Величина в данном случае легко вычисляется, поскольку условная переходная вероятность принимает только два значения: , если еслн Первое из этих значений возникает с вероятностью а второе с вероятностью К тому же, поскольку рассматривается канал без памяти, результаты приема отдельных символов независимы друг от друга. Поэтому

Следовательно, не зависит от распределения вероятности В, а определяется только переходными вероятностями канала. Это свойство сохраняется для всех моделей канала с аддитивным шумом.

Подставив (3.56) в (3.55), получим

Поскольку в правой части только член зависит от распределения вероятностей то максимизировать необходимо его. Максимальное значение согласно (2.123) равно и реализуется оно тогда, когда все принятые символы равновероятны и независимы друг от друга. Легко убедиться, что это условие удовлетворяется, еслн входные символы равновероятны и независимы, поскольку

При этом и

Отсюда пропускная способность в расчете на секунду

Для двоичного симметричного канала пропускная способность в двоичных единицах в секунду

Зависимость от согласно (3.59) показана на рис. 3.9.

При пропускная способность двоичного канала поскольку при такой вероятности ошибки последовательность выходных двоичных символов можно получить, совсем не передавая сигналы по каналу, а выбирая их наугад (например, по результатам бросания монеты), т. е. при последовательности на выходе и входе канала независимы. Случай называют обрывом канала. То, что пропускная способность при в двоичном канале такая же, как при (канал без шумов), объясняется тем, что при достаточно все выходные символы инвертировать (т. е. заменить 0 на 1 и 1 на 0), чтобы правильно восстановить входной сигнал.

Рис. 3.9. Зависимость пропускной способности двоичного симметричного канала без памяти от вероятности ошибочного приема символа

Пропускная способность непрерывного канала вычисляется аналогично. Пусть, например, канал имеет ограниченную полосу пропускания шириной Тогда сигналы на входе и выходе канала по теореме Котельникова определяются своими отсчетами, взятыми через интервал и поэтому информация, проходящая по каналу за некоторое время равна сумме количеств информации, переданных за каждый такой отсчет. Пропускная способность канала на один такой отсчет

Здесь случайные величины - сечения процессов на входе и выходе канала и максимум берется по всем допустимым входным сигналам, т. е. по всем распределениям .

Пропускная способность С определяется как сумма значений Сотсч» взятая по всем отсчетам за секунду. При этом, разумеется, дифференциальные энтропии в (3.60) должны вычисляться с учетом вероятностных связей между отсчетами.

Вычислим, например, пропускную способность непрерывного канала без памяти с аддитивным белым гауссовским шумом, имеющим полосу пропускания шириной если средняя мощность сигнала (дисперсия не превышает заданной величины Мощность (дисперсию) шума в полосе обозначим Отсчеты входного и выходного сигналов, а также шума связаны равенством

н так как имеет нормальное распределение с нулевым математическим ожиданием, то и условная плотность вероятности при фиксированном и будет также нормальной - с математическим ожиданием и и дисперсией Найдем пропускную способность на один отсчет:

Согласно (2.152) дифференциальная энтропия нормального распределения не зависит от математического ожидания и равна Поэтому для нахождения нужно найти такую плотность распределения при которой максимизируется Из (3.61), учитывая, что независимые случайные величины, имеем

Таким образом, дисперсия фиксирована, так как заданы. Согласно (2.153), при фиксированной дисперсии максимальная дифференциальная энтропия обеспечивается нормальным распределением. Из (3.61) видно, что при нормальном одномерном распределении распределение будет также нормальным и, следовательно,

Переходя к пропускной способности С в расчете на секунду, заметим, что информация, переданная за несколько отсчетов, максимальна в том случае, когда отсчеты сигналов независимы. Этого можно достичь, если сигнал выбрать так, чтобы его спектральная плотность была равномерной в полосе Как было показано в отсчеты, разделенные интервалами, кратными взаимно некоррелированны, а для гауссовских величин некоррелированность означает независимость.

Поэтому пропускную способность С (за секунду) можно найти, сложив пропускные способности (3.63) для независимых отсчетов:

Она реализуется, если гауссовский процесс с равномерной спектральной плотностью в полосе частот (квазибелый шум).

Из формулы (3.64) видно, что если бы мощность сигнала не была ограничена, то пропускная способность была бы бесконечной. Пропускная способность равна нулю, если отношение сигнал/шум в канале равно нулю. С ростом этого отношения пропускная способность увеличивается неограниченно, однако медленно, вследствие логарифмической зависимости.

Соотношение (3.64) часто называют формулой Шеннона. Эта формула имеет важное значение в теории информации, так как определяет зависимость пропускной способности рассматриваемого непрерывного канала от таких его технических характеристик, как ширина полосы пропускания и отношение сигна/шум. Формула Шеннона указывает на возможность обмена полосы пропускания на мощность сигнала и наоборот. Однако поскольку С зависит от линейно, а от по логарифмическому закону, компенсировать возможное сокращение полосы пропускания увеличением мощности сигнала, как правило, нецелесообразно. Более эффективным является обратный обмен мощности сигнала на полосу пропускания.

Пропускная способность

Пропускная способность - метрическая характеристика, показывающая соотношение предельного количества проходящих единиц (информации , предметов, объёма) в единицу времени через канал, систему, узел.

Используется в различных сферах:

  • в связи и информатике П. С. - предельно достижимое количество проходящей информации;
  • в транспорте П. С. - количество единиц транспорта;
  • в машиностроении - объем проходящего воздуха (масла, смазки).

Может измеряться в различных, иногда сугубо специализированных, единицах - штуки, бит/сек , тонны , кубические метры и т. д.

В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной или полученной информации за единицу времени.
Пропускная способность - один из важнейших с точки зрения пользователей факторов. Она оценивается количеством данных, которые сеть в пределе может передать за единицу времени от одного подсоединенного к ней устройства к другому.

Пропускная способность канала

Наибольшая возможная в данном канале скорость передачи информации называется его пропускной способностью. Пропускная способность канала есть скорость передачи информации при использовании «наилучших» (оптимальных) для данного канала источника, кодера и декодера, поэтому она характеризует только канал.

Пропускная способность дискретного (цифрового) канала без помех

C = log(m) бит/символ

где m - основание кода сигнала, используемого в канале. Скорость передачи информации в дискретном канале без шумов (идеальном канале) равна его пропускной способности, когда символы в канале независимы, а все m символов алфавита равновероятны (используются одинаково часто).

Пропускная способность нейронной сети

Пропускная способность нейронной сети - среднее арифметическое между объемами обрабатываемой и создаваемой информации нейронной сетью за единицу времени.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Пропускная способность" в других словарях:

    Пропускная способность - расход воды через водосливную арматуру при незатопленной воронке выпуска. Источник: ГОСТ 23289 94: Арматура санитарно техническая водосливная. Технические условия оригинал док … Словарь-справочник терминов нормативно-технической документации

    Общее количество нефтепродуктов, которые могут быть перекачены по трубопроводу (через терминал) в единицу времени. Емкость хранения резервуара (резервуарного парка) общее количество нефтепродуктов, которые могут быть помещены на хранение в… … Финансовый словарь

    пропускная способность - Весовой расход рабочей среды через клапан. [ГОСТ Р 12.2.085 2002] пропускная способность КV Расход жидкости (м3/ч), с плотностью, равной 1000 кг/м3, пропускаемой регулирующим органом при перепаде давления на нем в 1 кгс/см2 Примечание. Текущее… … Справочник технического переводчика

    Максимальное количество информации, которая может быть обработана в единицу времени, измеряемая в бит/с … Психологический словарь

    Производительность, мощность, отдача, емкость Словарь русских синонимов … Словарь синонимов

    Пропускная способность - — см. Механизм обслуживания … Экономико-математический словарь

    пропускная способность - Категория. Эргономическая характеристика. Специфика. Максимальное количество информации, которая может быть обработана в единицу времени, измеряемая в бит/с. Психологический словарь. И.М. Кондаков. 2000 … Большая психологическая энциклопедия

    пропускная способность - Максимальное количество транспортных средств, которое может проехать на данном участке дороги за конкретное время … Словарь по географии

    ПРОПУСКНАЯ СПОСОБНОСТЬ - (1) дороги наибольшее количество единиц наземного транспорта (млн. пар поездов), которое данная дорога может пропустить за единицу времени (час, сутки); (2) П. с. канала связи максимальная скорость безошибочной передачи (см.) по данному каналу… … Большая политехническая энциклопедия

    ПРОПУСКНАЯ СПОСОБНОСТЬ - наивысшая скорость передачи данных аппаратуры, с которой информация поступает в запоминающее устройство без потерь при сохранении скорости выборки и аналого цифрового преобразования. для приборов с архитектурой на параллельной шине пропускная… … Словарь понятий и терминов, сформулированных в нормативных документах российского законодательства


Распределение Пуассона.

Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть событие А появляется некоторое число раз в фиксированном участке пространства (интервале, площади, объеме) или промежутке времени с постоянной интенсивностью. Для определенности рассмотрим последовательное появление событий во времени, называемое потоком событий. Графически поток событий можно иллюстрировать множеством точек, расположенных на оси времени.

Это может быть поток вызовов в сфере обслуживания (ремонт бытовой техники, вызов скорой помощи и др.), поток вызовов на АТС, отказ в работе некоторых частей системы, радиоактивный распад, куски ткани или металлические листы и число дефектов на каждом из них и др. Наиболее полезным распределение Пуассона оказывается в тех задачах, где требуется определить лишь число положительных исходов («успехов»).

Представим себе булку с изюмом, разделенную на маленькие кусочки равной величины. Вследствие случайного распределения изюминок нельзя ожидать, что все кусочки будут содержать их одинаковое число. Когда среднее число изюминок, содержащееся в этих кусочках, известно, тогда распределение Пуассона задает вероятность того, что любой взятый кусочек содержит X =k (k = 0,1,2,...,)число изюминок.

Иначе говоря, распределение Пуассона определяет, какая часть длинной серии кусочков будет содержать равное 0, или 1, или 2, или и т.д. число изюминок.

Сделаем следующие предположения.

1. Вероятность появления некоторого числа событий в данном промежутке времени зависит только от длины этого промежутка, а не от его положения на временной оси. Это свойство стационарности.

2. Появление более одного события в достаточно малом промежутке времени практически невозможно, т.е. условная вероятность появления в этом же интервале другого события стремится к нулю при ® 0. Это свойство ординарности.

3. Вероятность появления данного числа событий на фиксированном промежутке времени не зависит от числа событий, появляющихся в другие промежутки времени. Это свойство отсутствия последействия.

Поток событий, удовлетворяющий перечисленным предложениям, называется простейшим .

Рассмотрим достаточно малый промежуток времени . На основании свойства 2 событие может появиться на этом промежутке один раз или совсем не появиться. Обозначим вероятность появления события через р , а непоявления – через q = 1-p. Вероятность р постоянна (свойство 3) и зависит только от величины (свойство 1). Математическое ожидание числа появлений события в промежутке будет равно 0×q + 1×p = p . Тогда среднее число появления событий в единицу времени называется интенсивностью потока и обозначается через a, т.е. a = .

Рассмотрим конечный отрезок времени t и разделим его на n частей = . Появления событий в каждом из этих промежутков независимы (свойство 2). Определим вероятность того, что в отрезке времени t при постоянной интенсивности потока а событие появится ровно X = k раз и не появится n – k . Так как событие может в каждом из n промежутков появиться не более чем 1 раз, то для появления его k раз на отрезке длительностью t оно должно появиться в любых k промежутках из общего числа n. Всего таких комбинаций , а вероятность каждой равна . Следовательно, по теореме сложения вероятностей получим для искомой вероятности известную формулу Бернулли

Это равенство записано как приближенное, так как исходной посылкой при его выводе послужило свойство 2, выполняемое тем точнее, чем меньше . Для получения точного равенства перейдем к пределу при ® 0 или, что то же, n ® . Получим после замены

P = a = и q = 1 – .

Введем новый параметр = at , означающий среднее число появлений события в отрезке t . После несложных преобразований и переходу к пределу в сомножителях получим.

= 1, = ,

Окончательно получим

, k = 0, 1, 2, ...

е = 2,718... –основание натурального логарифма.

Определение . Случайная величина Х , которая принимает только целые, положительные значения 0, 1, 2, ... имеет закон распределения Пуассона с параметром , если

для k = 0, 1, 2, ...

Распределение Пуассона было предложено французским математиком С.Д. Пуассоном (1781-1840 гг). Оно используется для решения задач исчисления вероятностей относительно редких, случайных взаимно независимых событий в единицу времени, длины, площади и объема.

Для случая, когда а) – велико и б) k = , справедлива формула Стирлинга:

Для расчета последующих значений используется рекуррентная формула

P (k + 1) = P (k ).

Пример 1. Чему равна вероятность того, что из 1000 человек в данный день родились: а) ни одного, б) один, в) два, г) три человека?

Решение. Так как p = 1/365, то q = 1 – 1/365 = 364/365 » 1.

Тогда

а) ,

б) ,

в) ,

г) .

Следовательно, если имеются выборки из 1000 человек, то среднее число человек, которые родились в определенный день, соответственно будут равны 65; 178; 244; 223.

Пример 2. Определить значение , при котором с вероятностью Р событие появилось хотя бы один раз.

Решение. Событие А = {появиться хотя бы один раз} и = {не появиться ни одного раза}. Следовательно .

Отсюда и .

Например, для Р = 0,5 , для Р = 0,95 .

Пример 3. На ткацких станках, обслуживаемых одной ткачихой, в течение часа происходит 90 обрывов нити. Найти вероятность того, что за 4 минуты произойдет хотя бы один обрыв нити.

Решение. По условию t = 4 мин. и среднее число обрывов за одну минуту , откуда . Требуемая вероятность равна .

Свойства . Математическое ожидание и дисперсия случайной величины, имеющей распределение Пуассона с параметром , равны:

M (X ) = D (X ) = .

Эти выражения получаются прямыми вычислениями:

Здесь была осуществлена замена n = k – 1 и использован тот факт, что .

Выполнив преобразования, аналогичные использованным при выводе М (X ), получим

Распределение Пуассона используется для аппроксимации биноминального распределения при больших n

$Х$ имеет распределение Пуассона с параметром $\lambda$ ($\lambda$$>$0), если эта величина принимает целые неотрицательные значения $к=0, 1, 2,\dots$ с вероятностями $рк$=$\frac{\lambda ^{:} }{:!} \cdot 5^{-\lambda } .$ (Это распределение впервые было рассмотрено французским математиком и физиком Симеоном Дени Пуассоном в 1837 г.)

Распределение Пуассона также называют законом редких событий, потому, что вероятности рк дают приближенное распределение числа наступлений некоторого редкого события при большом количестве независимых испытаний. В этом случае полагают $\lambda =n \cdot р$ , где $n$- число испытаний Бернулли, $р$- вероятность осуществления события в одном испытании.

Правомерность использования закона Пуассона вместо биномиального распределения при большом числе испытаний дает следующая теорема.

Теорема 1

Теорема Пуассона.

Если в схеме Бернулли n$\rightarrow$$\infty$, p$\rightarrow$0, так что $n \cdot p$$\rightarrow$$\lambda$ (конечному числу), то

$!_{n}^{k} p^{k} (1-p)^{n-k} \to \frac{\lambda ^{k} }{k!} e^{-\lambda } $ при любых $k=0, 1, 2,... $

Без доказательства.

Примечание 1

Формула Пуассона становится точнее, при малениких $p$ и больших чисел $n$, причём $n \cdot p $

Математическое ожидание случайной величины, имеющей распределение Пуассона с параметром $\lambda$:

$М(Х)$=$\sum \limits _{k=0}^{\infty }k\cdot \frac{\lambda ^{k} }{k!} e^{-\lambda } =\lambda \cdot e^{-\lambda } \sum \limits _{k=1}^{\infty }\frac{\lambda ^{k} }{k!} =\lambda \cdot e^{-\lambda } \cdot e^{\lambda } = $$\lambda$.

Дисперсия случайной величины, имеющей распределение Пуассона параметром $\lambda$:

$D(X)$=$\lambda$ .

Применение формулы Пуассона при решении задач

Пример 1

Вероятность появления бракованного изделия при массовом производстве равна $0,002$. Найти вероятность того, что в партии из $1500$ изделий будет не более 3-х бракованных. Найти среднее число бракованных изделий.

  • Пусть $А$-число бракованных изделий в партии из $1500$ изделий. Тогда искомая вероятность, это вероятность того, что $А$ $\leq$ $3$. В данной задаче мы имеем схему Бернулли с $n=1500$ и $р=0,002$. Для применения теоремы Пуассона положим $\lambda=1500 \cdot 0,002=3$. Тогда искомая вероятность
\
  • Среднее число бракованных изделий $М(А)$=$\lambda$=3.

Пример 2

Коммутатор учреждения обслуживает $100$ абонентов. Вероятность того, что в течение $1$ минуты абонент позвонит, равна $0,01$. Найти вероятность того, что в течение $1$ минуты никто не позвонит.

Пусть $А$- число позвонивших на коммутатор в течение $1$ минуты. Тогда искомая вероятность -- это вероятность того, что $А=0$. В данной задаче применима схема Бернулли с $n=100$, $p=0,01$. Для использования теоремы Пуассона положим

$\lambda=100 \cdot 0,01=1$.

Тогда искомая вероятность

$Р = е^-1$ $\approx0,37$.

Пример 3

Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти вероятности того, что в пути будет повреждено

  1. ровно три изделия;
  2. менее трех изделий.

    Рассмотрев замечание к формуле Пуассона, поскольку вероятность $р=0,002$ повреждения изделия мала, а число изделий $n=500$ велико, и $a=n\cdot p=1

    Для решения второй задачи применима формула, где $k1=0$ и $k2=2$. Имеем:

\

Пример 4

Учебник издан тиражом $100000$ экземпляров. Вероятность того, что один учебник сброшюрован неправильно, равна $0,0001$. Какова вероятность того, что тираж содержит $5$ бракованных книг?

По условию задачи $n = 100000$, $p = 0,0001$.

События "из $n$ книг ровно $m$ книг сброшюрованы неправильно", где $m = 0,1,2, \dots ,100000$, являются независимыми. Так как число $n$ велико, а вероятность $p$ мала, вероятность $P_n (m)$ можно вычислить по формуле Пуассона: $P_n$(m)$\approx \frac{{\lambda }^m\cdot e^{-\lambda }}{m!}$ , где $\lambda = np$.

В рассматриваемой задаче

$\lambda = 100000 \cdot 0,0001 = 10$.

Поэтому искомая вероятность $P_{100000}$(5) определяется равенством:

$P_{100000}$ (5)$\approx \frac{e^{-10}\cdot {10}^5}{5!}\approx $ ${10}^5$ $\frac{0,000045}{120}$ = $0,0375$.

Ответ: $0,0375$.

Пример 5

Завод отправил на базу $5000$ доброкачественных изделий. Вероятность того, что в пути изделие повредиться равно $0,0002$. Найти вероятность того, что на базу прибудут три негодных изделия.

По условию $n=5000$; $р = 0,0002$; $k = 3$. Найдем $\lambda $:

$\lambda = n \cdot p = 5000 \cdot 0,0002 = 1$.

Искомая вероятность по формуле Пуассона равна:

Пример 6

Вероятность того, что на телефонную станцию в течение одного часа позвонит один абонент, равна 0,01. В течение часа позвонили 200 абонентов. Найти вероятность того, что в течение часа позвонят 3 абонента.

Рассматрев условие задачи видим, что:

Найдем $\lambda $ для формуллы Пуассона:

\[\lambda =np=200\cdot 0,01=2.\]

Подставим значения в формулу Пуассона и получим значение:

Пример 7

На факультете насчитывается 500 студентов. Какова вероятность того, что 1 сентября является днем рождения одновременно для 2-х студентов?

Имеем $n=500$; $p=1/365 \approx 0,0027$, $q=0,9973$. Поскольку количество испытаний велико, а вероятность выполнения очень мала и $npq=1,35 \



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта