Главная » 1 Описание » Теоретические основы химии. Теоретическая химия: от молекулы водорода до структуры белков

Теоретические основы химии. Теоретическая химия: от молекулы водорода до структуры белков

Статья на конкурс «био/мол/текст»: Сто лет назад Гилберт Н. Льюис рисовал химические формулы с точками, обозначающими электроны, а Нильс Бор формулировал постулаты квантовой теории и объяснял строение атома. Эта статья о том, как эволюционировали представления ученых о химической связи, как эти представления помогли увидеть структуру молекул, а знания о молекулярной структуре помогли развитию теории, и как ученые пришли к искусству моделирования живых белков в действии.

Генеральным спонсором конкурса, согласно нашему краудфандингу , стал предприниматель Константин Синюшин , за что ему огромный человеческий респект!

Спонсором приза зрительских симпатий выступила фирма «Атлас ».

Спонсор публикации этой статьи - Артур Залевский.

Философские атомы

То, что все тела состоят из атомов, ученые подозревали еще в античности. «Атом » по-гречески означает «неделимый». В XVIII веке появились первые косвенные доказательства того, что все тела не являются сплошными и непрерывными, но состоят из мельчайших частиц, дальше которых дробить вещество невозможно. Более того, было обнаружено, что частицы эти могут соединяться друг с другом не как попало, а только в определенных пропорциях и в определенном порядке .

Однако до конца XIX века атом был скорее умозрительным, абстрактным понятием. Большинство химиков пользовалось им вынужденно, например, когда говорили, что «частица» воды содержит один атом кислорода и два атома водорода или что атомы соединяются в частицу в определенном порядке и влияют друг на друга. Слово «атом» в этом контексте означало не физическую частицу, а некую порцию вещества, реагирующую с другими веществами в определенном соотношении. Из тех же времен происходит термин «эквивалент », означающий количество вещества, реагирующего в точности без остатка с заданным количеством другого вещества в определенной реакции. Понятно, что для разных реакций эквиваленты одного и того же вещества были разными, что создавало изрядную путаницу. Были и «мастодонты» типа Вильгельма Оствальда (Нобелевская премия по химии 1909 г.), не признававшие концепции атомов вообще .

Оствальд умудрялся обходиться в своих сочинениях без атомов в смысле частиц, и следы этого неприятия мы находим в данном им и принятым международным сообществом определении единицы количества вещества - моля : «Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг ». Более современное, но пока еще не принятое Международным бюро мер и весов, определение моля базируется на фиксированном значении постоянной Авогадро (моль - это 6,022140857·10 23 частиц ) и не зависит от определения единицы массы. А Оствальд смог изменить свое отношение к атомистической теории после опытов Жана Перрена по броуновскому движению.

Тем временем химикам-органикам часто приходилось сталкиваться с веществами, имеющими одинаковый состав, но совершенно разные свойства - изомерами . Когда в головах ученых устоялась теория, гласящая, что свойства вещества зависят от того, в каком порядке соединились его атомы, умозрительным атомам пришлось приписать форму. В частности, атом углерода стали считать тетраэдрическим . Тогда же появились первые шаростержневые модели молекул, такие как на рисунке 1.

Но что (кроме палочек или крючочков на деревянных модельках) заставляет атомы соединяться друг с другом? В 1898 г. Людвиг Больцман выдвинул идею об особых «чувствительных областях» на поверхности атома. Атомы образуют молекулу, только если они контактируют друг с другом этими чувствительными областями - тогда между ними возникает притяжение, чувствительные области перекрываются (sic!) и образуется химическая связь (рис. 2).

Атомы становятся реальными

Тем временем к началу XX века были открыты положительные ионы с разным соотношением заряда и массы (1886 г., Ойген Гольдштейн) и частица, несущая элементарный отрицательный заряд, - электрон . Жан Батист Перрен в 1908 г. доказал существование молекул . И, наконец, в 1909 г. Эрнест Резерфорд провел свой знаменитый эксперимент с бомбардировкой золотой фольги α-частицами . В этом эксперименте он установил, что атом состоит из маленького положительно заряженного ядра, вокруг которого летают электроны. Так что для физиков атомы были вовсе не фикцией.

Я намеренно не называю имени «первооткрывателя» электрона, т.к. его обнаружили и идентифицировали по соотношению заряда и массы в 1896 г. и в катодных лучах (Джозеф Томсон , Джон Таунсенд , Г.А. Уилсон), и в β-излучении радиоактивных материалов (Анри Беккерель), а Роберт Милликен с Харви Флетчером в 1909 г. и - независимо от них - Абрам Фёдорович Иоффе в 1911 г. измерили его абсолютный заряд.

Одним из первых, кто заподозрил, что в деле химической связи замешаны электроны, был Гилберт Ньютон Льюис . Был он в большей степени физиком, чем химиком, занимался термодинамикой, интересовался только-только возникшей квантовой теорией, так что про электроны был в курсе. Кандидатская диссертация Льюиса была посвящена электрохимическим потенциалам, и впоследствии он стажировался у В. Нернста в области электрохимии. Квантовая физика в сочетании с электрохимией дала интересный эффект.

Мультфильм «Мальчик и его атом», нарисованный молекулами окиси углерода на медной подложке

Но вернемся к статье Льюиса 1916 г. Она оказала большое влияние на юного студента Орегонского Кулинарного техникума Сельскохозяйственного колледжа Лайнуса Полинга , который в 1922 г. с дипломом химика-технолога отправился в Калтех изучать рентгеновскую кристаллографию, а в 1926 г., уже защитив диссертацию, получил грант на стажировку в Европе. Там он работал в Мюнхене у Арнольда Зоммерфельда , в Копенгагене у Нильса Бора и в Цюрихе у Эрвина Шрёдингера. Неплохую подготовку давали в американских сельхозтехникумах, не правда ли?

В дело вступают физики

В 1927 г. Эйвинд Буррау точно решил из первых принципов задачу об электроне в поле двух ядер, т.е. о молекулярном ионе H 2 + . Эта работа показала, что задачу о химической связи можно решать методами квантовой механики, хотя задействованные при этом математические приемы оказались неприменимыми в общем случае. И в том же году Вальтер Гайтлер и Фриц Лондон приближенно решили задачу о молекуле водорода H 2 , сконструировав волновую функцию молекулы (спасибо Шрёдингеру) из двух волновых функций отдельных атомов водорода в виде их суммы и разности, и таким образом показали, как образуется ковалентная связь. Качественный результат оказался очень похожим на решение задачи про H 2 + . И при этом Льюис оказался прав! Электроны в молекуле H 2 действительно принадлежат обоим атомам в равной мере, хотя картинки, где два точки-электрона сидят промеж двух ядер, получиться не может в принципе: все-таки электрон обладает волновой природой и не может сидеть на одном месте. Вместо этого наблюдают увеличение плотности вероятности нахождения электрона на линии, соединяющей атомы (рис. 8).

Рисунок 8. Плотность вероятности обнаружения электрона в молекуле H 2 , вид сбоку и сверху (черные точки - ядра, красное - электронная плотность)

Немного позже, в 1929 г., задача о молекуле водорода была решена еще раз, другим методом. В 1926–1927 гг. Фридрих Хунд и в 1927–1928 гг. Роберт Малликен ввели понятие молекулярной орбитали - волновой функции одного электрона в поле ядер. А в 1929 г. Джон Леннард-Джонс предложил строить молекулярные орбитали в виде линейных комбинаций атомных орбиталей и решать уравнение Шрёдингера для них. Тогда для описания молекулы нужно взять все атомные орбитали и «просто» построить из них нужные линейные комбинации. При таком описании все электроны в молекуле в той или иной степени принадлежат всем атомам. Этот подход получил название теории молекулярных орбиталей .

Тем временем, идея Гайтлера и Лондона тоже оказалась плодотворной, ведь таким образом можно описывать любые ковалентные связи, а целую молекулу - как совокупность ковалентных связей между соседними атомами. Нужно «просто» взять волновые функции электрона на одном атоме связи и на другом атоме и построить их комбинацию. Метод получил название теории валентных связей . Вот только у атома углерода, например, есть два s- электрона и два p -электрона, какой взять, чтобы образовать связь C-H в метане, если вспомнить, что все C-H связи в метане эквивалентны и направлены по углам тетраэдра? Лайнус Полинг в 1931 г. предположил, что в присутствии атомов-партнеров (в данном случае, водорода) орбитали углерода гибридизуются и превращаются из сферической s и трех гантелеобразных p в вытянутые фиговины, направленные по углам тетраэдра. Эти гибридные орбитали имеют вид (s + √3p ), где за p -орбиталь берется та, что направлена вдоль соответствующей C-H связи. Из четырех исходных орбиталей получаются четыре новые, т.н. sp 3 -гибридные, и на каждой сидит по одному электрону, готовому образовать связь с атомом водорода (рис. 9).

В 1998 г. Джон Попл вместе с Вальтером Коном (помним, он в 1964 г. разработал теорию функционала плотности) получил Нобелевскую премию по химии за развитие вычислительных методов.

Когда молекул много

Химическая связь - это, конечно, замечательно. Но еще в 1873 г. Ян Дидерик Ван-дер-Ваальс предположил, что между молекулами тоже существует взаимодействие . Оно достаточно слабое, так что не приводит к образованию химических связей , но достаточно сильное, чтобы вызвать отклонение поведения газов от идеального, а также чтобы способствовать конденсации газа в жидкость и кристаллизации жидкости. А когда полвека спустя стали изучать структуру и свойства биомолекул, то обнаружили, что практически все процессы, идущие с их участием, основаны на нековалентных межмолекулярных взаимодействиях. Ван-дер-Ваальс предположил, что эти взаимодействия имеют электростатическую природу.

Для электростатических взаимодействий (двух точечных зарядов, точечного заряда и диполя, двух диполей и т.п. - см. рисунок 12) формулы были известны уже в XIX в. Однако к взаимодействию молекул их применил в 1915 г. Виллем Хендрик Кеесом .

а

б

в

г

д

е

Рисунок 12. Электростатические взаимодействия. Взаимодействия: а - ион-ион; б - ион-постоянный диполь; в - взаимодействие постоянных диполей; г - ион-наведенный диполь; д - постоянный диполь-наведенный диполь; е - взаимодействие флуктуирующих диполей.

Постоянные диполи могут поляризовать молекулы - так образуются наведенные (индуцированные) диполи. Индукционное взаимодействие изучал Петер Дебай в 1920–1921 гг.

Изучение взаимодействия наведенных диполей между собой и с мгновенными (флуктуирующими) диполями оказалось более сложной задачей, но ее решил в 1930 г. уже известный нам Фриц Лондон.

Первые работы по молекулярной динамике были сделаны в 1955 г. Э. Ферми, Дж. Паста, С. Уламом, в 1959 г. Б. Алдером и Т. Уэйнрайтом, в 1960 г. Дж. Гибсоном с сотрудниками и в 1964 г. А. Раманом. Конечно, это были еще не биомолекулы, а просто динамика жестких сфер (атомов) в ван-дер-ваальсовом потенциале - атомных жидкостей и кристаллов. Все расчеты проводили на компьютере.

Одним из первых, кто применил молекулярную динамику для моделирования ДНК и белков , был Майкл Левитт в начале 1970-х гг. (Нобелевская премия по химии 2013 г. вместе с Арье Варшелом и Мартином Карплусом) , .

Для моделирования динамики биомолекул, особенно если требуется «отследить» в реальном времени довольно длительный процесс типа фолдинга крупных белков, необходимы огромные вычислительные мощности. До недавнего времени выйти за микросекундный масштаб не хватало сил даже у суперкомпьютеров, но правильное вложение частного капитала позволило преодолеть миллисекундный рубеж (необходимый минимум для фиксации белковых сворачиваний-разворачиваний) и построить модели работы ряда белков. О достижениях миллиардера Дэвида Шоу и его суперкомпьютера Anton можно прочитать здесь: «

Химические реакции и фотопроцессы моделируют с помощью квантовой механики - неэмпирической или полуэмпирической . Однако, как мы помним, биомолекулы слишком велики и не влезают в квантовую химию даже на самых современных суперкомпьютерах. Выход нашли Арье Варшел, Майкл Левит и Вальтер Тиль в 1976 г.

Обычно исследователей интересует реакционный центр - это ограниченная область большой молекулы, где происходит все интересное: химическая реакция или поглощение/испускание света. Этот реакционный центр моделируют методами квантовой химии. Все остальное - это окружение, и его моделируют методами молекулярной механики, поскольку его роль в исследуемом процессе вторична. Такая схема называется QM/MM (Quantum Mechanics/Molecular Mechanics ) (рис. 17). В вычислительном отношении такая задача вполне подъемна, возможности расчета лимитируются только размером QM-части. Основную проблему - как аккуратно сшить QM- и MM-части - удалось решить авторам метода.

QM/MM успешно комбинируется с молекулярной динамикой, чтобы получить реалистичные картины химических реакций и фотопроцессов в активном центре.

Закончилось ли на QM/MM развитие теоретических методов для моделирования биомолекул? Определенно нет. С увеличением мощности суперкомпьютеров стало возможно использовать в QM-части сложные продвинутые методы квантовой химии. Работают также над улучшенным описанием взаимодействия QM- и MM-частей.

А что, если в системе нет какого-то одного важного активного центра, зато есть много однотипных участков, ведущих себя схожим образом? Например, аминокислоты при упаковке белка, азотистые основания в ДНК или сахара в углеводах? Для этого есть методы т.н. огрубления (coarse-graining ) . Уже знакомые нам А. Варшел и М. Левитт в тех же работах середины 1970-х предложили схему, согласно которой целые аминокислотные остатки заменяются некими жесткими фигурами (помните вырезанные из железных листов азотистые основания в модели ДНК Уотсона и Крика?). Для жестких фигур задают потенциалы взаимодействия с прочими компонентами системы и в динамике получают траектории (рис. 18). Такие огрубленные расчеты позволяют гонять динамику на больших временах или исследовать системы большего размера. При необходимости огрубленный фрагмент можно «оживить» обратно, вернув ему атомную структуру, и посмотреть на него более подробно.

Методы моделирования, разработанные для биомолекул, давно уже перекочевали и в обычную химию, и в науку о материалах, где успешно помогают решать задачи, связанные с окружением активного центра или морфологией материала.

Вся эта поразительная история от первой реалистичной модели атома до моделирования структуры и функций огромных биомолекул и белковых комплексов уложилась меньше чем в столетие!

Литература

  1. van’t Hoff J.H. (1874). A suggestion looking to the extension into space of the structural formulas at present used in chemistry and a note upon the relation between the optical activity and the chemical constitution of organic compounds . Archives neerlandaises des sciences exactes et naturelles . 9 , 445–454;
  2. Perrin J.-B. (1926). Discontinuous structure of matter . Сайт Nobelprize.org ;. ;;
  3. Драг-дизайн: как в современном мире создаются новые лекарства ;
  4. Виртуальные тропы реальных лекарств ;
  5. Порог чувствительности зрительного восприятия ;
  6. Kmiecik S., Gront D., Kolinski M., Wieteska L., Dawid A.E., Kolinski A. (2016). Coarse-grained protein models and their applications . Chem. Rev. 116 , 7898–7936.

, молекулярных орбиталей , орбитальных взаимодействий , активации молекул и др. методами физики и математики. Теоретическая химия объединяет принципы и представления, общие для всех ветвей химической науки. В рамках теоретической химии происходит систематизация химических законов, принципов и правил, их уточнение и детализация, построение иерархии. Центральное место в теоретической химии занимает учение о взаимосвязи строения и свойств молекулярных систем . На заре своего развития теоретическая химия была представлена исключительно квантовой химией и была призвана проверять существующие концепции на их соответствие квантовой механике , постоянно производить обновление известных концепций. Однако сложность изучаемых объектов и явлений, а также трудности применения квантовой механики для предсказания и описания химических процессов и явлений, привели к созданию нового раздела теоретической химии - математической химии . С помощью методов математической химии теоретическая химия может создавать собственные теории без обязательного привлечения квантовой механики. В последние годы из математической химии выделилась и сформировалась как самостоятельный раздел теоретической химии со своим понятийным аппаратом, объектами и методами исследования хемоинформатика , основанная на применении методов информатики и искусственного интеллекта (в частности, методов интеллектуального анализа данных и машинного обучения) к решению задач в области химии. К важнейшим разделам современной теоретической химии могут быть отнесены квантовая химия , математическая химия , хемоинформатика , теоретическая химическая кинетика и разделы физической химии . Современная теоретическая химия может быть примерно разделена на исследование химической структуры и исследование химической динамики. Положения теоретической химии используются при изучении сложных систем, например в молекулярной физике .

Ветви теоретической химии

Квантовая химия Применение квантовой механики к химии. Математическая химия Описание и предсказание молекулярной структуры и её динамики, а также построение новой химической теории используя математические методы, без обязательного использования квантовой механики. Теоретическая физическая химия Применение методов теоретической физики для исследования законов, определяющих строение и химические превращения химических веществ при различных внешних условиях. Теоретическая химическая кинетика Теоретическое исследование динамических систем связанных с химическими реакциями и соответствующих им дифференциальных уравнений. Вычислительная химия Применение компьютеров для решения химических задач и проблем. Хемоинформатика Использование информационных методов к решению задач в области химии. Молекулярное моделирование Методы для моделирования молекулярных структур, обязательно не обращаясь к квантовой механике. Молекулярная динамика Применение классической механики для моделирования движение ядер ансамбля атомов и молекул. Молекулярная механика : Моделирование внутри - и межмолекулярных взаимодействий и их поверхностей потенциальных энергий через сумму сил взаимодействия.

См. также

Напишите отзыв о статье "Теоретическая химия"

Литература

  • Глесстон С. 632c.
  • Дей М. К., Селбин Дж. Теоретическая неорганическая химия. М.: Химия, 1971. 416с.
  • Дей М. К., Селбин Дж. Теоретическая неорганическая химия. Пер. с англ. 3-ие изд. М.: Химия, 1976. 568c.
  • Корольков Д. В. Теоретическая химия. Том 1. Общие принципы и концепции. М: Академкнига, 2007. 463с. ISBN 978-5-94628-283-3
  • Корольков Д. В., Скоробогатов Г. А. Теоретическая химия: Учебное пособие. 2-е изд., перераб. и доп. Издательский дом Санкт-Петербургского университета, 2005. 653 с. ISBN 978-5-288-03639-2
  • Корольков Д. В., Скоробогатов Г. А . Основы теоретической химии. М. Академия, 2004. 352с. ISBN 5-7695-1442-6
  • Пальм В. А. Введение в теоретическую органическую химию. М.: Высшая школа, 1974. 448с.
  • Днепровский А. С., Темникова Т. И. Теоретические основы органической химии. Л. .: Химия, 1979; 2-ое изд. Л.: Химия, 1991. 558с.
  • Николаев Л. А. Теоретическая химия. М.: Высшая школа, 1984. 400c.
  • Татевский В. М. Квантовая механика и теория строения молекул. М.: Изд-во МГУ, 1965. 162с.
  • Бейдер Р. Атомы в молекулах. Квантовая теория. М.: Мир, 2001. 532c. ISBN 5-03-003363-7
  • Кузнецов В. И. М.: Высшая школа, 1989.
  • Кузнецов В. И. 327с.

Ссылки

УДК
Статьи
  • (Chemistry Explained)
Журналы

Отрывок, характеризующий Теоретическая химия

И отвернувшись от него, я стала смотреть, как горело то, что всего ещё минуту назад было моим ласковым, мудрым отцом... Я знала, что он ушёл, что он не чувствовал этой бесчеловечной боли... Что сейчас он был от нас далеко, уносясь в неизвестный, чудесный мир, где всё было спокойно и хорошо. Но для меня это всё ещё горело его тело. Это горели те же родные руки, обнимавшие меня ребёнком, успокаивая и защищая от любых печалей и бед... Это горели его глаза, в которые я так любила смотреть, ища одобрения... Это всё ещё был для меня мой родной, добрый отец, которого я так хорошо знала, и так сильно и горячо любила... И именно его тело теперь с жадностью пожирало голодное, злое, бушующее пламя...
Люди начали расходиться. На этот раз казнь для них была непонятной, так как никто не объявил, кем был казнимый человек, и за что он умирал. Никто не потрудился сказать ни слова. Да и сам приговорённый вёл себя довольно странно – обычно люди кричали дикими криками, пока от боли не останавливалось сердце. Этот же молчал даже тогда, когда пламя пожирало его... Ну, а любая толпа, как известно, не любит непонятное. Поэтому многие предпочитали уйти «от греха подальше», но Папские гвардейцы возвращали их, заставляя досматривать казнь до конца. Начиналось недовольное роптание... Люди Караффы подхватили меня под руки и насильно впихнули в другой экипаж, в котором сидел сам «светлейший» Папа... Он был очень злым и раздражённым.
– Я так и знал, что он «уйдёт»! Поехали! Здесь нечего больше делать.
– Помилуйте! Я имею право хотя бы уж видеть это до конца! – возмутилась я.
– Не прикидывайтесь, Изидора! – зло отмахнулся Папа, – Вы прекрасно знаете, что его там нет! А здесь просто догорает кусок мёртвого мяса!.. Поехали!
И тяжёлая карета тронулась с площади, даже не разрешив мне досмотреть, как в одиночестве догорало земное тело безвинно казнённого, чудесного человека... моего отца... Для Караффы он был всего лишь «куском мёртвого мяса», как только что выразился сам «святейший отец»... У меня же от такого сравнения зашевелились волосы. Должен же был, даже для Караффы, существовать какой-то предел! Но, видимо, никакого предела и ни в чём, у этого изверга не было...
Страшный день подходил к концу. Я сидела у распахнутого окна, ничего не чувствуя и не слыша. Мир стал для меня застывшим и безрадостным. Казалось – он существовал отдельно, не пробиваясь в мой уставший мозг и никак не касаясь меня... На подоконнике, играясь, всё также верещали неугомонные «римские» воробьи. Внизу звучали человеческие голоса и обычный дневной шум бурлящего города. Но всё это доходило до меня через какую-то очень плотную «стену», которая почти что не пропускала звуков... Мой привычный внутренний мир опустел и оглох. Он стал совершенно чужим и тёмным... Милого, ласкового отца больше не существовало. Он ушёл следом за Джироламо...
Но у меня всё ещё оставалась Анна. И я знала, что должна жить, чтобы спасти хотя бы её от изощрённого убийцы, звавшего себя «наместником Бога», святейшим Папой... Трудно было даже представить, если Караффа был всего лишь его «наместником», то каким же зверем должен был оказаться этот его любимый Бог?!. Я попыталась выйти из своего «замороженного» состояния, но как оказалось – это было не так-то просто – тело совершенно не слушалось, не желая оживать, а уставшая Душа искала только покоя... Тогда, видя, что ничего путного не получается, я просто решила оставить себя в покое, отпустив всё на самотёк.
Ничего больше не думая, и ничего не решая, я просто «улетела» туда, куда стремилась моя израненная Душа, чтобы спастись... Чтобы хотя бы чуточку отдохнуть и забыться, уйдя далеко от злого «земного» мира туда, где царил только свет...
Я знала, что Караффа не оставит меня надолго в покое, несмотря на то, что мне только что пришлось пережить, даже наоборот – он будет считать, что боль ослабила и обезоружила меня, и возможно именно в этот момент попробует заставить меня сдаться, нанеся какой-то очередной ужасающий удар...
Дни шли. Но, к моему величайшему удивлению, Караффа не появлялся... Это было огромным облегчением, но расслабляться, к сожалению, не позволяло. Ибо каждое мгновение я ожидала, какую новую подлость придумает для меня его тёмная, злая душа...
Боль с каждым днём потихонечку притуплялась, в основном, благодаря пару недель назад происшедшему и совершенно меня ошеломившему неожиданному и радостному происшествию – у меня появилась возможность слышать своего погибшего отца!..
Я не смогла увидеть его, но очень чётко слышала и понимала каждое слово, будто отец находился рядом со мной. Сперва я этому не поверила, думая, что просто брежу от полного измождения. Но зов повторился... Это и, правда, был отец.
От радости я никак не могла придти в себя и всё боялась, что вдруг, прямо сейчас, он просто возьмёт и исчезнет!.. Но отец не исчезал. И понемножку успокоившись, я наконец-то смогла ему отвечать...
– Неужели это и правда – ты!? Где же ты сейчас?.. Почему я не могу увидеть тебя?
– Доченька моя... Ты не видишь, потому, что совершенно измучена, милая. Вот Анна видит, я был у неё. И ты увидишь, родная. Только тебе нужно время, чтобы успокоиться.
Чистое, знакомое тепло разливалось по всему телу, окутывая меня радостью и светом...
– Как ты, отец!?. Скажи мне, как она выглядит, эта другая жизнь?.. Какая она?
– Она чудесна, милая!.. Только пока ещё непривычна. И так не похожа на нашу бывшую, земную!.. Здесь люди живут в своих мирах. И они так красивы, эти «миры»!.. Только у меня не получается ещё. Видимо, пока ещё рано мне... – голос на секунду умолк, как бы решая, говорить ли дальше.
– Меня встретил твой Джироламо, доченька... Он такой же живой и любящий, каким был на Земле... Он очень сильно скучает по тебе и тоскует. И просил передать тебе, что так же сильно любит тебя и там... И ждёт тебя, когда бы ты ни пришла... И твоя мама – она тоже с нами. Мы все любим и ждём тебя, родная. Нам очень не хватает тебя... Береги себя, доченька. Не давай Караффе радости издеваться над тобою.

Существенным является вопрос о механизме электролити­ческой диссоциации. Легче всего диссоциируют вещества с ионной связью. Как известно, эти вещества состоят из ионов. При их растворении диполи воды ориентируются вокруг положительного и отрицательного ионов. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. При…

С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей. Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только катионы водорода Н3РО4 Н+ + Н2РО—4(первая ступень) Н2РО—4 Н+ + НРO2-4 (вторая ступень) НРО2-4 Н+ PОЗ—4 (третья ступень) Диссоциация многоосновной кислоты протекает главным образом по первой ступени, в меньшей степени по второй и лишь в незначительной степени — по третьей. Поэтому в водном растворе, например, фос­форной кислоты наряду с молекулами Н3РО4 имеются ионы (в последовательно уменьшающихся количествах) Н2РО2-4, НРО2-4 и РО3-4. Основаниями называются электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы. Например: KOH K+ + OH—;…

Поскольку электролитическая диссоциация — процесс обратимый, то в растворах электролитов наряду с их ионами присутствуют и молекулы. Поэтому растворы электролитов характеризуются степенью диссоциации (обозначается греческой буквой альфа α). Степень диссоциации — это отношение числа распавшихся на ионы моле­кул N’ к общему числу растворенных молекул N: Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы. Различные электролиты имеют различную степень диссоциации. Опыт показывает, что она зависит от концентрации электролита и от температуры. С уменьшением концентрации электролита,…

Согласно теории электролитической диссоциации все реакции в водных растворах электролитов являются реакциями между ионами. Они называются ионными реакциями, а уравнения этих реакций — ионными уравнениями. Они проще уравнений реакций, записанных в молекулярной форме, и имеют более общий характер. При составлении ионных уравнений реакций следует руководство­ваться тем, что вещества малодиссоциированные, малорастворимые (выпадающие в осадок) и газообразные записываются в молекулярной форме. Знак ↓, стоящий при формуле вещества, обозначает, что это вещество уходит из сферы реакции в виде осадка, знак обозначает, что вещество удаляется из сферы реакции в виде газа. Сильные электролиты, как полностью диссоциированные, записывают в виде ионов. Сумма электрических зарядов левой части уравнения должна быть равна сумме электрических зарядов правой части. Для закрепления этих положений рассмотрим два примера. Пример 1. Напишите уравнения реакций между растворами хлорида железа (III) и гидроксида натрия в молекулярной и ионной формах. Разобьем решение задачи на четыре этапа. 1….

КH2O = 1.10-4 Данная константа для воды называется ионным произведением воды, которое зависит только от температуры. При диссоциации воды на каждый ион Н+ образуется один ион ОН—, следовательно, в чистой воде концентрации этих ионов одинаковы: [Н+] = [ОН—]. Используя значение ионного произведения воды, находим: = [ОН—] = моль/л. Таковы концентрации ионов Н+ и ОН—…

Выше показано, что реакция чистой воды является нейтраль­ной (рН = 7). Водные растворы кислот и оснований имеют, соответственно, кислую (рН < 7) и щелочную (рН > 7) реакцию. Практика, однако, показывает, что не только кислоты и основания, но и соли могут иметь щелочную или кислую реакцию - причиной этого является гидролиз солей. Взаимодействие солей с водой, в результате которого образуются кислота (или кислая соль), и основание (или основная соль), называется гидролизом солей. Рассмотрим гидролиз солей следующих основных типов: 1. Соли сильного основания и сильной кислоты (например, KBr, NаNО3) при растворении в воде не гидролизуются, и рас­твор соли имеет нейтральную реакцию….

В этом методе сравнивают степени окисления атомов в исходных и конечных веществах, руководствуясь правилом: число электронов, отданных восстановителем, должно рав­няться числу электронов, присоединенных окислителем. Для составле­ния уравнения надо знать формулы реагирующих веществ и продуктов реакции. Последние определяются либо опытным путем, либо на осно­ве известных свойств элементов. Рассмотрим применение этого метода на примерах. Пример 1. Составление уравнения реакции меди с раствором нитрата палладия (II). Запишем формулы исходных и конечных веществ реакции и покажем изменения степеней окисления: Медь, образуя ион меди, отдает два электрона, ее степень окисления повы­шается от 0 до +2. Медь — восстановитель. Ион палладия, присоединяя два электрона, изменяет степень окисления от +2 до 0. Нитрат палладия (II) -окислитель. Эти изменения можно выразить электронными уравнениями из которых следует, что при восстановителе и окислителе коэффициенты равны 1. Окончательное уравнение реакции: Cu + Pd(NO3)2 = Cu(NO3)2…

Как показывает само название, этот метод основан на составлении ионных уравнений для процесса окисления и процесса восстановления с последующим суммированием их в общее уравнение. В качестве примера составим уравнение той же реакции, которую использовали при объяснении метода электронного баланса. При пропускании сероводорода Н2S через подкисленный раствор перманганата калия КМnО4 малиновая окраска исчезает и раствор мутнеет. Опыт показывает, что помутнение раствора происходит в результате образова­ния элементной серы, т.е. протекания процесса: Н2S → S + 2H+ Эта схема уравнена по числу атомов. Для уравнивания по числу зарядов надо от левой части схемы отнять два электрона, после чего можно стрелку заменить на знак равенства: Н2S — 2е— = S + 2H+ Это первая полуреакция — процесс окисления восстановителя Н2S. Обесцвечивание раствора связано с переходом иона MnO4— (он имеет малиновую окраску) в ион Mn2+ (практически бесцветный и лишь при большой концентрации имеет слабо-розовую окраску), что можно выразить схемой MnO4— → Mn2+ В кислом растворе кислород, входящий в состав ионов МnО4, вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записыва­ем так: MnO4— + 8Н+→ Мn2+ + 4Н2О Чтобы стрелку заменить на знак равенства,…

Хорошо известно, что одни вещества в растворенном или расплав­ленном состоянии проводят электрический ток, другие в тех же усло­виях ток не проводят. Это можно наблюдать с помощью простого прибора. Он состоит из угольных стержней (электродов), присоединенных проводами к электриче­ской сети. В цепь включена электрическая лампочка, которая показывает присутствие или отсутствие тока в цепи. Если опустить электроды в раствор саха­ра, то лампочка не загорается. Но она ярко загорится, если их опустить в раст­вор хлорида натрия. Вещества, распадающиеся на ионы в растворах или расплавах и потому проводящие электрический ток, называются электролитами. Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами. К электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений,…

Для объяснения особенностей водных растворов электролитов шведским ученым С.Аррениусом в 1887 г. была предложена теория электролитической диссоциации. В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи. Современное содержание этой теории можно свести к следующим трем положениям: 1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы — положительные и отрицательные. Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома — это простые ионы (Na+, Mg2+, Аl3+ и т.д.) — или из нескольких атомов — это сложные ионы (NО3—, SO2-4, РОЗ-4и т.д.). 2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицатель­но заряженные — к аноду. Поэтому первые называются катионами, вторые — анионами. Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами. 3. Диссоциация — обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости. Например,…

ХИМИЯ - 2004

ВСТУПИТЕЛЬНЫЕ ИСПЫТАНИЯ В МГУ

Под общей редакцией
проф. Н.Е.Кузьменко и проф. В.И. Теренина

Издательство Московского университета


Н.Е.Кузьменко , профессор, докт. физ-мат. наук

В.И.Теренин, профессор, докт. хим. наук

О.В. Архангельская , доцент, канд. хим. наук

В.В.Еремин , доцент, канд. физ-мат. наук

С.И. Каргов , доцент, канд. хим. наук

И.В. Морозов , доцент, канд. хим. наук

М.В.Обрезкова , доцент, канд. хим. наук

О.Н.Рыжова , ст. преп., канд. пед. наук

Химия-2004 : Конкурсные вступительные экзамены в МГУ / Под

Х общей редакцией проф. Н.Е. Кузьменко и проф. В.И. Теренина. –
М.: Изд-во Моск. ун-та, 2004. – 86 с.

Цель данного пособия - подготовка абитуриентов к сдаче письменных вступительных экзаменов по химии в Московский государственный университет им. М. В. Ломоносова. Оно продолжает серию пособий, которые Московский университет издает ежегодно с 1990 года.

В пособии представлены ВСЕ варианты экзаменационных заданий по химии, предлагавшиеся на вступительных экзаменах на всех факультетах МГУ в 2004 году. Для каждого варианта приведены подробные решения заданий или же ответы и указания к решению. Обращаем внимание абитуриентов на то, что предлагаемые решения – не всегда единственно возможные. Некоторые задачи и в особенности цепочки превращений допускают несколько решений.

Для решения университетских экзаменационных задач по химии необходима хорошая теоретическая подготовка, поэтому кроме школьных учебников полезно использовать учебные пособия и справочники, подготовленные авторскими коллективами МГУ (см. книги в списке литературы на стр. 84 настоящего сборника).

Пособие предназначено для школьников старших классов, абитуриентов, учителей. Мы искренне желаем всем абитуриентам успеха на конкурсных экзаменах и надеемся, что данный сборник поможет многим добиться поставленной цели.

ISBN © Химический факультет МГУ, 2004.


ПРОГРАММА ВСТУПИТЕЛЬНЫХ ЭКЗАМЕНОВ ПО ХИМИИ
ДЛЯ ПОСТУПАЮЩИХ В МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В.ЛОМОНОСОВА

Программа по химии для поступающих в Московский государственный университет состоит из двух разделов. В первом разделе представлены основные теоретические понятия химии, которыми должен владеть абитуриент с тем, чтобы уметь обосновать химические и физические свойства веществ, перечисленных во втором разделе, посвященном элементам и их соединениям.

Экзаменационный билет может содержать до 10 заданий с дифференцированной оценкой, охватывающих все разделы программы для поступающих. Примеры экзаменационных заданий последних лет помещены в сборниках и (см. список рекомендуемой литературы). Продолжительность письменного экзамена равна 4 часам. На экзамене можно пользоваться микрокалькуляторами и справочными таблицами, такими как "Периодическая система химических элементов", "Растворимость оснований, кислот и солей в воде", "Ряд стандартных электродных потенциалов".


Часть I. ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ

Предмет химии. Место химии в естествознании. Масса и энергия. Основные понятия химии. Вещество. Молекула. Атом. Электрон. Ион. Химический элемент. Химическая формула. Относительные атомная и молекулярная массы. Моль. Молярная масса.

Химические превращения. Закон сохранения массы и энергии. Закон постоянства состава. Стехиометрия.

Строение атома. Атомное ядро. Изотопы. Стабильные и нестабильные ядра. Радиоактивные превращения, деление ядер и ядерный синтез. Уравнение радиоактивного распада. Период полураспада.

Двойственная природа электрона. Строение электронных оболочек атомов. Квантовые числа. Атомные орбитали. Электронные конфигурации атомов в основном и возбужденном состояниях, принцип Паули, правило Хунда.

Периодический закон Д.И.Менделеева и его обоснование с точки зрения электронного строения атомов. Периодическая система элементов.

Химическая связь. Типы химических связей: ковалентная, ионная, металлическая, водородная. Механизмы образования ковалентной связи: обменный и донорно-акцепторный. Энергия связи. Потенциал ионизации, сродство к электрону, электроотрицательность. Полярность связи, индуктивный эффект. Кратные связи. Модель гибридизации орбиталей. Связь электронной структуры молекул с их геометрическим строением (на примере соединений элементов 2-го периода). Делокализация электронов в сопряженных системах, мезомерный эффект. Понятие о молекулярных орбиталях.

Валентность и степень окисления. Структурные формулы. Изомерия. Виды изомерии, структурная и пространственная изомерия.

Агрегатные состояния вещества и переходы между ними в зависимости от температуры и давления. Газы. Газовые законы. Уравнение Клапейрона–Менделеева. Закон Авогадро, молярный объем. Жидкости. Ассоциация молекул в жидкостях. Твердые тела. Основные типы кристаллических решеток: кубические и гексагональные.

Классификация и номенклатура химических веществ. Индивидуальные вещества, смеси, растворы. Простые вещества, аллотропия. Металлы и неметаллы. Сложные вещества. Основные классы неорганических веществ: оксиды, основания, кислоты, соли. Комплексные соединения. Основные классы органических веществ: углеводороды, галоген-, кислород- и азотсодержащие вещества. Карбо- и гетероциклы. Полимеры и макромолекулы.

Химические реакции и их классификация. Типы разрыва химических связей. Гомо- и гетеролитические реакции. Окислительно-восстановительные реакции.

Тепловые эффекты химических реакций. Термохимические уравнения. Теплота (энтальпия) образования химических соединений. Закон Гесса и его следствия.

Скорость химической реакции. Представление о механизмах химических реакций. Элементарная стадия реакции. Гомогенные и гетерогенные реакции. Зависимость скорости гомогенных реакций от концентрации (закон действующих масс). Константа скорости химической реакции, ее зависимость от температуры. Энергия активации.

Явление катализа. Катализаторы. Примеры каталитических процессов. Представление о механизмах гомогенного и гетерогенного катализа.

Обратимые реакции. Химическое равновесие. Константа равновесия, степень превращения. Смещение химического равновесия под действием температуры и давления (концентрации). Принцип Ле Шателье.

Дисперсные системы. Коллоидные системы. Растворы. Механизм образования растворов. Растворимость веществ и ее зависимость от температуры и природы растворителя. Способы выражения концентрации растворов: массовая доля, мольная доля, объемная доля, молярная концентрация. Отличие физических свойств раствора от свойств растворителя. Твердые растворы. Сплавы.

Электролиты. Растворы электролитов. Электролитическая диссоциация кислот, оснований и солей. Кислотно-основные взаимодействия в растворах. Протонные кислоты, кислоты Льюиса. Амфотерность. Константа диссоциации. Степень диссоциации. Ионное произведение воды. Водородный показатель. Гидролиз солей. Равновесие между ионами в растворе и твердой фазой. Произведение растворимости. Образование простейших комплексов в растворах. Координационное число. Константа устойчивости комплексов. Ионные уравнения реакций.

Окислительно-восстановительные реакции в растворах. Определение стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций. Стандартные потенциалы окислительно-восстановительных реакций. Ряд стандартных электродных потенциалов. Электролиз растворов и расплавов. Законы электролиза Фарадея.

ТЕОРЕТИЧЕСКАЯ ХИМИЯ

После усвоения памятью известного количества фактов из неорганической химии появляется потребность обобщить их, осветить идеей совокупность приобретенных химических представлений. Это было бы очень легко сделать, если бы существовала уже готовая, строго научная теория химии; но химические теории, которые мы имеем, относятся только к частям науки, к тому или другому ее отделу, и до сих пор никто еще не пытался создать общую теорию, которая обняла бы всю науку во всей ее целости. Таким образом, в настоящее время теоретическая химия, насколько она существует, составляется из нескольких отделов, довольно различных и, между тем, мало и слабо между собой связанных; поэтому под химической теорией должно разуметь покамест не более как собрание нескольких общих законов, на точном изучении которых должна быть основана и, вероятно, будет впоследствии основана собственно теория химии. Отделов теоретической химии, по крайней мере, три: а) стехиометрия; в) собственно теоретическая химия и с) физическая химия.
а) Стехиометрия (stochiometrie) имеет предметом изучение тех количественных отношений, которые существуют между телами, вступающими друг с другом в реакцию. Сюда, следовательно, войдет: изложение наших понятий о пайных и объемных отношениях, учение о частицах, о количественной части химических явлений вообще и неопределенных соединений в особенности 1). На неопределенные соединения, т. е. такие соединения, в которые тела вступают в неопределенном, изменчивом, количественном отношении, многие привыкли как-то мало обращать внимания, считая их чем-то выходящим из общего порядка. Но химическим соединением вообще называют такое соединение двух или более тел, продукт которого представляется нам однородным, однообразным во всех своих малейших частицах, несмотря на то, что мы знаем, что сами составили его из таких-то и таких-то известных тел. Это есть единственное определение, какое можно дать химическому соединению. В этом отношении неопределенные соединения также совершенно ему подчиняются, а так как они представляют законы более обширные, чем законы для определенных соединений, то последние являются только частным случаем первых.
b) Второй отдел содержит то, что чаще всего известно под названием теоретической химии; здесь всего более встречается теорий. Этот отдел трактует, например, о причинах, законах и ходе химических реакций или превращений тел. Но условия, при которых может происходить та или другая реакция, весьма разнообразны. Во-первых, обоюдное влияние двух тел не всегда достаточно напряженно, чтобы изменить равновесие в положении тех или других частиц, - хотя, без сомнения, все тела действуют друг на друга. Кроме того, изменение физических условий в большей части случаев имеет коренное влияние на смысл одной и той же реакции. Обобщить влияние условия на реакцию - дело первейшей важности; на этом в настоящее время преимущественно остановлено внимание химиков.
c) Но химия занимается не одним только определением количеств тел, в которых они действуют друг на друга, и не одним только разбором смысла реакций. Она останавливается и на продуктах реакций, изучает их физические свойства, сравнивает эти последние со свойствами первоначальных тел. Тот раздел химии, который обобщает подобного рода изучения, носит название физической химии.
Вот все три главных отдела, на которые распадается теоретическая химия; без сомнения, каждый из них сохраняет свою отдельность, несмотря на то, что есть вопросы, которые будут общи двум из этих отделов или даже всем им вместе.
Теоретическая химия -наука очень старинная и в то же время очень новая. Она давняя потому, что всегда, с самых давних времен существовали попытки объяснить химические явления, и очень новая потому, что при всей силе этих стремлений к созданию теории долго не было точных исследований, на которых можно было бы основать общие строго научные выводы. Только тогда и началась теоретическая химия, когда взялись за изучение явлений с измерительными снарядами в руках. Это начало мер и измерений введено было в науку только со времен Лавуазье, которого по справедливости следует назвать основателем теоретической химии. Изложение общего исторического хода учения, хотя и заслуживает внимания, однако не войдет в наш курс как излишнее. Тем не менее, некоторые краткие исторические сведения будут сообщены, насколько это окажется кстати.
Начнем с первого отдела.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта