Главная » 2 Распространение » Как изменился доверительный интервал при увеличении надежности. Интервальные оценки

Как изменился доверительный интервал при увеличении надежности. Интервальные оценки

Доверительный интервал. Доверительная вероятность.

ПРИМЕНЕНИЕ ТЕОРИИ ВЕРОЯТНОСТИ К СТАТИСТИКЕ.

Основные понятия.

Математическая статистика - это раздел математики, в котором изучаются методы обработки и анализа экспериментальных данных, полученных в результате наблюдений над массовыми случайными событиями, явлениями.

Наблюдения, проводимые над объектами, могут охватывать всех членов изучаемой совокупности без исключения и могут ограничиваться обследованиями лишь некоторой части членов данной совокупности. Первое наблюдение называется сплошным или полным, второе частичным или выборочным .

Естественно, что наиболее полную информацию дает сплошное наблюдение, однако к нему прибегают далеко не всегда. Во-первых, сплошное наблюдение очень трудоемко, а во-вторых, часто бывает практически невозможно или даже нецелесообразно. Поэтому в подавляющем большинстве случаев прибегают к выборочному исследованию.

Совокупность, из которой некоторым образом отбирается часть ее членов для совместного изучения, называется генеральной совокупностью , а отобранная тем или иным способом часть генеральной совокупности - выборочная совокупность или выборка .

Объем генеральной совокупности теоретически ничем неограничен , на практике же он всегда ограничен.

Объем выборки может быть большим или малым, но он не может быть меньше двух.

Отбор в выборку можно проводить случайным способом (по способу жеребьевки или лотереи). Либо планово, в зависимости от задачи и организации обследования. Для того, чтобы выборка была представительной, необходимо обращать внимание на размах варьирования признака и согласовывать с ним объем выборки.

2. Определение неизвестной функции распределения.

Итак, мы сделали выборку. Разобьем диапазон наблюдаемых значений на интервалы , , …. одинаковой длины . Для оценки необходимого числа интервалов можно использовать следующие формулы:

Далее пусть m i - число наблюдаемых значений , попавших в i -ый интервал. Разделив m i на общее число наблюдений n , получим частоту , соответствующую i -ому интервалу: , причем . Составим следующую таблицу:

Номер интервала Интервал m i
m 1
m 2
... ... ... ...
k m k

которая называется статистическим рядом . Эмпирической (или статистической ) функцией распределения случайной величины называется частота события, заключающегося в том, что величина в результате опыта примет значение, меньшее x :

На практике достаточно найти значения статистической функции распределения F * (x) в точках , которые являются границами интервалов статистического ряда:

(5.2)

Следует заметить, что при и при . Построив точки и соединив их плавной кривой, получим приближенный график эмпирической функции распределения (рис. 5.1). Используя закон больших чисел Бернулли, можно доказать, что при достаточно большом числе испытаний с вероятностью, близкой к единице, эмпирическая функция распределения отличается сколь угодно мало от неизвестной нам функции распределения случайной величины .

Часто вместо построения графика эмпирической функции распределения поступают следующим образом. На оси абсцисс откладывают интервалы , ,…. . На каждом интервале строят прямоугольник, площадь которого равна частоте , соответствующей данному интервалу. Высота h i этого прямоугольника равна , где - длинна каждого из интервалов. Ясно, что сумма площадей всех построенных прямоугольников равна единице.

Рассмотрим функцию , которая в интервале постоянна и равна . График этой функции называется гистограммой . Он представляет собой ступенчатую линию (рис. 5.2). С помощью закона больших чисел Бернулли можно доказать, что при малых и больших с практической достоверностью как угодно мало отличается от плотности распределения непрерывной случайной величины .

Таким образом на практике определяется вид неизвестной функции распределения случайной величины.

3. Определение неизвестных параметров распределения.

Таким образом мы получили гистограмму, которая дает наглядность. Наглядность представленных результатов позволяет сделать различные заключения, суждения об исследуемом объекте.

Однако на этом обычно не останавливаются, а идут дальше, анализируя данные на проверку определенных предположений относительно возможных механизмов изучаемых процессов или явлений.

Несмотря на то, что данных в каждом обследовании сравнительно немного, мы бы хотели, чтобы результаты анализа достаточно хорошо описывали бы все реально существующее или мыслимое множество (т.е. генеральную совокупность).

Для этого делают некоторые предположения о том, как вычисленные на основе экспериментальных данных (выборке) показатели соотносятся с параметрами генеральной совокупности.

Решение этой задачи составляет главную часть любого анализа экспериментальных данных и тесно связано с использованием ряда теоретических распределений, рассмотренных выше.

Широкое использование в статистических выводах нормального распределения имеет под собой как эмпирическое, так и теоретическое обоснование.

Во-первых, практика показывает, что во многих случаях нормальное распределение действительно является довольно точным представлением экспериментальных данных.

Во-вторых, теоретически показано, что средние значения интервалов гистограмм распределены по закону, близкому к нормальному.

Однако следует четко представлять, что нормальное распределение - это лишь чисто математический инструмент и совсем необязательно, чтобы реальные экспериментальные данные точно описывались нормальным распределением. Хотя во многих случаях, допуская небольшую ошибку, можно говорить, что данные распределены нормально.

Ряд показателей, такие как среднее, дисперсия и т.д., характеризуют выборку и называются статистиками. Такие же показатели, но относящиеся к генеральной совокупности в целом, называются параметрами. Таким образом, можно сказать, что статистики служат для оценки параметров.

Генеральной средней называется среднее арифметическое значений генеральной совокупности объема :

Выборочной средней называется среднее арифметическое выборки объема :

(5.4)

если выборка имеет вид таблицы.

Выборочную среднюю принимают в качестве оценки генеральной средней.

Генеральной дисперсией называется среднее арифметическое квадратов отклонения значений генеральной совокупности от их среднего значения :

Генеральным средним квадратическим отклонением называется корень квадратный из генеральной дисперсии: .

Выборочной дисперсией называется среднее арифметическое квадратов отклонения значений выборки от их среднего значения :

Выборочное среднее квадратическое отклонение определяется как .

Для лучшего совпадения с результатами экспериментов, вводят понятие эмпирической (или исправленной) дисперсии :

Для оценки генерального среднего квадратического отклонения служит исправленное среднее квадратическое отклонение, или эмпирический стандарт :

(5.5)

В случае, когда все значения выборки различны, т.е. , , формулы для и принимают вид:

(5.6)

Доверительный интервал. Доверительная вероятность.

Различные статистики, получаемые результате вычислений, представляют собой точечные оценки соответствующих параметров генеральной совокупности.

Если из генеральной совокупности извлечь некоторое количество выборок и для каждой из них найти интересующие нас статистики, то вычисленные значения будут представлять собой случайные величины, имеющие некоторый разброс вокруг оцениваемого параметра.

Но, как правило, в результате эксперимента в распоряжении исследователя имеется одна выборка. Поэтому значительный интерес представляет получение интервальной оценки, т.е. некоторого интервала, внутри которого, как можно предположить, лежит истинное значение параметра.

Вероятности, признанные достаточными для уверенных суждениях о параметрах генеральной совокупности на основании статистик, называются доверительными.

Для примера рассмотрим как оценку параметра .

11.1. Доверительные интервалы и доверительная вероятность.

Доверительные интервалы для параметров нормально распреде­ленной

генеральной совокупности.

При статистической обработке результатов наблюдений следует не только найти оценку неизвестного параметра θ , но и охарактеризовать точность этой оценки. С этой целью вводится понятие доверительного интервала.

Доверительным интервалом для параметра θ называется интервал (θ 1 , θ 2 ), содержащий (накрывающий) истинное значение θ с заданной вероятностью р = 1 - α , т.е. Р [θ 1 < θ < θ 2 ] = 1-α .

Число 1 - α называется доверительной вероятностью, а зна­чение α - уровнем значимости. Статистики θ 1 = θ 1 (x 1 ,...,x n ) и θ 2 = θ 2 (x 1 ,...,x n ), определяемые по выборке x 1 ,...,x n из генераль­ной совокупности с неизвестным параметром θ , называются со­ответственно нижней и верхней границами доверительного ин­тервала.

Условие Р [θ 1 < θ < θ 2 ] = 1-α означает, что в большой серии независимых экспериментов, в каждом из которых получена вы­борка объема n , в среднем (1 - α )·100% из общего числа построенных доверительных интервалов содержат истинное значение параметра θ .

Длина доверительного интервала, характеризующая точ­ность интервального оценивания, зависит от объема выборки n и доверительной вероятности 1 - α : при увеличении объема выборки длина доверительного интервала уменьшается, а с приближе­нием доверительной вероятности к единице - увеличивается. Вы­бор доверительной вероятности определяется конкретными усло­виями. Обычно используются значения 1 - α , равные 0,90; 0,95; 0,99.

При решении некоторых задач применяются односторонние доверительные интервалы, границы которых определяют из усло­вий: Р [θ < θ 2 ] = 1-α или Р [θ 1 < θ ] = 1-α .

В этом случае интервалы называются соответственно левосторонними и правосторонними доверительными интервалами.

Чтобы найти доверительный интервал для параметра θ , на­до знать закон распределения статистики = (х 1 ,...,х п) , значе­ние которой является оценкой параметра θ.

Для получения доверительного интервала наименьшей дли­ны при данном объеме выборки п и заданной доверительной веро­ятности 1в качестве оценки параметра θ следует брать эффективную либо асимптотически эффективную оценку.

Рассмотрим один из методов построения доверительных интервалов. Предположим, что существует статистика Y = Y( , θ) такая, что:

а) закон распределения Y известен и не зависит от θ ;

б) функция Y( , θ) непрерывна и строго монотонна по θ.
Пусть (1) - заданная доверительная вероятность, а у а/2 и у 1- a /2 - квантили распределения статистики Y порядков α/2 и 1-α/ 2соответственно. Тогда с вероятностью 1выполняется неравенство у а/2 < Y( , θ) < у 1- a /2 .

Решая это неравенство относительно θ , найдем границы θ i и θ 2 доверительного интервала для θ. Если плотность распреде­ления статистики Y симметрична относительно оси Оу , то доверительный интервал имеет наименьшую длину, а если это распре­деление несимметрично, то длину, близкую к наименьшей.

Пример 46. Пусть х 1 ,х 2 ,...,х n - выборка из нормально рас­пределенной генеральной совокупности. Найти доверительный интервал для математического ожидания т при условии, что дис­персия генеральной совокупности известна и равна σ 2 , а довери­тельная вероятность равна 1-α.

Решение. В качестве оценки математического ожидания т возьмем выборочное среднее . Для нормально распределенной генеральной совокупности выборочное среднее является эффективной оценкой т. Выборочное среднее в данном случае имеет нормальное распределение .

Рассмотрим статистику , имеющую нормальное распределение N (0,1) независимо от значения параметра т. Кро­ме того, U как функция т непрерывна и строго монотонна. Тогда , где и а/2 и и 1- a /2 - квантили нормального распределения N (0,1).

Решая неравенство относительно т, по­лучим, что с вероятностью 1 выполняется условие:

.

Так как квантили нормального распределения связаны со­отношением и а/2 =-u 1- a /2 , полученный доверительный интервал для т можно записать следующим образом:

11.2. Доверительные интервалы для вероятности успеха в схеме Бернулли

и параметра λ распределения Пуассона.

Если распределение генеральной совокупности не является нор­мальным, то в некоторых случаях по выборкам большого объема можно построить доверительные интервалы для неизвестных па­раметров приближенно, используя при этом предельные теоремы теории вероятности и вытекающие из них асимптотические рас­пределения и оценки.

Пример 47. Пусть в n независимых испытаниях успех на­ступил х раз. Найти доверительный интервал для вероятности р успеха в одном испытании.

Решение . Эффективной оценкой вероятности успеха р в од­ном испытании является относительная частота = h = x/h . По теореме Муавра-Лапласа относительная частота h имеет асимпто­тически нормальное распределение , где q = 1 - р.

Рассмотрим статистику , которая имеет асимптотически нормальное распределение N (0,1) независимо от значения р. При больших п тогда имеем

.

Отсюда получим, что с вероятностью ≈1 выполняется неравенство

.

Заменяя значения р и q влевой и правой частях записанно­го выше неравенства их оценками = h и = 1-h, получим до­верительный интервал для вероятности успеха в схеме

Пример 48. При проверке 100 деталей из большой партии обнаружено 10 бракованных деталей.

а) Найти 95 % приближенный доверительный интервал для доли бракованных деталей во всей партии.

б) Какой минимальный объем выборки следует взять для того, чтобы с вероятностью 0,95 можно было утверждать, что до­ля бракованных деталей по всей партии отличается от частоты
появления бракованных деталей в выборке не более чем на 1 %?

Решение .а) Оценка доли бракованных деталей в партии по выборке равна = h = 10/100 = 0,1. По таблице приложений (П1) находим квантиль и 1- a /2 = и 0,975 = 1,96 . Тогда 95% доверительный

интервал для доли бракованных деталей в партии приближенно имеет вид 0,041 < р < 0,159.

б) Представим полученный доверительный интервал в виде неравенства

,

которое выполняется с вероятностью ≈1 - α = 0,95. Так как со­гласно условию задачи , то для определения n полу­чим неравенство

.

Отсюда следует, что и n ≥(0,3·196) 2 =3457,44 . Итак, минимальный объем выборки n = 3458.

11.3. Доверительные интервалы для коэффициента корреляции ρ.

Пусть выборка (х i ,у i), i = 1,2,...,п, получена из генеральной совокупности, имеющей двумерное нормальное распределение, и r - выборочный коэффициент корреляции. При достаточно больших n статистика имеет приближенно нормальное распределение .

Доверительный интервал для Arth ρ имеет вид

Доверительный интервал для ρ вычисляется с помощью таблиц гиперболического тангенса ρ= thz .(смотри таблицу при­ложение П8).

Пример 49. Выборочный коэффициент корреляции, вычис­ленный по выборке объема 10, r = -0,64. Найти 90 % доверительный интервал для коэффициента корреляции р.

Решение. По таблице приложений (П8) находим Arth(-0,64)= -Arth0,64 = -0,76.

Так как и 0, 95 = 1,645, то доверительный интервал для Arthρ имеет вид , т.е. -1,38

Обращаясь к таблице П8, получим 90 % доверительный ин­тервал для коэффициента корреляции: - 0,881 < ρ < -0,139.

11.4. Примеры доверительных интервалов.

1. Доверительный интервал для математического ожидания а нормальной случайной величины при известной дисперсии σ 2 имеет вид .

Здесь величина определяется по заданной доверительной вероятности γ по таблице значений , в которой .

Выборочное среднее квадратическое отклонение, размах выборки. 7. 2.

Контрольные вопросы

1. Запишите формулы для нахождения выборочного среднего по статистическим данным: 1) несгруппированным, 2) сгруппированным и поясните их. Приведите пример.

2. Запишите формулы для нахождения выборочного среднего квадратического отклонения по статистическим данным: 1) несгруппированным, 2) сгруппированным и поясните их. Приведите пример.

3. Назовите числовые характеристики выборки, которые описывают:

1) центр распределения,

2) рассеивание значений случайной величины вокруг центра,

3) симметричность распределения,

4) островершинность распределения?

Часть 2. статистические оценки параметров распределения генеральной совокупности

Тема 1. точечные оценки параметров генеральной совокупности

1. Оценка параметра и ее свойства

Изучаемая генеральная совокупность может быть очень большой. Поэтому ее изучают с помощью выборочного метода. Для выборки из генеральной совокупности вычисляют выборочную среднюю, выборочную дисперсию, и интересующие нас параметры . Например, для нормального распределения – это параметры и https://pandia.ru/text/78/148/images/image101_3.gif" width="16" height="20">.

Как оценить параметры генеральной совокупности, зная значения выборочных параметров?

Статистическая оценка

параметров распределения

Доверительный

Несмещенная Точечная Интервальная интервал

Эффективная оценка оценка

Состоятельная Доверительная

вероятность

* среднее арифметическое * размах варьирования

* медиана * выборочная дисперсия

* мода * выборочное среднее

квадратическое отклонение

Статистическое оценивание параметров распределения

Естественно возникает задача: как оценить (найти приближенное значение) параметра (параметров), которым определяется распределение?

Если генеральную совокупность описывает параметр https://pandia.ru/text/78/148/images/image104_4.gif" width="25" height="20">, которая вычислена по выборке. Например, выборочное среднее оценивает генеральную среднюю ; выборочная дисперсия оценивает генеральную дисперсию ..gif" width="25" height="28 src=">, а параметры – греческими , .

Если статистическая оценка параметра характеризуется одним числом, она называется точечной .

Для каждой конкретной выборки точечная статистическая оценка – это число, т. е. точка на числовой оси.

Статистическая оценка является случайной величиной и меняется в зависимости от выборки.

Для одной и той же неизвестной величины https://pandia.ru/text/78/148/images/image083_3.gif" width="15 height=25" height="25">, выборочная медиана , полусумма крайних элементов.

В силу многообразия оценок, применяемых для оценивания одной и той же неизвестной величины, возникает задача выбора лучшей оценки параметра в определенном смысле..gif" width="25" height="20"> должна быть несмещенной , т. е. ее математическое ожидание должно быть равно оцениваемому параметру.

2..gif" width="24" height="28 src="> представляет собой несмещенную оценку математического ожидания генеральной совокупности .

Выборочная дисперсия https://pandia.ru/text/78/148/images/image112_3.gif" width="20 height=19" height="19">.

Несмещенной оценкой генеральной дисперсии служит исправленная выборочная дисперсия , где - поправочный коэффициент.

При больших значения и будут мало отличаться, поэтому «исправление» выборочной дисперсии производят при малых (). В целях повышения надежности полученной оценки следует увеличивать объем выборки.

Пример 1. При обследовании 50 членов семей получен дискретный вариационный ряд.

Определите средний размер (среднее число членов) семьи.

Охарактеризуйте изменчивость размера семьи.

Объясните полученные результаты, сделайте выводы.

Решение

1. В данной задаче изучаемый признак является дискретным , так как размер семей не может отличаться друг от друга менее чем на одного человека. Рассчитаем среднее число членов семьи:

https://pandia.ru/text/78/148/images/image117_3.gif" width="209" height="60">:

https://pandia.ru/text/78/148/images/image119_3.gif" width="39 height=28" height="28">).

Найдем среднее квадратическое отклонение размера семьи: . Среднее квадратическое отклонение размера семьи - 2 человека.

Найдем коэффициент вариации размера семьи по формуле . Коэффициент вариации составляет 38%. Так как коэффициент вариации больше 35%, можно сделать вывод о том, что изучаемая совокупность семей является неоднородной , чем объясняется высокая изменчивость размера семьи в данной совокупности.

Тестовые задания

1. Точечная оценка параметра распределения признака, вычисленная по выборке, характеризуется:

1) одним числом 2) средним значением признака

3) точкой на прямой 4) результатами выборки

2. В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 11, 13, 15. Тогда оценка дисперсии измерений равна:

1) 4; 2) 13; 3) 8; 4) 3.

3. Отметьте правильные ответы. Качество точечной оценки параметра распределения признака характеризуется:

1) несмещенностью; 2) эффективностью;

3) состоятельностью; 4) случайностью.

4. Отметьте правильный ответ. Несмещенная оценка математического ожидания признака:

1) https://pandia.ru/text/78/148/images/image123_2.gif" width="93 height=60" height="60">;

3) https://pandia.ru/text/78/148/images/image125_2.gif" width="115" height="60">.

5. Оценка генеральной средней признака:

1) выборочное среднее значение 2) среднее значение признака

3) наибольшее значение признака 4) математическое ожидание

6. Несмещенная оценка дисперсии признака:

1) https://pandia.ru/text/78/148/images/image127_3.gif" width="176" height="60 src=">;

3) https://pandia.ru/text/78/148/images/image129_3.gif" width="144 height=60" height="60">.

7. Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 5, 6, 9, 12 . Оценка математического ожидания равна:

1) 8,25; 2) 8,5 ; 3) 7; 4) 8.

8. Математическое ожидание оценки параметра равно:

1) параметру; 2) выборочному среднему значению;

3) выборочной дисперсии; 4) нулю.

9. Несмещенная и состоятельная оценка генеральной дисперсии:

1) выборочная дисперсия; 2) исправленная выборочная дисперсия;

3) размах признака; 4) приближенное значение дисперсии.

Ответы . 1 . 1). 2. 1). 3 . 1, 2, 3. 4. 2).

5. 1). 6. 1). 7. 4). 8. 1). 9. 2).

контрольные вопросы

1. Дайте определение точечной статистической оценки.

2. Какая оценка параметра распределения называется точечной?

3..gif" width="25" height="28 src=">?

5. Какая числовая характеристика выборки является несмещенной для математического ожидания?

6. Какая числовая характеристика выборки является несмещенной для дисперсии?

Тема 2. интервальные оценки параметров генеральной совокупности

1. Доверительная вероятность и доверительный интервал

Точечные оценки являются приближенными, так как они указывают точку на числовой оси, в которой должно находиться значение неизвестного параметра.

Оценка параметра при разных выборках одного и того же объема будет принимать разные значения. Поэтому в ряде задач требуется найти не только подходящее значение параметра, но и определить его точность и надежность .

Для этого в математической статистике используется два понятия – доверительный интервал и доверительная вероятность.

Доверительный интервал – интервал значений, в пределах которого, как можно надеяться, находится параметр генеральной совокупности.

Наша надежда выражается доверительной вероятностью вероятность, с которой доверительный интервал «захватит» истинное значение параметра генеральной совокупности. Чем выше доверительная вероятность, тем шире доверительный интервал. Значение доверительной вероятности выбирает сам исследователь. Обычно это 0,9; 0,95; 0,99.

Если статистическая оценка параметра закона распределения случайной величины https://pandia.ru/text/78/148/images/image131_3.gif" width="53" height="24 src=">, в который попадает оцениваемый параметр с заданной надежностью (вероятностью), называется доверительным интервалом , а вероятность - доверительной вероятностью или уровнем надежности. Число называется уровнем значимости .

Вычисление доверительных интервалов основывается на предположении нормальности наблюдаемых величин . Если это предположение не выполнено, то оценка может оказаться плохой, особенно для малых выборок. При увеличении объема выборки, скажем, до 100 или более, качество оценки улучшается и без предположения нормальности выборки.

Например, если среднее выборки равно 23, а нижняя и верхняя границы доверительного интервала с уровнем p =.95 равны 19 и 27 соответственно, то можно заключить, что с вероятностью 95% интервал с границами 19 и 27 накрывает среднее популяции. Если мы установим больший уровень доверия, то интервал станет шире, поэтому возрастает вероятность, с которой он "накрывает" неизвестное среднее популяции, и наоборот.

Доверительный интервал применяется в случае сравнительно небольшого объема выборки , когда предполагается, что надежность точечной оценки может быть невысокой.

Доверительный интервал симметричен относительно оценки истинного значения параметра и имеет вид , где - предельная ошибка выборки (наибольшее отклонение выборочного значения параметра от его истинного значения)..gif" width="15" height="20">.

Для доверительного интервала половина его длины называется точностью интервального оценивания .

Если выполняется соотношение , то число называется точностью , а число - надежностью оценки генеральной числовой характеристики https://pandia.ru/text/78/148/images/image141_3.gif" width="115" height="25 src="> - выборка объема из генеральной совокупности объема ; - выборочное среднее; - выборочное среднее квадратическое отклонение.

Доверительный интервал уровня надежности https://pandia.ru/text/78/148/images/image105_2.gif" width="17" height="20 src="> имеет вид

,

где - предельная ошибка выборки , которая зависит от объема выборки , доверительной вероятности и равна половине доверительного интервала.

Https://pandia.ru/text/78/148/images/image144_1.gif" width="16" height="16 src="> служит доверительный интервал:

https://pandia.ru/text/78/148/images/image083_3.gif" width="15" height="25"> - выборочное среднее; - исправленное выборочное среднее квадратическое отклонение; https://pandia.ru/text/78/148/images/image147_2.gif" width="37" height="20 src=">) степеней свободы и доверительной вероятности .

Интервальной оценкой с надежностью генеральной средней https://pandia.ru/text/78/148/images/image144_1.gif" width="16" height="16 src="> служит доверительный интервал:

https://pandia.ru/text/78/148/images/image083_3.gif" width="15" height="25"> - выборочное среднее; - выборочное среднее квадратическое отклонение; https://pandia.ru/text/78/148/images/image151_1.gif" width="39" height="24">, при котором ; - объем выборки.

Выводы . Доверительный интервал для среднего представляет интервал значений вокруг оценки, где с данным уровнем доверия, находится "истинное" (неизвестное) среднее значение признака.

Хорошо известно, например, что чем «неопределенней» прогноз погоды (т. е. шире доверительный интервал), тем вероятнее он будет верным.

Пример. Найти доверительный интервал с надежностью 0,95 для оценки математического ожидания нормально распределенной случайной величины, если известны ее среднее квадратическое отклонение https://pandia.ru/text/78/148/images/image154_1.gif" width="61 height=28" height="28"> и объем выборки .

Воспользуемся формулой https://pandia.ru/text/78/148/images/image150_1.gif" width="11" height="17 src="> найдем по таблице значений функции Лапласа , с учетом того, что , т. е. ..gif" width="59 height=23" height="23">. Получим доверительный интервал:

https://pandia.ru/text/78/148/images/image162_1.gif" width="135" height="24 src=">.

Тестовые задания

1. Длина доверительного интервала уменьшается с увеличением:

1) выборочных значений 2) объема выборки

3) доверительной вероятности 4) выборочного среднего

2. Длина доверительного интервала с увеличением объема выборки:

1) уменьшается; 2) увеличивается;

3) не изменяется; 4) колеблется.

3. Длина доверительного интервала с увеличением доверительной вероятности:

1) изменяется, 2) уменьшается,

3) увеличивается, 4) постоянна.

4. Отметьте два правильных ответа..gif" width="19" height="20 src="> в формуле доверительного интервала означают:

1) оценка параметра; 2) доверительный интервал;

3) объем выборки; 4) доверительная вероятность.

Ответы. 1. 2). 2. 1 3. 2). 4. 4) и 3).

контрольные Вопросы

1. Что понимается под термином «интервальная оценка параметра распределения»?

2. Дайте определение доверительного интервала.

3. Что такое точность оценки и надежность оценки?

4. Что называется доверительной вероятностью? Какие значения она принимает?

5. Как изменится длина доверительного интервала, если увеличить: 1) объем выборки, 2) доверительную вероятность? Ответ обоснуйте.

6. Запишите формулу для нахождения доверительного интервала математического ожидания нормально распределенной случайной величины, если генеральная дисперсия: 1) известна; 2) неизвестна.

Часть 3. проверка статистических гипотез

Тема 1. Основные понятия теории принятия статистического решения

1. Нулевая и альтернативная статистические гипотезы

Статистической гипотезой называется такое предположение о виде или свойствах генерального или выборочного распределений, которое можно проверить статистическими методами на основе имеющейся выборк и.

Сущность проверки статистической гипотезы заключается в том, чтобы установить:

· согласуются ли экспериментальные данные и выдвинутая гипотеза;

· допустимо ли отнести расхождение между гипотезой и результатом статистического анализа экспериментальных данных за счет случайных причин.

· о законе распределения генеральной совокупности (например, гипотеза о том, что количество ошибок внимания у младших школьников имеет равномерное распределение);

· о числовых значениях параметров случайной величины (например, гипотеза о том, что среднее количество правильных ответов студентов контрольной группы на десять тестовых вопросов по теме равно восьми);

· об однородности выборок (т. е. принадлежности их одной и той же генеральной совокупности);

· о виде модели , описывающей статистическую зависимость между несколькими признаками (например, предположение о том, что связь между успешностью обучения математики и показателем невербального интеллекта учащихся линейная, прямо пропорциональная).

Точность оценки, доверительная вероятность (надежность)

Доверительный интервал

При выборке малого объема следует пользоваться интервальными оценками т.к. это позволяет избежать грубых ошибок, в отличие от точечных оценок.

Интервальной называют оценку, которая определяется двумя числами - концами интервала, покрывающего оцениваемый параметр. Интервальные оценки позволяют установить точность и надежность оценок.

Пусть найденная по данным выборки статистическая характеристика * служит оценкой неизвестного параметра. Будем считать постоянным числом (может быть и случайной величиной). Ясно, что * тем точнее определяет параметр в, чем меньше абсолютная величина разности | - * |. Другими словами, если >0 и | - * | < , то чем меньше, тем оценка точнее. Таким образом, положительное число характеризует точность оценки.

Однако статистические методы не позволяют категорически утверждать, что оценка * удовлетворяет неравенству | - *|<, можно лишь говорить о вероятности, с которой это неравенство осуществляется.

Надежностью (доверительной вероятностью) оценки по * называют вероятность, с которой осуществляется неравенство | - *|<. Обычно надежность оценки задается наперед, причем в качестве берут число, близкое к единице. Наиболее часто задают надежность, равную 0,95; 0,99 и 0,999.

Пусть вероятность того, что | - *|<, равна т.е.

Заменив неравенство | - *|< равносильным ему двойным неравенством -<| - *|<, или *- <<*+, имеем

Р(*- < <*+)=.

Доверительным называют интервал (*- , *+), который покрывает неизвестный параметр с заданной надежностью.

Доверительные интервалы для оценки математического ожидания нормального распределения при известном.

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при известном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t(/n^?) < a < х + t(/n^?),

где t(/n^?)= - точность оценки, n - объем выборки, t - значение аргумента функции Лапласа Ф(t), при котором Ф(t)=/2.

Из равенства t(/n^?)=, можно сделать следующие выводы:

1. при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается;

2. увеличение надежности оценки = 2Ф(t) приводит к увеличению t (Ф(t) -- возрастающая функция), следовательно, и к возрастанию; другими словами, увеличение надежности классической оценки влечет за собой уменьшение ее точности.

Пример. Случайная величина X имеет нормальное распределение с известным средним квадратическим отклонением =3. Найти доверительные интервалы для оценки неизвестного математического ожидания a по выборочным средним х, если объем выборки n = 36 и задана надежность оценки = 0,95.

Решение. Найдем t. Из соотношения 2Ф(t) = 0,95 получим Ф (t) = 0,475. По таблице находим t=1,96.

Найдем точность оценки:

точность доверительный интервал измерение

T(/n^?)= (1 ,96 . 3)/ /36 = 0,98.

Доверительный интервал таков: (х - 0,98; х + 0,98). Например, если х = 4,1, то доверительный интервал имеет следующие доверительные границы:

х - 0,98 = 4,1 - 0,98 = 3,12; х + 0,98 = 4,1+ 0,98 = 5,08.

Таким образом, значения неизвестного параметра а, согласующиеся с данными выборки, удовлетворяют неравенству 3,12 < а < 5,08. Подчеркнем, что было бы ошибочным написать Р (3,12 < а < 5,08) = 0,95. Действительно, так как а - постоянная величина, то либо она заключена в найденном интервале (тогда событие 3,12 < а < 5,08 достоверно и его вероятность равна единице), либо в нем не заключена (в этом случае событие 3,12 < а < 5,08 невозможно и его вероятность равна нулю). Другими словами, доверительную вероятность не следует связывать с оцениваемым параметром; она связана лишь с границами доверительного интервала, которые, как уже было указано, изменяются от выборки к выборке.

Поясним смысл, который имеет заданная надежность. Надежность = 0,95 указывает, что если произведено достаточно большое число выборок, то 95% из них определяет такие доверительные интервалы, в которых параметр действительно заключен; лишь в 5% случаев он может выйти за границы доверительного интервала.

Если требуется оценить математическое ожидание с наперед заданной точностью и надежностью, то минимальный объем выборки, который обеспечит эту точность, находят по формуле

Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестном

Интервальной оценкой с надежностью математического ожидания а нормально распределенного количественного признака Х по выборочной средней х при неизвестном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал

х - t()(s/n^?) < a < х + t()(s/n^?),

где s -«исправленное» выборочное среднее квадратическое отклонение, t() находят по таблице по заданным и n.

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=16 найдены выборочная средняя x = 20,2 и «исправленное» среднее квадратическое отклонение s = 0,8. Оценить неизвестное математическое ожидание при помощи доверительного интервала с надежностью 0,95.

Решение. Найдем t(). Пользуясь таблицей, по = 0,95 и n=16 находим t()=2,13.

Найдем доверительные границы:

х - t()(s/n^?) = 20,2 - 2,13 *. 0 ,8/16^? = 19,774

х + t()(s/n^?) = 20,2 + 2,13 * 0 ,8/16^? = 20,626

Итак, с надежностью 0,95 неизвестный параметр а заключен в доверительном интервале 19,774 < а < 20,626

Оценка истинного значения измеряемой величины

Пусть производится n независимых равноточных измерений некоторой физической величины, истинное значение а которой неизвестно.

Будем рассматривать результаты отдельных измерений как случайные величины Хl, Х2,…Хn. Эти величины независимы (измерения независимы). Имеют одно и то же математическое ожидание а (истинное значение измеряемой величины), одинаковые дисперсии ^2 (измерения равноточные) и распределены нормально (такое допущение подтверждается опытом).

Таким образом, все предположения, которые были сделаны при выводе доверительных интервалов, выполняются, и, следовательно, мы вправе использовать формулы. Другими словами, истинное значение измеряемой величины можно оценивать по среднему арифметическому результатов отдельных измерений при помощи доверительных интервалов.

Пример. По данным девяти независимых равноточных измерений физической величины найдены среднее арифметической результатов отдельных измерений х = 42,319 и «исправленное» среднее квадратическое отклонение s = 5,0. Требуется оценить истинное значение измеряемой величины с надежностью = 0,95.

Решение. Истинное значение измеряемой величины равно ее математическому ожиданию. Поэтому задача сводится к. оценке математического ожидания (при неизвестном) при помощи доверительного интервала покрывающего а с заданной надежностью = 0,95.

х - t()(s/n^?) < a < х + t()(s/n^?)

Пользуясь таблицей, по у = 0,95 и л = 9 находим

Найдем точность оценки:

t()(s/n^?) = 2 ,31 * 5/9^?=3.85

Найдем доверительные границы:

х - t()(s/n^?) = 42,319 - 3,85 = 38,469;

х + t()(s/n^?) = 42,319 +3,85 = 46,169.

Итак, с надежностью 0,95 истинное значение измеряемой величины заключено в доверительном интервале 38,469 < а < 46,169.

Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.

Пусть количественный признак X генеральной совокупности распределен нормально. Требуется оценить неизвестное генеральное среднее квадратическое отклонение по «исправленному» выборочному среднему квадратическому отклонению s. Для этого воспользуемся интервальной оценкой.

Интервальной оценкой (с надежностью) среднего квадратического отклонения о нормально распределенного количественного признака X по «исправленному» выборочному среднему квадратическому отклонению s служит доверительный интервал

s (1 -- q) < < s (1 + q) (при q < 1),

0 < < s (1 + q) (при q > 1),

где q находят по таблице по заданным n н.

Пример 1. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n = 25 найдено «исправленное» среднее квадратическое отклонение s = 0,8. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,95.

Решение. По таблице по данным = 0,95 и n = 25 найдем q = 0,32.

Искомый доверительный интервал s (1 -- q) < < s (1 + q) таков:

0,8(1-- 0,32) < < 0,8(1+0,32), или 0,544 < < 1,056.

Пример 2. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=10 найдено «исправленное» среднее квадратическое отклонение s = 0,16. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,999.

Решение. По таблице приложения по данным = 0,999 и n=10 найдем 17= 1,80 (q > 1). Искомый доверительный интервал таков:

0 < < 0,16(1 + 1,80), или 0 < < 0,448.

Оценка точности измерений

В теории ошибок принято точность измерений (точность прибора) характеризовать с помощью среднего квадратического отклонения случайных ошибок измерений. Для оценки используют «исправленной» среднее квадратическое отклонение s. Поскольку обычно результаты измерений взаимно независимы, имеют одно и то же математическое ожидание (истинное значение измеряемой величины) и одинаковую дисперсию (в случае равноточных измерений), то теория, изложенная в предыдущем параграфе, применима для оценки точности измерений.

Пример. По 15 равноточным измерениям найдено «исправленное» среднее квадратическое отклонение s = 0,12. Найти точность измерений с надежностью 0,99.

Решение. Точность измерений характеризуется средним квадратическим отклонением случайных ошибок, поэтому задача сводится к отысканию доверительного интервала s (1 -- q) < < s (1 + q) , покрывающего с заданной надежностью 0,99

По таблице приложения по = 0,99 и n=15 найдем q = 0,73.

Искомый доверительный интервал

0,12(1-- 0,73) < < 0,12(1+0,73), или 0.03 < < 0,21.

Оценка вероятности (биномиального распределения) по относительной частоте

Интервальной оценкой (с надежностью) неизвестной вероятности p биномиального распределения по относительной частоте w служит доверительный интервал (с приближенными концами p1 и р2)

p1 < p < p2,

где n - общее число испытаний; m - число появлений события; w - относительная частота, равная отношению m/n; t - значение аргумента функции Лапласа, при котором Ф(t) = /2.

Замечание. При больших значениях n (порядка сотен) можно принять в качестве приближенных границ доверительного интервала

После получения точечной оценки желательно иметь данные о надежности такой оценки. Понятно, что величина является лишь приближенным значением параметра q. Вычисленная точечная оценка может быть близка к оцениваемому параметру, а может и очень сильно отличаться от него. Точечная оценка не несет информации о точности процедуры оценивания. Особенно важно иметь сведения о надежности оценок для небольших выборок. В таких случаях следует пользоваться интервальными оценками.

Задачу интервального оценивания в самом общем виде можно сформулировать следующим образом: по данным выборки построить числовой интервал, относительно которого с заранее выбранной вероятностью можно сказать, что внутри этого интервала находится оцениваемый параметр. Здесь существует несколько подходов. Наиболее распространенным методом интервального оценивания является метод доверительных интервалов .

Доверительным интервалом для параметра q называется интервал , содержащий неизвестное значение параметра генеральной совокупности с заданной вероятностью g, т.е.

.

Число g называется доверительной вероятностью , а число a=1–g – уровнем надежности . Доверительная вероятность задается априорно и определяется конкретными условиями. Обычно используется g=0,9; 0,95; 0,99 (соответственно, a=0,1; 0,05; 0,01).

Длина доверительного интервала, характеризующая точность интервальной оценки, зависит от объема выборки n и доверительной вероятности g. При увеличении величины n длина доверительного интервала уменьшается, а с приближением вероятности g к единице – увеличивается.

Часто доверительный интервал строят симметричным относительно точечной оценки, т.е. в виде

, (3.15)

Здесь число D называется предельной (или стандартной ) ошибкой выборки . Однако симметричные интервалы не всегда удается построить, более того, иногда приходится ограничиваться односторонними доверительными интервалами:

или .

Поскольку в эконометрических задачах часто приходится строить доверительные интервалы параметров случайных величин, имеющих нормальное распределение , приведем схемы их нахождения.



3.4.2. Доверительный интервал оценки генеральной
средней при известной генеральной дисперсии

Пусть количественный признак X генеральной совокупности имеет нормальное распределение с заданной дисперсией s 2 и неизвестным математическим ожиданием a . Для оценки параметра a извлечена выборка X 1 , X 2 , …, X n , состоящей из n независимых нормальной распределенных случайных величин с параметрами a и s, причем s известно, а величину a оценивают по выборке:

.

Оценим точность этого приближенного равенства. Для этого зададим вероятность g и попробуем найти такое число D, чтобы выполнялось соотношение

.

Далее воспользуемся свойствами нормального распределения. Известно, что сумма нормально распределенных величин также имеет нормальное распределение. Поэтому средняя величина имеет нормальное распределение, математическое ожидание и дисперсия которой равны

Следовательно,

.

Воспользуемся теперь формулой нахождения вероятностей отклонения нормально распределенной случайной величины от математического ожидания:

,

где F(x ) – функция Лапласа. Заменяя X на и s на , получим

,

где . Из последнее равенства находим, что предельная ошибка выборки будет равна

.

Приняв во внимание, что доверительная вероятность задана и равна g, получим окончательный результат.

Интервальная оценка генеральной средней (математического ожидания) имеет вид

, (3.17)

или более кратко

где число t g определяется из равенства .

Приведем значения t g для широко распространенных значений доверительной вероятности:

, , .

Обсудим, как влияет на точность оценивания параметра a объем выборки n , величина среднего квадратичного отклонения s, а также значение доверительной вероятности g.

а) При увеличении n точность оценки увеличивается. К сожалению, увеличение точности (т.е. уменьшение длины доверительного интервала) пропорционально , а не 1/n , т.е. происходит гораздо медленнее, чем рост числа наблюдений. Например, если мы хотим увеличить точность выводов в 10 раз чисто статистическими средствами, то мы должны увеличить объем выборки в 100 раз.

б) Чем больше s, тем ниже точность. Зависимость точности от этого параметра носит линейный характер.

в) Чем выше доверительная вероятность g, тем больше значение параметра t g , т.е. тем ниже точность. При этом между g и t g существует нелинейная связь. С увеличением g значение t g резко увеличивается ( при ). Поэтому с большой уверенностью (с высокой доверительной вероятностью) мы можем гарантировать лишь относительно невысокую точность. (Доверительный интервал окажется широким.) И наоборот: когда мы указываем для неизвестного параметра a относительно узкие пределы, мы рискуем совершить ошибку – с относительно высокой вероятностью.

Отметим, что величина

называется средней ошибкой выборки . Для бесповторной выборки эта формула примет вид

. (3.20)

Тогда предельная ошибка выборки D будет представлять собой t -кратную среднюю ошибку:

Пример 3.7. На основе продолжительных наблюдений за весом X пакетов орешков, заполняемых автоматически, установлено, что среднее квадратичное отклонение веса пакетов равно s=10 г . Взвешено 25 пакетов, при этом их средний вес составил . В каком интервале с надежностью 95% лежит истинное значение среднего веса пакетов?

.

Для определения 95%-го доверительного интервала вычислим предельную ошибку выборки

Следовательно 95%-й доверительный интервал для истинное значение среднего веса пакетов будет иметь вид

,

На первый взгляд может показаться, что полученный результат представляет только теоретический результат, поскольку среднее квадратичное отклонение s, как правило, тоже неизвестно и вычисляется по выборочным данным. Однако если выборка достаточно большая, то полученный результат вполне приемлем для практического использования, поскольку функция распределения будет мало отличаться от нормальной, а оценка дисперсии s 2 будет достаточно близка к истинному значению s 2 . Более того, полученный результат часто используют и в том случае, когда распределение генеральной совокупности отличается нормального. Это обусловлено тем, что сумма независимых случайных величин, в силу центральной предельной теоремы, при больших выборках имеет распределение, близкое к нормальному. â

Пример 3.8. Предположим, что в результате выборочного обследования жилищных условий жителей города на основе собственно-случайной повторной выборки, получен следующий вариационный ряд:

Таблица 3.5

Построить 95%-доверительный интервал для изучаемого признака.

Решение. Рассчитаем выборочную среднюю величину и дисперсию изучаемого признака.

Таблица 3.6

Общая площадь жилищ, приходящаяся на 1 чел., м 2 Число жителей, n i Середина интервала, x i
До 5,0 2,5 20,0 50,0
5,0–10,0 7,5 712,5 5343,8
10,0–15,0 12,5 2550,0 31875,0
15,0–20,0 17,5 4725,0 82687,5
20,0–25,0 22,5 4725,0 106312,5
25,0–30,0 27,5 3575,0 98312,5
30,0 и более 32,5 2697,5 87668,8
Итого 19005,0 412250,0

; ; .

Средняя ошибка выборки составит

.

Определим предельную ошибку выборки с вероятностью 0,95 ():

Установим границы генеральной средней

.

Таким образом, на основании проведенного выборочного обследования с вероятностью 0,95 можно заключить, что средний размер общей площади, приходящейся на 1 чел., в целом по городу лежит в пределах от 18,6 до 19,4 м 2 . â

3.4.3. Доверительный интервал оценки генеральной
средней при неизвестной генеральной дисперсии

Выше была решена задача построения интервальной оценки для математического ожидания нормального распределения, когда его дисперсия известна. Однако на практике дисперсия обычно тоже неизвестна и ее вычисляют по той же самой выборке, что и математическое ожидание. Это приводит к необходимости использования другой формулы при определении доверительного интервала для математического ожидания случайной величины, имеющей нормальное распределение. Такая постановка задачи особенно актуальна при малых объемах выборки.

Пусть количественный признак X генеральной совокупности имеет нормальное распределение N (a ,s), причем оба параметра a и s неизвестны. По данным выборки X 1 , X 2 , …, X n , вычислим среднее арифметическое и исправленную дисперсию:

, .

Для нахождения доверительного интервала в этом случае строится статистика

имеющая распределение Стьюдента с числом степеней свободы n=n–1 независимо от значений параметров a и s. Выбрав доверительную вероятность g и зная объем выборки n, можно найти такое число t, что будет выполняться равенство

,

.

Отсюда находим

интервальную оценку для генеральной средней (математического ожидания) при неизвестном s:

, (3.22)

или более кратко

Число t (коэффициент Стьюдента ) находится из таблиц для распределения Стьюдента. Отметим, что он является функцией двух аргументов: доверительной вероятности g и числа степеней свободы k =n –1, т.е. t=t (g,n).

Следует быть очень внимательным при использовании таблиц для распределения Стьюдента. Во-первых, обычно в таблицах вместо доверительной вероятности g используют уровень надежности a=1–g. Во-вторых, очень часто в таблицах приводятся значения т.н. одностороннего критерия Стьюдента

Или .

В этом случае в таблицах следует брать значения , если в таблице используется уровень надежности, или , если в таблице используется доверительная вероятность.

Несмотря на кажущееся сходство формул (3.17) и (3.22), между ними имеется существенное различие, заключающееся в том, что коэффициент Стьюдента t зависит не только от доверительной вероятности, но и от объема выборки. Особенно это различие заметно при малых выборках. (Напомним, что при больших выборках различие между распределением Стьюдента и нормальным распределением практически исчезает.) В этом случае использование нормального распределения приводит к неоправданному сужению доверительного интервала, т.е. к неоправданному повышению точности. Например, если n =5 и g=0,99, то, пользуясь распределением Стьюдента, получим t =4,6, а используя нормальное распределение, – t =2,58, т.е. доверительный интервал в последнем случае почти в два раза уже, чем интервал при использовании распределения Стьюдента.

Пример 3.9. Аналитик фондового рынка оценивает среднюю доходность определенных акций. Случайная выборка 15 дней показала, что средняя (годовая) доходность со средним квадратичным отклонением . Предполагая, что доходность акций подчиняется нормальному закону распределения, постройте 95%-доверительный интервал для средней доходности интересующего аналитика вида акций.

Решение. Поскольку объем выборки n =15, то необходимо применить распределение Стьюдента с степенями свободы. По таблицам для распределения Стьюдента находим

.

Используя это значение, строим 95%-доверительный интервал:

.

Следовательно, аналитик может быть на 95% уверен, что средняя годовая доходность по акциям находится между 8,44% и 12,3%. â



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта