Главная » 2 Распространение » Привести примеры движения тела брошенного горизонтально. Движение тела, брошенного горизонтально, со скоростью

Привести примеры движения тела брошенного горизонтально. Движение тела, брошенного горизонтально, со скоростью

По физике за 9 класс (И.К.Кикоин, А.К.Кикоин, 1999 год),
задача №4
к главе «ЛАБОРАТОРНЫЕ РАБОТЫ ».

Цель работы: измерить начальную скорость, сообщенную телу в горизонтальном направлении при его движении под действием силы тяжести.

Если шарик брошен горизонтально, то он движется по параболе. За начало координат примем начальное положение шарика. Направим ось X горизонтально, а ось Y - вертикально вниз. Тогда в любой момент времени t

Дальность полета l - это

значение координаты х, которое она будет иметь, если вместо t подставить время падения тела с высоты h. Поэтому можно записать:

Отсюда легко найти

время падения t и начальную скорость V 0:

Если несколько раз пускать шарик в неизменных условиях опыта (рис. 177), то значения дальности полета будут иметь некоторый разброс из-за влияния различных причин, которые невозможно учесть.


В таких случаях за значение измеряемой величины принимается среднее арифметическое результатов, полученных в нескольких опытах.

Средства измерения: линейка с миллиметровыми делениями.

Материалы: 1) штатив с муфтой и лапкой; 2) лоток для пуска шарика; 3) фанерная доска; 4) шарик; 5) бумага; 6) кнопки; 7) копировальная бумага.

Порядок выполнения работы

1. С помощью штатива укрепите фанерную доску вертикально. При этом той же лапкой зажмите выступ лотка. Загнутый конец лотка должен быть горизонтальным (см. рис. 177).

2. Прикрепите к фанере кнопками лист бумаги шириной не менее 20 см и у основания установки на полоску белой бумаги положите копировальную бумагу.

3. Повторите опыт пять раз, пуская шарик из одного и того же места лотка, уберите копировальную бумагу.

4. Измерьте высоту h и дальность полета l. Результаты измерения занесите в таблицу:

7. Пустите шарик по желобу и убедитесь в том, что его траектория близка к построенной параболе.

Первой целью работы является измерение начальной скорости, сообщенной телу в горизонтальном направлении при его движении под действием силы тяжести. Измерение производится при помощи установки описанной и изображенной в учебнике. Если не принимать в расчет сопротивление воздуха, то тело, брошенное горизонтально, движется по параболической траектории. Если выбрать за начало координат точку начала полета шарика, то координаты его с течением времени изменяются следующим образом: х=V 0 t, a

Расстояние, которое шарик пролетает до момента падения (l), это значение координаты х в момент, когда y = -h, где h - высота падения, отсюда можно получить в момент падения

Выполнение работы:

1. Определение начальной скорости:

Вычисления:



2. Построение траектории движения тела.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО «УФИМСКИЙ ГОСУДАРCТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра естественно-научных и общепрофессиональных дисциплин

Отчет по лабораторной работе № 6

ИЗУЧЕНИЕ ДВИЖЕНИЯ ТЕЛА, БРОШЕННОГО ГОРИЗОНТАЛЬНО

Выполнил:

Проверил:.

Лабораторная работа № 6

Изучение движения тела, брошенного горизонтально

Цель работы :

    Установить зависимость дальности полета тела, брошенного горизонтально, от высоты броска.

    Экспериментально подтвердить справедливость закона сохранения импульса для двух шаров при их центральном столкновении.

Задание 1. Исследование движения тела, брошенного горизонтально

В качестве исследуемого тела используют стальной шарик, который пускают от верхнего конца желоба. Затем шарик отпускают. Пуск шарика повторяют 5-7 раз и находят S ср. Затем увеличивает высоту от пола до конца желоба, повторяем пуск шарика.

Данные измерений заносим в таблицу:

Для высоты Н = 81 см.

опыта

S , мм

S ср., мм

Н, мм

S ср /
, мм

Для высоты Н = 106 см.

опыта

S , мм

S ср., мм

Н, мм

, мм

S ср /
, мм

Задание 2 . Изучение закона сохранения импульса

Измеряем на весах массу стального шара m 1 иm 2 . На караю рабочего стола закрепляем прибор для изучения движения тела, брошенного горизонтально. На место падения шарика кладем чистый лист белой бумаги, приклеивают его скотчем и накрывают копиркой. Отвесом определяют на полу точку, над которой распологаются края горизонтального участка желоба. Пускают шарик и измеряют дальность его полета в горизонтальном направленииl 1 . По формуле
вычисляем скорость полета шара и его импульс Р 1 .

Далее устанавливаем напротив нижнего конца желоба, используя узел с опорой, другой шарик. Вновь пускают стальной шарик, измеряют дальность полета l 1 ’ и второго шараl 2 ’. Затем вычисляют скорости шаров после столкновенияV 1 ’ иV 2 ’, а также их импульсыp 1 ’ иp 2 ’.

Данные занесем в таблицу.

P 1 , кг м/с

P 1 ’, кг м/с

P 2 ’, кг м/с


1,15 м/с


0,5 м/с


0,74 м/с

P 1 =m 1 ·V 1 = 0,0076 · 1,15 = 0,009 м/с

P 1 ’ =m 1 ·V 1 ’ = 0,0076 · 0,5 = 0,004 м/с

P 2 ’ =m 2 ·V 2 ’ = 0,0076 · 0,74 = 0,005 м/с

Вывод: На данной лабораторной работе я изучил движение тела, брошенного горизонтально, установил зависимость дальности полета от высоты броска и экспериментально подтвердил справедливость закона сохранения импульса.

Решение задачи:

цель работы: измерить начальную скорость, сообщенную телу в горизонтальном направлении при его движении под действием силы тяжести.
если шарик брошен горизонтально, то он движется по параболе. за начало координат примем начальное положение шарика. направим ось x горизонтально, а ось y - вертикально вниз. тогда в любой момент времени t

а
у =

дальность полета l - это
значение координаты х, которое она будет иметь, если вместо t подставить время падения тела с высоты h. поэтому можно записать:

отсюда легко найти
время падения t и начальную скорость v 0:

если несколько раз пускать шарик в неизменных условиях опыта (рис. 177), то значения дальности полета будут иметь некоторый разброс из-за влияния различных причин, которые невозможно учесть.


в таких случаях за значение измеряемой величины принимается среднее арифметическое результатов, полученных в нескольких опытах.
средства измерения: линейка с миллиметровыми делениями.
материалы: 1) штатив с муфтой и лапкой; 2) лоток для пуска шарика; 3) фанерная доска; 4) шарик; 5) бумага; 6) кнопки; 7) копировальная бумага.
порядок выполнения работы
1. с помощью штатива укрепите фанерную доску вертикально. при этом той же лапкой зажмите выступ лотка. загнутый конец лотка должен быть горизонтальным (см. рис. 177).
2. прикрепите к фанере кнопками лист бумаги шириной не менее 20 см и у основания установки на полоску белой бумаги положите копировальную бумагу.
3. повторите опыт пять раз, пуская шарик из одного и того же места лотка, уберите копировальную бумагу.
4. измерьте высоту h и дальность полета l. результаты измерения занесите в таблицу:


номер
опыта

h, м

l, м

l ср, м

v 0ср, м/с

5. рассчитайте среднее значение начальной скорости по формуле

6. пользуясь формулами х =

найдите координату
х тела (координата у уже подсчитана) через каждые 0,05 с и постройте траекторию движения на листе бумаги, прикрепленном к фанерной доске:

t, с

0

0,05

0,10

0,15

0,2

x, м

0

y, м

0

0,012

0,049

0,110

0,190

7. пустите шарик по желобу и убедитесь в том, что его траектория близка к построенной параболе.
первой целью работы является измерение начальной скорости, сообщенной телу в горизонтальном направлении при его движении под действием силы тяжести. измерение производится при помощи установки описанной и изображенной в учебнике. если не принимать в расчет сопротивление воздуха, то тело, брошенное горизонтально, движется по параболической траектории. если выбрать за начало координат точку начала полета шарика, то координаты его с течением времени изменяются следующим образом: х=v 0 t, a

расстояние, которое шарик пролетает до момента падения (l), это значение координаты х в момент, когда y = -h, где h - высота падения, отсюда можно получить в момент падения

выполнение работы:
1. определение начальной скорости:

№ опыта

h, м

l, м

l ср, м

v 0 м/с

v 0cp м/с

1

0,2

0,16

0,15

0,79

0,74

2

0,2

0,14

0,69

3

0,2

0,15

0,74

4

0,2

0,135

0,67

5

0,2

0,165

0,82

6

0,2

0,145

0,71

вычисления:



2. построение траектории движения тела:

t, с

0,5

1

1,5

2

x, м

0,037

0,074

Тема: Изучение движения тела, брошенного горизонтально.

Цель работы: исследовать зависимость дальности полёта тела, брошенного горизонтально, от высоты, с которой оно начало движение.

Оборудование:

  • штатив с муфтой;
  • шарик стальной;
  • копировальная бумага;
  • направляющая рейка;
  • линейка;
  • скотч.

Если тело бросить с некоторой высоты горизонтально, то его движение можно рассматривать, как движение по инерции по горизонтали и равноускоренное движение по вертикали.

По горизонтали тело движется по инерции в соответствии с первым законом Ньютона, поскольку кроме силы сопротивления со стороны воздуха, которую не учитывают, в этом направлении на него никакие другие силы не действуют. Силой сопротивления воздуха можно пренебречь, так как за короткое время полёта тела, брошенного с небольшой высоты, действие этой силы заметного влияния на движение не окажет.

По вертикали на тело действует сила тяжести, которая сообщает ему ускорение g (ускорение свободного падения).

Рассматривая перемещение тела в таких условиях как результат двух независимых движений по горизонтали и вертикали, можно установить зависимость дальности полёта тела от высоты, с которой его бросают. Если учесть, что скорость тела V в момент броска направлена горизонтально, и вертикальная составляющая начальной скорости отсутствует, то время падения можно найти, используя основное уравнение равноускоренного движения:

Откуда .

За это же время тело успеет пролететь по горизонтали, двигаясь равномерно, расстояние S = Vt . Подставив в эту формулу уже найденное время полета, и получают искомую зависимость дальности полёта от высоты и скорости:

Из полученной формулы видно, что дальность броска пропорциональна корню квадратному от высоты, с которой бросают. Например, при увеличении высоты в четыре раза, дальность полёта возрастёт вдвое; при увеличении высоты в девять раз, дальность возрастёт в три раза и т.д.

Этот вывод можно подтвердить более строго. Пусть при броске с высоты H 1 дальность составит S 1 , при броске с той же скоростью с высоты Н 2 = 4H 1 дальность составит S 2

По формуле

: и

Поделив второе равенство на первое:

или S 2 = 2S 1

Эту зависимость, полученную теоретическим путем из уравнений равномерного и равноускоренного движения, в работе проверяют экспериментально.

В работе исследуется движение шарика, который скатывается от упора с желоба перевёрнутой направляющей рейки. Направляющая рейка закрепляется на штативе, конструкция позволяет давать шарику горизонтальное направление скорости на некоторой высоте над столом. Это обеспечивает горизонтальное направление скорости шарика в момент начала его свободного полёта.

Проводят две серии опытов, в которых высоты отрыва шарика отличаются в четыре раза, и измеряют расстояния S 1 и S 2 , на которые удаляется шарик от направляющей рейки по горизонтали до точки касания со столом. Для уменьшения влияния на результат побочных факторов определяют среднее значение расстояний S 1ср и S 2ср . Сравнивая средние расстояния, полученные в каждой серии опытов, делают вывод о том, насколько справедливо равенство ФОРМУЛА.

Указания к работе

1. Укрепите направляющую рейку в перевёрнутом положении на стержне штатива так, чтобы муфта препятствовала её опусканию вниз со штатива. Точку отрыва шарика от же направляющей рейки расположить на высоте около 9 см от поверхности стола. В месте предполагаемого падения шарика на стол разместите копировальную бумагу.

2. Подготовьте таблицу для записи результатов измерений и вычислений.

№ опыта H 1 , см S 1 , см S 1ср , см Н 2 , см S 2 , см S 2cр , см
1

3. Произведите пробный пуск шарика от начала желоба направляющей рейки. Определите место падения шарика на стол. Шарик должен попасть в среднюю часть плёнки. При необходимости скорректируйте положение плёнки. Приклейте плёнку к столу кусочком скотча.

4. С помощью линейки измерьте высоту точки отрыва шарика от желоба над столом H 1 . С помощью линейки, установленной вертикально, отметьте на поверхности стола точку (например, кусочком скотча), над которой располагается точка отрыва шарика от направляющей рейки.

5. Пустите шарик от начала желоба направляющей рейки и измерьте на поверхности стола расстояние S 1 от точки отрыва шарика от направляющей рейки, до отметки, оставленной на плёнке шариком при падении.

6. Повторите пуск шарика 5-6 раз. Чтобы скорость, с которой шарик слетает с направляющей рейки, была одинаковой во всех опытах, его пускают из одной и той же точки от начала желоба направляющей рейки.

7. Вычислите среднее значение расстояния S 1ср .

8. Увеличьте высоту отрыва шарика от направляющей рейки в четыре раза. Добейтесь выполнения условия: Н 2 = 4H 1 .

9. Повторите серию пусков шарика от начала желоба направляющей рейки. Для каждого пуска измерьте расстояние S 2 и вычислите среднее значение S 2cр .

10. Проверьте, насколько выполняется равенство S 2cр = 2S 1ср . Укажите возможную причину расхождения результатов.

11. Сделайте вывод о зависимости дальности полёта горизонтально брошенного тела от высоты броска, с которой тело начало двигаться.

Если скорость \(~\vec \upsilon_0\) направлена не вертикально, то движение тела будет криволинейным.

Рассмотрим движение тела, брошенного горизонтально с высоты h со скоростью \(~\vec \upsilon_0\) (рис. 1). Сопротивлением воздуха будем пренебрегать. Для описания движения необходимо выбрать две оси координат - Ox и Oy . Начало отсчета координат совместим с начальным положением тела. Из рисунка 1 видно, что υ 0x = υ 0 , υ 0y = 0, g x = 0, g y = g .

Тогда движение тела опишется уравнениями:

\(~\upsilon_x = \upsilon_0,\ x = \upsilon_0 t; \qquad (1)\) \(~\upsilon_y = gt,\ y = \frac{gt^2}{2}. \qquad (2)\)

Анализ этих формул показывает, что в горизонтальном направлении скорость тела остается неизменной, т. е. тело движется равномерно. В вертикальном направлении тело движется равноускоренно с ускорением \(~\vec g\), т. е. так же, как тело, свободно падающее без начальной скорости. Найдем уравнение траектории. Для этого из уравнения (1) найдем время \(~t = \frac{x}{\upsilon_0}\) и, подставив его значение в формулу (2), получим\[~y = \frac{g}{2 \upsilon^2_0} x^2\] .

Это уравнение параболы. Следовательно, тело, брошенное горизонтально, движется по параболе. Скорость тела в любой момент времени направлена по касательной к параболе (см. рис. 1). Модуль скорости можно рассчитать по теореме Пифагора:

\(~\upsilon = \sqrt{\upsilon^2_x + \upsilon^2_y} = \sqrt{\upsilon^2_0 + (gt)^2}.\)

Зная высоту h , с которой брошено тело, можно найти время t 1 , через которое тело упадет на землю. В этот момент координата y равна высоте: y 1 = h . Из уравнения (2) находим\[~h = \frac{gt^2_1}{2}\]. Отсюда

\(~t_1 = \sqrt{\frac{2h}{g}}. \qquad (3)\)

Формула (3) определяет время полета тела. За это время тело пройдет в горизонтальном направлении расстояние l , которое называют дальностью полета и которое можно найти на основании формулы (1), учитывая, что l 1 = x . Следовательно, \(~l = \upsilon_0 \sqrt{\frac{2h}{g}}\) - дальность полета тела. Модуль скорости тела в этот момент \(~\upsilon_1 = \sqrt{\upsilon^2_0 + 2gh}.\).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 15-16.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта