Главная » Съедобные грибы » Правила решение примеров с подобными слагаемыми. Подобные слагаемые

Правила решение примеров с подобными слагаемыми. Подобные слагаемые

Является . В этой статье мы дадим определение подобных слагаемых, разберемся, что называют приведением подобных слагаемых, рассмотрим правила, по которым выполняется это действие, и приведем примеры приведения подобных слагаемых с подробным описанием решения.

Навигация по странице.

Определение и примеры подобных слагаемых.

Разговор о подобных слагаемых возникает после знакомства с буквенными выражениями , когда возникает необходимость проведения преобразований с ними. По учебникам математики Н. Я. Виленкина определение подобных слагаемых дается в 6 классе, и оно имеет следующую формулировку:

Определение.

Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.

Стоит внимательно разобраться в этом определении. Во-первых, речь идет о слагаемых, а, как известно, слагаемые являются составными элементами сумм. Значит, подобные слагаемые могут присутствовать лишь в выражениях, которые представляют собой суммы. Во-вторых, в озвученном определении подобных слагаемых присутствует незнакомое понятие «буквенная часть». Что же понимают под буквенной частью? Когда дается это определение в шестом классе, под буквенной частью понимается одна буква (переменная) или произведение нескольких букв. В-третьих, остается вопрос: «А что же это за такие слагаемые с буквенной частью»? Это слагаемые, представляющие собой произведение некоторого числа, так называемого числового коэффициента , и буквенной части.

Вот теперь можно привести примеры подобных слагаемых . Рассмотрим сумму двух слагаемых 3·a и 2·a вида 3·a+2·a . Слагаемые в этой сумме имеют одинаковую буквенную часть, которая представлена буквой a , поэтому, согласно определению эти слагаемые являются подобными. Числовыми коэффициентами указанных подобных слагаемых являются числа 3 и 2 .

Еще пример: в сумме 5·x·y 3 ·z+12·x·y 3 ·z+1 подобными являются слагаемые 5·x·y 3 ·z и 12·x·y 3 ·z с одинаковой буквенной частью x·y 3 ·z . Заметим, что в буквенной части присутствует y 3 , ее присутствие не нарушает данное выше определение буквенной части, так как она, по сути, является произведением y·y·y .

Отдельно отметим, что числовые коэффициенты 1 и −1 у подобных слагаемых часто не записываются явно. Например, в сумме 3·z 5 +z 5 −z 5 все три слагаемых 3·z 5 , z 5 и −z 5 являются подобными, они имеют одинаковую буквенную часть z 5 и коэффициенты 3 , 1 и −1 соответственно, из которых 1 и −1 явно не видны.

Исходя из этого, в сумме 5+7·x−4+2·x+y подобными слагаемыми являются не только 7·x и 2·x , но и слагаемые без буквенной части 5 и −4 .

Позже расширяется и понятие буквенной части – буквенной частью начинаю считать не только произведение букв, а произвольное буквенное выражение. К примеру, в учебнике алгебры для 8 класса авторов Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова под редакцией С. А. Теляковского приведена сумма вида , и сказано, что составляющие ее слагаемые являются подобными. Общей буквенной частью этих подобных слагаемых является выражение с корнем вида .

Аналогично, подобными слагаемыми в выражении 4·(x 2 +x−1/x)−0,5·(x 2 +x−1/x)−1 можно считать слагаемые 4·(x 2 +x−1/x) и −0,5·(x 2 +x−1/x) , так как они имеют одинаковую буквенную часть (x 2 +x−1/x) .

Обобщив всю изложенную информацию, можно дать следующее определение подобных слагаемых.

Определение.

Подобными слагаемыми называются слагаемые в буквенном выражении, имеющие одинаковую буквенную часть, а также слагаемые, не имеющие буквенной части, где под буквенной частью понимается любое буквенное выражение.

Отдельно скажем, что подобные слагаемые могут быть одинаковыми (когда равны их числовые коэффициенты), а могут быть и разными (когда их числовые коэффициенты различны).

В заключение этого пункта обсудим один очень тонкий момент. Рассмотрим выражение 2·x·y+3·y·x . Являются ли слагаемые 2·x·y и 3·y·x подобными? Этот вопрос можно формулировать и так: «одинаковы ли буквенные части x·y и y·x указанных слагаемых»? Порядок следования буквенных множителей в них различен, так что фактически они не одинаковые, следовательно, слагаемые 2·x·y и 3·y·x в свете введенного выше определения не являются подобными.

Однако достаточно часто такие слагаемые называют подобными (но для строгости лучше этого не делать). При этом руководствуются вот чем: согласно перестановка множителей в произведении не влияет на результат, поэтому исходное выражение 2·x·y+3·y·x можно переписать в виде 2·x·y+3·x·y , слагаемые которого подобны. То есть, когда говорят о подобных слагаемых 2·x·y и 3·y·x в выражении 2·x·y+3·y·x , то имеют в виду слагаемые 2·x·y и 3·x·y в преобразованном выражении вида 2·x·y+3·x·y .

Приведение подобных слагаемых, правило, примеры

Преобразование выражений, содержащих подобные слагаемые, подразумевает выполнение сложения этих слагаемых. Это действие получило особое название - приведение подобных слагаемых .

Приведение подобных слагаемых проводится в три этапа:

  • сначала проводится перестановка слагаемых так, чтобы подобные слагаемые оказались рядом друг с другом;
  • после этого выносится за скобки буквенная часть подобных слагаемых;
  • наконец, вычисляется значение числового выражения , образовавшегося в скобках.

Разберем записанные шаги на примере. Приведем подобные слагаемые в выражении 3·x·y+1+5·x·y . Во-первых, переставляем слагаемые местами так, чтобы подобные слагаемые 3·x·y и 5·x·y оказались рядом: 3·x·y+1+5·x·y=3·x·y+5·x·y+1 . Во-вторых, выносим буквенную часть за скобки, получаем выражение x·y·(3+5)+1 . В-третьих, вычисляем значение выражения, которое образовалось в скобках: x·y·(3+5)+1=x·y·8+1 . Так как числовой коэффициент принято записывать перед буквенной частью, то перенесем его на это место: x·y·8+1=8·x·y+1 . На этом приведение подобных слагаемых завершено.

Для удобства три перечисленных выше шага объединяют в правило приведения подобных слагаемых : чтобы привести подобные слагаемые, нужно сложить их коэффициенты и полученный результат умножить на буквенную часть (если она есть).

Решение предыдущего примера с использованием правила приведения подобных слагаемых будет короче. Приведем его. Коэффициентами подобных слагаемых 3·x·y и 5·x·y в выражении 3·x·y+1+5·x·y являются числа 3 и 5 , их сумма равна 8 , умножив ее на буквенную часть x·y , получаем результат приведения этих слагаемых 8·x·y . Осталось не забыть про слагаемое 1 в исходном выражении, в итоге имеем 3·x·y+1+5·x·y=8·x·y+1 .

Простые математические действия - сложение, вычитание, умножение и так далее - не вызывают у учащихся особого труда. Путаться здесь попросту не в чем. Однако бывает, что выражение из задачи имеет очень длинную буквенно-числовую запись. Это отвлекает внимание, сбивает с хода мысли, а главное, чаще всего уводит человека от простейшего решения.

Именно для упрощения математических действий были придуманы особые понятия - например, подобные слагаемые . Что подразумевается под этим термином, и как можно использовать принцип подобия?

Какие слагаемые и в каких выражениях считаются подобными?

Выражение как таковое должно состоять из буквенных обозначений либо из букв и чисел - и разумеется, в нем должно быть сложение, ведь речь идет именно о слагаемых. При этом, чтобы можно было говорить о подобии, отдельные слагаемые должны иметь одинаковую букву в своем составе.

Для примера разберем небольшое выражение 2а + 3с + 4а. Первая и третья части выражения имеют в своем составе одну и ту же букву «а». Соответственно, по этому признаку они являются подобными слагаемыми.

Что дает нам это понимание на практике?

Для того, чтобы решить приведенное выражение, можно пойти двумя путями:

  • Найти произведение 2*а, прибавить к нему произведение 3*с, прибавить к сумме произведение 4*а. Это не так уж сложно - но чем длиннее выражение, тем утомительнее становятся подсчеты.
  • Воспользоваться свойствами подобных слагаемых и вначале привести выражение в более простой и удобный вид, чтобы найти решение побыстрее.

Для любых задач предпочтительнее выбирать второй способ - он экономит время и уменьшает возможность допустить ошибку.

Что значит термин «приведение» для подобных слагаемых?

Это перестановка слагаемых таким образом, чтобы подобные оказались рядом друг с другом. Из более ранних правил мы помним, что неважно, в каком порядке стоят члены выражения при сложении - сумма все равно получается одной и той же.

Таким образом, наш пример можно преобразить следующим образом - записать его как 2а + 4а + 3с. Но и это еще не все. Для простоты числовые коэффициенты можно взять в скобки и сложить отдельно - а букву «а» пока что оставить за скобками.

Выглядеть это будет так (2 + 4)а + 3с = (6)а + 3с = 6а + 3с. Нам больше не нужно отдельно высчитывать произведение для каждого из подобных слагаемых - мы можем сначала сложить их между собой, а уже потом произвести умножение в получившемся результате.

Пусть дано выражение, которое является произведением числа и букв. Число в таком выражении называется коэффициентом . Например:

в выражении коэффициентом является число 2;

в выражении - число 1;

в выражении - это число -1;

в выражении коэффициентом является произведение чисел 2 и 3, то есть число 6.

У Пети было 3 конфеты и 5 абрикосов. Мама подарила Пете ещё 2 конфеты и 4 абрикоса (см. Рис. 1). Сколько всего конфет и абрикосов стало у Пети?

Рис. 1. Иллюстрация к задаче

Решение

Запишем условие задачи в таком виде:

1) Было 3 конфеты и 5 абрикосов:

2) Мама подарила 2 конфеты и 4 абрикоса:

3) То есть всего у Пети:

4) Складываем конфеты с конфетами, абрикосы с абрикосами:

Следовательно, всего стало 5 конфет и 9 абрикосов.

Ответ: 5 конфет и 9 абрикосов.

В задаче 1 в четвёртом действии мы занимались приведением подобных слагаемых.

Слагаемые, имеющие одинаковую буквенную часть, называются подобными слагаемыми. Подобные слагаемые могут отличаться только своими числовыми коэффициентами.

Чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть.

Приведением подобных слагаемых мы упрощаем выражение.

Являются подобными слагаемыми, так как у них одинаковая буквенная часть. Следовательно, для их приведения необходимо сложить все их коэффициенты - это 5, 3 и -1 и умножить на общую буквенную часть - это a .

2)

В данном выражении записаны подобные слагаемые. Общая буквенная часть - это xy , а коэффициенты - это 2, 1 и -3. Приведём эти подобные слагаемые:

3)

В данном выражении подобными слагаемыми являются и , приведём их:

4)

Упростим данное выражение. Для этого находим подобные слагаемые. В этом выражении есть две пары подобных слагаемых - это и , и .

Упростим данное выражение. Для этого раскроем скобки, воспользовавшись распределительным законом:

В выражении есть подобные слагаемые - это и , приведём их:

На этом уроке мы познакомились с понятием коэффициент, узнали, какие слагаемые называются подобными, и сформулировали правило приведения подобных слагаемых, а также мы решили несколько примеров, в которых использовали данное правило.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. М.: Гимназия, 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6 классов заочной школы МИФИ. - М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. М.: Просвещение, Библиотека учителя математики, 1989.

Домашнее задание

  1. Интернет-портал Youtube.com ( ).
  2. Интернет-портал For6cl.uznateshe.ru ().
  3. Интернет-портал Festival.1september.ru ().
  4. Интернет-портал Cleverstudents.ru ().

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Урок в 6 классе по теме «Подобные слагаемые» 06.04.2018

Задачи урока: Повторить правила вычисления суммы двух чисел. Повторить коэффициенты слагаемых. Повторить алгоритм приведения подобных слагаемых. Закрепить полученные знания. Развивать коммуникативные навыки.

Устный счет «Сложение рациональных чисел» -22 + 35 -3,7 + 2,8 1,5 + (-6,3) 8,2 + (-8,2) 22 – 27 -13 – 8 19– (-2) -27 – (-3) -35 + (-9) 13 -0,9 -4,8 0 -5 -21 21 -24 -44

Распределительное свойство умножения (а + в) с = ас + вс (а - в) с = ас - вс с (а + в) = са + са с (а - в) = са – са или РАСКРЫТИЕ СКОБОК

Раскрой скобки. 2(х+1); 3(а-2); -2(2х+1); (2а-4в+3)(-3); -(4х-2у+9); -5(-а+2в+3); 5(-2а+4); -(3в-5); -2(-5х-8).

Учебник стр. 224 № 1281 (в,е)

У 5 45 . Назовите коэффициенты в данных выражениях: выражение коэффициент 2 x - 15 y 18 z - 9 t a -b 2 - 15 18 -9 1 - 1 Назовите коэффициенты слагаемых и упростите выражение 3 x – 8 x . Коэффициенты слагаемых: 3 и -8. Выражение можно упростить: 3 x – 8 x = (3 – 8) x = – 5 x 3 x – 8 x = – 5 x 3 x и – 8 x отличаются только подобные коэффициентами

Вывод: слагаемые имеющими одинаковую буквенную часть называются подобными. Подобные слагаемые отличающиеся только коэффициентами

НАЗОВИТЕ КОЭФФИЦИЕНТЫ СЛАГАЕМЫХ И УПРОСТИТЕ ВЫРАЖЕНИЕ: 6 х + 8 х = 6 и 8 14 х 6 х – 8 х = 6 и –8 – 2 х – 6 х – 8 х = – 6 и –8 – 14 х – 6 х + 8 х = – 6 и 8 2 х

НАЗОВИТЕ КОЭФФИЦИЕНТЫ СЛАГАЕМЫХ И УПРОСТИТЕ ВЫРАЖЕНИЕ: х + 3 х = 1 и 3 4 х 5 х – х = 5 и – 1 4 х – х – 7 х = – 1 и – 7 – 8 х – 9 х + х = – 9 и 1 – 8 х

НАЗОВИТЕ КОЭФФИЦИЕНТЫ СЛАГАЕМЫХ И УПРОСТИТЕ ВЫРАЖЕНИЕ: х + х = 1 и 1 2 х х – х = 1 и – 1 0 – х – х = – 1 и – 1 – 2 х – х + х = – 1 и 1 0

Комментированное выполнение заданий. Упростить 1. 3х + 5х; 2. 2х – 4х; 3. – 5у – 3у; 4. – 12а + 2а; 5. в + 15в; 6. – у – 13у; 7. 8к – к.

Математический диктант: «Раскрытие скобок и приведение подобных слагаемых». Упростите выражение: 4 х – 9 х = Проверьте себя: – 5 х; 1) – 14 y ; 2) – 10 a ; 3) 1 4 b ; 4) – 19 n ; 5) 3 p ; 6) – 6 y – 8 y = – 14 a + 4 a = 13 b + b = – n – 18 n = 4 p – p =

Задание: привести подобные слагаемые № Выражение 1) 3т + 4т – 10т= 2) 0,9в - 1,3в + 0,7в = 3) 5т – (3т – 5) + (2т – 5) = 4) 3(в – 5) – (в – 3) = 5) 0,2т – 2/9 – 4т + 2/9 = 6) 1/3(3в – 18) – 2/7(7в – 21) = 7) – 4т + 8т – т = Ответ -3 m 0,3b 4m 2b-12 -3,8m -b 3m

Задание: привести подобные слагаемые 1) 3а + 0,2а – 5,2а + 4а = 2) –4с + 6,7с – 2с +7,3 c = 3) х – 2,45х + 3х + 2,45х = 4) –2д + д – 0,2д + 9,2д = 5) 5,6т – 2т – 3,6т + т = 2a 8c 4x 8d m

Примеры:

    одночлены \(2\)\(x\) и \(5\)\(x\) – подобны, так как и там, и там буквы одинаковы: икс;

    одночлены \(x^2y\) и \(-2x^2y\) – подобны, так как и там, и там буквы одинаковы: икс в квадрате, умноженный на игрек. То, что перед вторым одночленом стоит знак минус не играет роли, просто у него отрицателен числовой множитель ();

    одночлены \(3xy\) и \(5x\)– не подобны, так как в первом одночлене буквенные множители икс и игрек, а во втором – только икс;

    одночлены \(xy3yz\) и \(y^2 z7x\) – подобны. Однако чтоб это увидеть, необходимо привести одночлены к . Тогда первый одночлен будет выглядеть как \(3xy^2z\), а второй как \(7xy^2z\) - и их подобие станет очевидно;

    одночлены \(7x^2\) и \(2x\) – не подобны, так как в первом одночлене буквенные множители икс в квадрате (то есть \(x·x\)) , а во втором – просто один икс.

Как определяются подобные члены не нужно запоминать, лучше просто понять. Почему \(2x\) и \(5x\) называют подобными? А вы вдумайтесь: \(2x\) это тоже самое, что \(x+x\), а \(5x\) тоже самое, что \(x+x+x+x+x\). То есть, \(2x\) - это «два икса», а \(5x\) - «пять иксов». И там, и там в основе - одинаковое (подобное): икс. Просто разное «количество» этих самых иксов.

Другое дело, например, \(5x\) и \(3xy\). Здесь первый одночлен это по сути «пять иксов», а вот второй - «три икс\(·\)игреков» (\(3xy=xy+xy+xy\)). В основе – не одинаковое, не подобное.

Приведение подобных слагаемых

Процесс замены суммы или разности подобных слагаемых одним одночленом называется «приведение подобных слагаемых ».

Отметим при этом, что если слагаемые не подобны, то привести их не получится. Например, в сложить \(2x^2\) и \(3x\) – нельзя, они же разные!


Поймите, складывать не подобные слагаемые - все равно, что складывать рубли с килограммами: полная бессмыслица получится.

Приведение подобных слагаемых – весьма часто встречающийся шаг в упрощении выражений и , а также при решении и . Давайте посмотрим конкретный пример применения полученных знаний.

Пример. Решить уравнение \(7x^2+3x-7x^2-x=6\)

Ответ: \(3\)

Каждый раз переписывать уравнение так, чтоб подобные стояли рядом совсем необязательно, можно приводить их сразу. Здесь это было сделано для наглядности дальнейших преобразований.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта