Главная » Обработка грибов » Как определить площадь разностороннего четырехугольника. Площадь прямоугольных треугольников

Как определить площадь разностороннего четырехугольника. Площадь прямоугольных треугольников

I. Предисловие

Вот ведь незадача: проболев две недели, вы пришли в школу и узнали, что пропустили очень важную тему, задачи по которой будут на экзаменах в 9 классе - "Треугольники, четырехугольники и их площадь". Вот тут бы кинуться к учителю геометрии с вопросами: "Как найти площадь четырехугольника?" Но половина учеников боится подходить к учителям, чтобы их не сочли отстающими, а вторая половина встречает от учителей "помощь", похожую на "Посмотри в учебник, там все написано!" или "Не надо было пропускать уроки!" Но в учебнике вообще нет никакой информации по поводу правил нахождения площади треугольников и четырехугольников. А уроки были пропущены по уважительной причине, есть справка от врача. Но многие учителя только махнут на эти доводы рукой. Конечно, их можно понять: им не платят за дополнительное вбивание материала урока в головы ничего не понимающих учеников. Многие ученики бросают это бесполезное дело и через год проваливаются на экзамене, не добрав десяток баллов за задачу по нахождению площади треугольников и четырехугольников. И только некоторые ходят в библиотеки и к знакомым с вопросом: "Как найти площадь четырехугольника?" А разные люди и книги дают разные ответы, и получается большая путаница правил. Ниже я назову основные способы нахождения площадей треугольников и четырехугольников.

II. Четырехугольники

Начнем с четырехугольников. В школах и на экзаменах рассматриваются только выпуклые четырехугольники, так что поговорим о них. На среднем уровне образования изучают площади параллелограммов и трапеции. Параллелограммы бывают нескольких видов: прямоугольник, квадрат, ромб и произвольный параллелограмм, в котором соблюдаются только основные его признаки: стороны попарно параллельны и равны, сумма соседних углов 180 о. Но способы нахождения площадей у всех этих фигур разные. Рассмотрим каждую по отдельности.

1. Прямоугольник


S прямоугольника находится по формуле: S = а * b, где а - горизонтальная сторона, b - вертикальная сторона.*

2. Площадь квадратов

S квадрата находится по формуле: S = а * а, где a - сторона квадрата.

3. Площадь ромбов

S ромба находится по формуле: S = 0,5 * (d 1 * d 2), где d 1 - большая дианогональ,** d 2 - меньшая диагональ.

4. Площадь произвольного параллелограмма

S произвольного параллелограмма находится по формуле: S = a * h a , a - сторона параллелограмма, h a

Еще не все?

С параллелограммами мы закончили. "Надо выучить всего лишь это?" - облегченно спросите вы. Отвечаю: из параллелограммов - да, всего лишь это. Но еще остались трапеция и треугольники. Так что продолжаем.

III. Трапец ия

Площадь трапеции

S трапеции можно находить одной формулой, будь она обычной или равнобедренной: S = ((а + b) : 2) * h, где a, b - ee основания, h - ee высота. Это все, что касается трапеции. Теперь на вопрос: "Как найти площадь четырехугольника?" - вы можете не только ответить сами, но и просветить других. А теперь переходим к треугольникам.

IV. Треугольник

В геометрии для нахождения их площади выделили три формулы: для прямоугольного, равностороннего и произвольного треугольников.

1. Площадь треугольника

S произвольного треугольника вычисляется по формуле: S = 0,5а * h a, a - сторона треугольника, h a - высота, проведенная к этой стороне.

2. Площадь равносторонних треугольников

S равностороннего треугольника можно найти по формуле: S = 0,5a * h, где a - основание треугольника, h - высота этого треугольника.

3. Площадь прямоугольных треугольников

Площадь прямоугольных треугольников находится по формуле: S = (а * b) : 2, где а - 1-й катет, b - 2-й катет.

Заключение

Ну вот, это, по-моему, все. Про треугольники тоже немного учить надо, не правда ли? А теперь обозрите все, что я здесь написала. "Елки-палки, чтобы это выучить, месяц понадобится!" - наверное, восклицаете вы. А кто говорил, что всё учится быстро? Но зато, когда вы все это выучите, вам не будут страшны вопросы по теме "Как найти площадь четырехугольника" или "Площадь произвольного треугольника" на аттестации в 9 классе. Так что, если вы хотите вообще хоть куда-нибудь поступить, учите, учитесь и будьте учеными!

___________________________________

Примечание

* - a и b не обязательно должны быть на поставленных мною местах. При решении задач можно вертикальную сторону назвать a , а горизонтальную - b;

** - диагонали можно поменять местами и изменить их названия так же, как и в примечании. *

Четырехугольником называется фигура, состоящая из четырех вершин, три из которых не лежат на одной прямой, и отрезков, соединяющих их.

Существует множество четырехугольников. К ним относятся параллелограммы, квадраты, ромбы, трапеции. Найти можно найти по сторонам, легко вычисляется по диагоналям. В произвольном четырехугольнике также можно использовать все элементы для вывода формулы площади четырехугольника. Для начала рассмотрим формулу площади четырехугольника через диагональ. Для того, чтобы ее использовать потребуются длины диагоналей и размер острого угла между ними. Зная необходимые данные можно проводить пример расчета площади четырехугольника по такой формуле:

Половина произведения диагоналей и синуса острого угла между ними является площадью четырехугольника. Рассмотрим пример расчета площади четырехугольника через диагональ.

Пусть дан четырехугольник с двумя диагоналями d1 =5 см;d2 =4см. Острый угол между ними равен α = 30°. Формула площади четырехугольника через диагонали легко применяется для известных условий. Подставим данные:

На примере расчета площади четырехугольника через диагонали понимаем, что формула очень похожа на расчет .

Площадь четырехугольника по сторонам

Когда известны длины сторон фигуры, можно применить формулу площади четырехугольника по сторонам. Для применения этих расчетов потребуется найти полупериметр фигуры. Мы помним, что периметр – это сумма длин всех сторон. Полупериметр – это половина периметра. В нашем прямоугольнике со сторонами a, b, c, d формула полупериметра будет выглядеть так:
Зная стороны, выводим формулу. Площадь четырехугольника представляет собой корень из произведения разности полупериметра с длиной каждой стороны:

Рассмотрим пример расчета площади четырехугольника через стороны. Дан произвольный четырехугольник со сторонами a = 5 см, b = 4 см, с = 3 см, d = 6 см. Для начала найдем полупериметр:

используем найденное значение для расчета площади:

Площадь четырехугольника, заданного координатами

Формула площади четырехугольника по координатам используется для расчета площади фигур, которые располагаются в системе координат. В этом случае для начала требуется расчет длин необходимых сторон. В зависимости от типа четырехугольника может меняться и сама формула. Рассмотрим пример расчета площади четырехугольника, используя квадрат, который лежит в системе координат XY .

Дан квадрат ABCD , расположенный в системе координат XY . Найти площадь фигуры, если координаты вершин A (2;10); B (10;8); C (8;0); D (0;2).

Мы знаем, что все стороны фигуры равны, и формула площади квадрата находится по формуле:
Найдем одну из сторон, к примеру, AB :
Подставим значения в формулу:
Знаем, что все стороны одинаковые. Подставляем значение в формулу расчета площади:

Если на плоскости последовательно начертить несколько отрезков так, чтобы каждый следующий начинался в том месте, где закончился предыдущий, то получится ломаная линия. Эти отрезки называют звеньями, а места их пересечения — вершинами. Когда конец последнего отрезка пересечется с начальной точкой первого, то получится замкнутая ломаная линия, делящая плоскость на две части. Одна из них является конечной, а вторая бесконечной.

Простая замкнутая линия вместе с заключенной в ней частью плоскости (той, которая конечна) называют многоугольником. Отрезки являются сторонами, а образованные ими углы — вершинами. Количество сторон любого многоугольника равно числу его вершин. Фигура, которая имеет три стороны, называется треугольником, а четыре — четырехугольником. Многоугольник численно характеризуется такой величиной, как площадь, которая показывает размер фигуры. Как найти площадь четырехугольника? Этому учит раздел математики — геометрия.

Чтобы найти площадь четырехугольника, нужно знать к какому типу он относится - выпуклому или невыпуклому? весь лежит относительно прямой (а она обязательно содержит какую-либо из его сторон) по одну сторону. Кроме того, есть и такие виды четырехугольников, как параллелограмм с попарно равными и параллельными противоположными сторонами (разновидности его: прямоугольник с прямыми углами, ромб с равными сторонами, квадрат со всеми прямыми углами и четырьмя равными сторонами), трапеция с двумя параллельными противоположными сторонами и дельтоид с двумя парами смежных сторон, которые равны.

Площади любого многоугольника находят, применяя общий метод, который заключается в том, чтобы разбить его на треугольники, для каждого вычислить площадь произвольного треугольника и сложить полученные результаты. Любой выпуклый четырехугольник делится на два треугольника, невыпуклый — на два или три его в этом случае может складываться из суммы и разности результатов. Площадь любого треугольника вычисляют как половину произведения основания (a) на высоту (ħ), проведенную к основанию. Формула, которая применяется в этом случае для вычисления, записывается как: S = ½ . a . ħ.

Как найти площадь четырехугольника, например, параллелограмма? Нужно знать длину основания (a), длину боковой стороны (ƀ) и найти синус угла α, образованного основанием и боковой стороной (sinα), формула для расчета будет выглядеть: S = a . ƀ . sinα. Так как синус угла α есть произведение основания параллелограмма на его высоту (ħ = ƀ) — линию перпендикулярная основанию, то его площадь вычисляют, умножив на высоту его основание: S = a . ħ. Для расчета площади ромба и прямоугольника также подходит эта формула. Так как у прямоугольника боковая сторона ƀ совпадает с высотой ħ, то его площадь вычисляют по формуле S = a . ƀ. потому что a = ƀ, будет равняться квадрату его стороны: S = a . a = a². вычисляется как половина суммы его сторон, умноженная на высоту (она проводится к основанию трапеции перпендикулярно): S = ½ . (a + ƀ) . ħ.

Как найти площадь четырехугольника, если неизвестны длины его сторон, но известны его диагонали (e) и (f), а также синус угла α? В этом случай площадь вычисляют, как половину произведения его диагоналей (линии, которые соединяют вершины многоугольника), умноженное на синус угла α. Формула может быть записана в таком виде: S = ½ . (e . f) . sinα. В частности в этом случае будет равняться половине произведения диагоналей (линии, соединяющие противоположные углы ромба): S = ½ . (e . f).

Как найти площадь четырехугольника, который не является параллелограммом или трапецией, его обычно принято называть произвольный четырехугольник. Площадь такой фигуры выражают через его полупериметр (Ρ — сумма двух сторон с общей вершиной), стороны a, ƀ, c, d и сумму двух противоположных углов (α + β): S = √[(Ρ - a) . (Ρ - ƀ) . (Ρ - c) . (Ρ - d) - a . ƀ . c . d . cos² ½ (α + β)].

Если а φ = 180о, то для расчета его площади используют формулу Брахмагупты (индийский астроном и математик, живший в 6—7 веках нашей эры): S = √[(Ρ - a) . (Ρ - ƀ) . (Ρ - c) . (Ρ - d)]. Если четырехугольник описан окружностью, то (a + c = ƀ + d), а его площадь вычисляют: S = √[ a . ƀ . c . d] . sin ½ (α + β). Если четырехугольник одновременно является описанным одной окружностью и вписанным в другую окружность, то для вычисления площади используют следующую формулу: S = √.

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S = 1 2
    2
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,

В школьных математических заданиях часто требуется определить площадь четырёхугольника. Все довольно просто, если задан частный случай фигуры - квадрат, ромб, прямоугольник, трапеция, параллелограмм, ромбоид. В случае же произвольного четырёхугольника все несколько сложнее, но также вполне доступно для среднего школьника. Ниже мы изучим различные методы расчётов площади произвольных четырёхугольников, запишем формулы и рассмотрим различные вспомогательные примеры.

В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений .

Нахождение площади четырёхугольника различными способами и методами

Узнаем как найти площадь четырёхугольника когда даны его диагонали и образуемый при их пересечении острый угол . Тогда площадь четырёхугольника будет вычисляться по формуле: S = 1/2*d1*d2*sin(d1,d2).

Рассмотрим пример . Пусть d1 = 15 сантиметров, d2 = 12 сантиметров, и угол между ними 30 градусов. Определим S. S = 1/2*15*12*sin30 = 1/2*15*12*1/2 = 45 сантиметров квадратных.

Теперь пусть даны стороны и противолежащие углы четырёхугольника .

Пусть a, b, c, d известные стороны многоугольника; p — его полупериметр. Корень квадратный выражения условимся обозначать как rad (от латинского radical). Формула площади четырёхугольника будет находиться по формуле: S = rad((p − a) (p − b) (p − c) (p − d) − a b c d ⋅ c o s^2((a,b) + (c,d))/2), где p = 1/2*(a + b + c + d).

На первый взгляд, формула кажется очень сложной и вычурной. Однако ничего сложного здесь нет, что мы и докажем, рассмотрев пример. Пусть данные нашего условия следующие: a = 18 миллиметров, b = 23 миллиметра, c = 22 миллиметра, d = 17 миллиметров. Противолежащие углы будут равны (a,b) = 0,5 градуса и (c,d) = 1,5 градуса. Для начала находим полупериметр: p = 1/2*(18 + 23 + 22 + 17) = 1/2*80 = 40 миллиметров.

Теперь найдём квадрат косинуса полусуммы противолежащих углов: c o s^2((a,b) + (c,d))/2) = c o s^2(0,5 + 1,5)/2 = c o s1*c o s1 = (1/2)*(1/2) = 0,9996.

Подставим полученные данные в нашу формулу, получим: S = rad((40 — 18)*(40 — 23)*(40 — 22)*(40 — 17) — 18*23*22*17*0,97) = rad(22*17*18*23 — 18*23*22*17*1/4) = rad((22*17*18*23*(1 — 0,9996)) = rad(154836*0,0004) = rad62 = 7,875 миллиметра квадратного.

Разберёмся как находить площадь с помощью вписанной и описанной окружностей . При решении задач данной темы имеет смысл сопровождать свои действия вспомогательным рисунком, хотя это требование и не является обязательным.

Если есть вписанная окружность и нужно найти площадь четырёхугольника формула имеет вид:

S = ((a + b+ c + d)/2)*r

Снова возьмём на рассмотрение пример: a = 16 метров, b = 30 метров, c = 28 метров, d = 14 метров, r = 6 метров. Подставим аши значения в формулу, получим:

S = ((16 +30 + 28 + 14)/2)*6 = 44*6 = 264 метров квадратных.

Теперь займёмся вариантом когда окружность описана вокруг четырёхугольника. Здесь мы сможем воспользоваться следующей формулой:

S = rad((p − a)*(p − b)*(p − c)*(p − d), где p равно половине длины периметра. Пускай в нашем случае стороны имеют следующие значения a = 26 дециметров, b = 35 дециметров, c = 39 дециметров, d = 30 дециметров.

Первым делом определим полупериметр , p = (26 + 35 + 39 + 30)/2 = 65 дециметров. Подставим найденное значение в нашу формулу. Получим:

S = rad((65 — 26)*(65 — 35)*(65 — 39)*(65 — 30)) = rad(39*30*26*35) = 1032 (округлённо) дециметров квадратных.

Заключение

Внимательно изучив все вышеизложенное, можно сделать вывод - определение площади произвольного четырёхугольника с разными сторонами сложнее, чем у них же специальных видов — квадрата, прямоугольника, ромба, трапеции, параллелограмма. Однако внимательно изучив все приведённые методы, можно с лёгкостью решать задачи необходимые для школьников. Сведём все наши формулы в одну таблицу:

  1. S = 1/2*d1*d2*sin(d1,d2) ;
  2. S = rad((p − a)*(p − b)*(p − c)*(p − d) − a*b*c*d*c o s^2((a,b) + (c,d))/2), где p = 1/2*(a + b + c + d) ;
  3. S = ((a + b+ c + d)/2)*r

S = rad((p − a)*(p − b)*(p − c)*(p − d), где p равно половине периметра ​.

Таким образом , реально сложной является только формула номер 2, но и она вполне доступна, при условии хорошего понимания данных в статье определений и соглашений.

Видео

Разобраться в этой теме вам поможет видео.

Не получили ответ на свой вопрос? Предложите авторам тему.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта