Главная » Обработка грибов » Какое строение имеет химический синапс. Строение синапса и его медиаторы

Какое строение имеет химический синапс. Строение синапса и его медиаторы

В зависимости от того, какие структуры нейрона участвуют в образовании синапса, выделяют аксосоматические, аксодендритные, аксоаксональные и дендродентритные синапсы. Синапс, образованный аксоном мотонейрона и мышечной клеткой называется концевой пластинкой (нервно-мышечное соединение, мионевральный синапс). Непременными структурными атрибутами синапса являются пресинаптическая мембрана, постсинаптическая мембрана и синаптическая щель между ними. Остановимся подробнее на каждой из них.

Пресинаптическая мембрана образована окончанием конечных ветвлений аксона (или дендрита в дендродендритном синапсе). Отходящий от тела нервной клетки аксон покрывается миэлиновой оболочкой, которая сопровождает его на всём протяжении, вплоть до разветвления на конечные терминали. Количество конечных ветвлений аксона может достигать нескольких сотен, а протяженность их, теперь уже лишенных миэлиновой оболочки - до нескольких десятков мкм. Конечные ветвления аксона имеют малый диаметр - 0,5-2,5 мкм, иногда больше. Окончания терминалей в месте контакта имеют разнообразную форму - в виде булавы, сетевидной пластинки, колечка, или могут быть множественными - в виде чашечки, кисти. Конечная терминаль может иметь несколько расширений, контактирующих по ходу движения с разными участками одной клетки или с разными клетками, формируя, таким образом, множество синапсов. Некоторые исследователи подобные синапсы называют касательными.

В месте контакта конечная терминаль несколько утолщается и часть её мембраны, прилегающая к мембране контактируемой клетки образует пресинаптическую мембрану. В зоне конечной терминали, прилегающей к пресинаптической мембране путём электронной микроскопии обнаружено скопление ультраструктурных элементов - митохондрий, число которых колеблется, достигая иногда нескольких десятков, микротрубочек и синаптических пузырьков (везикул). Последние бывают двух видов - агранулярные (светлые) и гранулярные (тёмные). Первые имеют размер 40-50 нм, диаметр гранулярных везикул, как правило, более 70 нм. Их мембрана подобна клеточным и состоит из фосфолипидного бислоя и белков. Большая часть везикул фиксируется на цитоскелете с помощью специфического белка - синапсина, образуя трансмиттерный резервуар. Меньшая часть везикул прикрепляется к внутренней стороне пресинаптической мембраны посредством белка мембраны везикулы - синаптобревина и белка пресинаптической мембраны - синтаксина. Существует две гипотезы относительно происхождения везикул. Согласно одной из них (Хаббард, 1973), они образуются в области пресинаптического окончания из так называемых окаймлённых пузырьков. Последние формируются в углублениях клеточной мембраны пресинаптического окончания и сливаются в цистерны, от которых и отпочковываются везикулы, заполняемые медиатором. Согласно другому взгляду, везикулы как мембранные образования формируются в соме нейрона, пустыми транспортируются по аксону в область пресинаптического окончания и там заполняются медиатором. После выброса медиатора опустошенные везикулы ретроградным аксонным транспортом возвращаются в сому, где деградируются лизосомами.

Синаптические пузырьки наиболее плотно расположены вблизи внутренней поверхности пресинаптичесой мембраны и их количество непостоянно. Везикулы заполнены медиатором, кроме того здесь сосредоточены так называемые котрансмиттеры - вещества белковой природы, играющие существенную роль в обеспечении активности основного медиатора. Малые везикулы содержат низкомолекулярные медиаторы, а большие - белки и пептиды. Показано, что медиатор может находиться и вне везикул. Расчеты показывают, что в нервно-мышечном соединении человека плотность везикул достигает 250-300 на 1 мкм 2 , а общее их количество - около 2-3-х млн. в одном синапсе. В одном пузырьке сосредоточено от 400 до 4-6 тысяч молекул медиатора, что и составляет так называемый «квант медиатора», выделяющийся в синаптическую щель спонтанно или при приходе импульса по пресинаптическому волокну. Поверхность пресинаптической мембраны неоднородна - в ней имеются утолщения, активные зоны, где скапливаются митохондрии и плотность везикул наибольшая. Кроме того, в области активной зоны выявлены потенциалзависимые кальциевые каналы, по которым кальций проходит сквозь пресинаптическую мембрану внутрь пресинаптической зоны конечной терминали. Во многих синапсах в пресинаптическую мембрану встроены так называемые ауторецепторы. При их взаимодействии с выделенными в синаптическую щель медиаторами, выделение последних либо усиливается, либо прекращается в зависимости от типа синапса.

Синаптическа щель - пространство между пресинаптической и постсинаптической мембранами, ограниченная площадью контакта, размер которой для большинства нейронов колеблется в пределах нескольких мкм 2 . Площадь контакта может варьировать в разных синапсах, что зависит от диаметра пресинаптической терминали, формы контакта, характера поверхности контактирующих мембран. Так, для наиболее изученных нервно-мышечных синапсов показано, что площадь контакта одной пресинаптической терминали с миофибриллой может составлять десятки мкм 2 . Размер синаптической щели колеблется от 20 до 50-60 нм. За пределами контакта полость синаптической щели сообщается с межклеточным пространством, таким образом, между ними возможен двухсторонний обмен разными химическими агентами.

Постсинаптическая мембрана представляет собой участок мембраны нейрона, мышечной или железистой клетки, контактирующей с пресинаптической мембраной. Как правило, область постсинаптической мембраны несколько утолщена по сравнению с соседними участками контактируемой клетки. В 1959 году Е.Грей предложил разделить синапсы в коре мозга на два типа. Синапсы 1-го типа имеют более широкую щель, постсинаптическая мембрана у них толще и плотнее, чем у синапсов 2-го типа, уплотненный участок более обширен и занимает большую часть обеих синаптических мембран.

В постсинаптическую мембрану встроены белково-гликолипидные комплексы, выполняющие роль рецепторов, способных связываться с медиаторами и образовывать ионные каналы. Так, ацетилхолиновый рецептор в мионевральном синапсе состоит из пяти субъединиц, которые образуют комплекс с молекулярной массой 5000-30000, пронизывающий мембрану. Расчетным способом показано, что плотность таких рецепторов может составлять до 9 тысяч на мкм 2 поверхности постсинаптической мембраны. Головка комплекса, выступающая в синаптическую щель имеет так называемый «узнающий центр». При связывании с ним двух молекул ацетилхолина ионный канал открывается, его внутренний диаметр становится проходимым для ионов натрия и калия, при этом канал остаётся непроходимым для анионов из-за имеющихся на его внутренних стенках зарядов. Важнейшую роль в процессах синаптической передачи играет мембранный белок, названный G-белком, который в комплексе с гуанинтрифосфатом (ГТФ) активирует ферменты, включающие вторичные мессенджеры - внутриклеточные регуляторы.

Рецепторы постсинаптических мембран находятся в так называемых «активных зонах» синапсов и среди них различают два типа - ионотропные и метаботропные. В ионотропных рецепторах (быстрых) для открытия ионных каналов достаточно их взаимодействия с молекулой медиатора, т.е. медиатор непосредственно открывает ионный канал. Своё название метаботропные (медленные) рецепторы получили в связи с особенностями их функционирования. Открытие ионных каналов в этом случае связано с каскадом метаболических процессов, в которых участвуют различные соединения (белки, в том числе и G-белок, ионы кальция, циклические нуклеотиды - цАМФ и цГМФ, диацетилглицерины), играющие роль вторичных мессенджеров. Метоботропные рецепторы сами по себе не являются ионными каналами; они лишь модифицируют работу расположенных рядом ионных каналов, ионных насосов и других белков посредством непрямых механизмов. К ионотропным относятся рецепторы ГАМК, глицина, глутамата, Н-холинорецепторы. К метаботропным - рецепторы дофамина, серотонина, норадреналина, М-холинорецепторы, некоторые рецепторы ГАМК, глутамата.

Обычно рецепторы располагаются строго в пределах постсинаптической мембраны, поэтому влияние медиаторов возможно только в области синапса. Обнаружено, однако, что небольшое количество рецепторов чувствительных к ацетилхолину имеется и за пределами нервно-мышечного синапса в мембране мышечной клетки. В некоторых условиях (при денервации, отравлении некоторыми ядами) чувствительные к ацетилхолину зоны могут образовываться вне синаптических контактов на миофибрилле, что сопровождается развитием гиперчувствительности мышцы к ацетилхолину.

Рецепторы, чувствительные к ацетилхолину широко распространены также в синапсах ЦНС и в периферических ганглиях. Рецепторы возбуждающего действия разделены на два класса, различающиеся по фармакологическим признакам.

Один из них - класс рецепторов, на которые влияния, сходные с ацетилхолином оказывает никотин, отсюда их название - никотиночувствительные (Н-холинорецепторы), другой класс - чувствительные к мускарину (яд мухомора) названы М-холинорецепторами. В связи с этим синапсы, где основным медиатором служит ацетилхолин, разделяются на группы никотинового и мускаринового типа. Внутри этих групп выделяют много разновидностей в зависимости от месторасположения и особенностей функционирования. Так, синапсы с Н-холинорецепторами описаны во всех скелетных мышцах, в окончаниях преганглионарных парасимпатических, и симпатических волокон, в мозговом слое надпочечников, а мускариновые синапсы - в ЦНС, гладких мышцах (в синапсах, образованных окончаниями парасимпатических волокон), в сердце.

Структура химического синапса

Схема процесса передачи нервного сигнала в химическом синапсе

Гипотеза пороцитоза

Существуют существенные экспериментальные подтверждения того, что медиатор секретируется в синаптическую щель благодаря синхронной активации гексагональных групп МПВ (см. выше) и присоединенных к ним везикул , что стало основой для формулирования гипотезы пороцитоза (англ. porocytosis ). Эта гипотеза базируется на наблюдении, что присоединенные к МПВ везикулы при получении потенциала действия синхронно сокращаются и при этом секретируют в синаптическую щель каждый раз одинаковое количество медиатора, высвобождая только часть содержимого каждой из шести везикул. Сам по себе термин «пороцитоз» происходит от греческих слов poro (что означает поры) и cytosis (описывает перенос химических субстанций через плазматическую мембрану клетки).

Большинство экспериментальных данных о функционировании моносинаптических межклеточных соединений получены благодаря исследованиям изолированных нервно-мышечных контактов. Как и в межнейронных, в нервно-мышечных синапсах МПВ формируют упорядоченные гексагональные структуры . Каждая из таких гексагональных структур может быть определена как «синаптомер» - то есть структура, которая является элементарной единицей в процессе секреции медиатора. Синаптомер содержит, кроме собственно поровых углублений, протеиновые нитчатые структуры, содержащие линейно упорядоченные везикулы; существование аналогичных структур доказано и для синапсов в центральной нервной системе (ЦНС).

Как было сказано выше, пороцитозный механизм генерирует квант нейромедиатора , но без того, чтобы мембрана индивидуальной везикулы полностью сливалась с пресинаптической мембраной. Малый коэффициент вариации (<3 %) у величин постсинаптических потенциалов является индикатором того, что в единичном синапсе имеются не более 200 синаптомеров , каждый из которых секретирует один квант медиатора в ответ на один потенциал действия . 200 участков высвобождения (то есть синаптомеров, которые высвобождают медиатор), найденные на небольшом мышечном волокне, позволяют рассчитать максимальный квантовый лимит, равный одной области высвобождения на микрометр длины синаптического контакта , это наблюдение исключает возможность существования квантов медиатора, обеспечивающих передачу нервного сигнала, в объеме одной везикулы.

Сравнение гипотез пороцитоза и квантово-везикулярной

Сравнение недавно общепринятой гипотезы КВЭ с гипотезой пороцитоза может быть осуществлено посредством сравнения теоретического коэффициента вариации с опытным, рассчитанным для амплитуд постсинаптических электрических потенциалов, генерируемых в ответ на каждый отдельный выброс медиатора из пресинапса. Если принять, что процесс экзоцитоза проходит в небольшом синапсе, где содержится около 5 000 везикул (50 на каждый микрон длины синапса), постсинаптические потенциалы должны быть сгенерированы 50-ю случайно выбранными везикулами, что даёт теоретический коэффициент вариации 14 %. Эта величина примерно в 5 раз больше, чем коэффициент вариации постсинаптических потенциалов, получаемых в опытах, таким образом, можно утверждать, что процесс экзоцитоза в синапсе не является случайным (не совпадает с распределением Пуассона) - что невозможно, если объяснять его в рамках гипотезы КВЭ, но вполне соответствует гипотезе пороцитоза. Дело в том, что гипотеза пороцитоза предполагает, что все связанные с пресинаптической мембраной везикулы выбрасывают медиатор одновременно; при этом постоянное количество медиатора, выбрасываемого в синаптическую щель в ответ на каждый потенциал действия (об устойчивости свидетельствует малый коэффициент вариации постсинаптических ответов) вполне может быть объяснено высвобождением малого объема медиатора большим количеством везикул - при этом, чем больше везикул, участвующих в процессе, тем меньше становится коэффициент корреляции , хотя это и выглядит с точки зрения математической статистики несколько парадоксально.

Классификация

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам:

  • периферические
    • нервно-мышечные
    • нейросекреторные (аксо-вазальные)
    • рецепторно-нейрональные
  • центральные
    • аксо-дендритические - с дендритами, в том числе аксо-шипиковые - с дендритными шипиками, выростами на дендритах;
    • аксо-соматические - с телами нейронов;
    • аксо-аксональные - между аксонами;
    • дендро-дендритические - между дендритами;

В зависимости от медиатора синапсы разделяются на

  • аминергические, содержащие биогенные амины (например, серотонин, дофамин;
    • в том числе адренергические, содержащие адреналин или норадреналин;
  • холинергические, содержащие ацетилхолин;
  • пуринергические, содержащие пурины;
  • пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия:

  • возбуждающие
  • тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке, то вторые, наопротив, прекращают или предотвращают его появление. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.

К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Примечания

Ссылки

  • Савельев А. В. Источники вариаций динамических свойств нервной системы на синаптическом уровне // Искусственный интеллект . - НАН Украины, Донецк, 2006. - № 4. - С. 323-338.

См. также

Рассмотрим, как осуществляется химическая, синаптическая передача. Схематично это выглядит так: импульс возбуждения, достигает пресинаптической мембраны нервной клетки (дендрита или аксона), в которой содержатся синаптические пузырьки, заполненные особым веществом - медиатором (от латинского «Media» - середина, посредник, передатчик). Пресинаптическая

мембрана содержит много кальциевых каналов. Потенциал действия деполяризует пресинаптическое окончание и, таким образом, изменяет состояние кальциевых каналов, вследствие чего они открываются. Так как концентрация кальция (Са 2 +) во внеклеточной среде больше, чем внутри клетки, то через открытые каналы кальций проникает в клетку. Увеличение внутриклеточного содержания кальция, приводит к слиянию пузырьков с пресинаптической мембраной. Медиатор выходит из синаптических пузырьков в синоптическую щель. Синаптическая щель в химических синапсах довольно широкая и составляет в среднем 10-20 нм. Здесь медиатор связывается с белками - рецепторами, которые встроены в постсинаптическую мембрану. Связывание медиатора с рецептором начинает цепь явлений, приводящих к изменению состояния постсинаптической мембраны, а затем и всей постсинаптической клетки. После взаимодействия с молекулой медиатора рецептор активируется, заслонка открывается, и канал становится проходимым или для одного иона, или для нескольких ионов одновременно.

Следует отметить, что химические синапсы отличаются не только механизмом передачи, но также и многими функциональными свойствами. Некоторые из них мне хотелось бы указать. Например, в синапсах с химическим механизмом передачи продолжительность синоптической задержки, то есть интервал между приходом импульса в пресинаптическое окончание и началом постсинаптического потенциала, у теплокровных животных составляет 0,2 - 0,5мс. Также, химические синапсы отличаются односторонним проведением, то есть медиатор, обеспечивающий передачу сигналов, содержится только в пресинаптическом звене. Учитывая, что в химических возникновениях синапсах возникновение постсинаптического потенциала обусловлено изменением ионной проницаемости постсинаптической мембраны, они эффективно обеспечивают как возбуждение, так и торможение. Указав, на мой взгляд, функциональные основные свойства химической синаптической передачи, рассмотрим, как же осуществляется процесс высвобождения медиатора, а так же опишем наиболее известные из них.

Выделение медиа тора:

Фактор, выполняющий медиаторную функцию, вырабатывается в теле нейрона, и оттуда транспортируется в окончание аксона. Содержащийся в пресинаптческих окончаниях медиатор должен выделиться в синаптическую щель, чтобы воздействовать на рецепторы постсинаптической мембраны, обеспечивая транссинаптическую передачу сигналов. В качестве медиатора могут выступать такие вещества, как ацетилхолин, катехоламиновая группа, серотонин, нейропиптиды и многие другие, их общие свойства будут описаны ниже.

Еще до того, как были выяснены многие существенные особенности процесса высвобождения медиатора, было установлено, что пресинаптические окончания могут изменять состояния спонтанной секреторной активности. Постоянно выделяемые небольшие порции медиатора вызывают в постсинаптической клетке так называемые спонтанные, миниатюрные постсинаптические потенциалы. Это было установлено в 1950 году английскими учеными Феттом и Катцом, которые, изучая работу нервно-мышечного синапса лягушки, обнаружили, что без всякого действия на нерв в мышце в области постсинаптической мембраны сами по себе через случайные промежутки времени возникают небольшие колебания потенциала, амплитудой примерно в 0,5мВ. Открытие, не связанного с приходом нервного импульса, выделения медиатора помогло установить квантовый характер его высвобождения, то есть получилось, что в химическом синапсе медиатор выделяется и в покое, но изредка и небольшими порциями. Дискретность выражается в том, что медиатор выходит из окончания не диффузно, не в виде отдельных молекул, а в форме многомолекулярных порций (или квантов), в каждой из которых содержится несколько тысяч молекул.

Происходит это следующим образом: в аксоплазме окончаний нейрона в непосредственной близости к пресинаптической мембране при рассмотрении под электронным микроскопом было обнаружено множество пузырьков или везикул, каждая из которых содержит один квант медиатора. Токи действия, вызываемые пресинаптическими импульсами, не оказывают заметного влияния на постсинаптическую мембрану, но приводят к разрушению оболочки пузырьков с медиатором. Этот процесс (экзоцитоз) заключается в том, что пузырек, подойдя к внутренней поверхности мембраны пресинаптического окончания при наличии кальция (Са 2 +), сливается с пресинаптической мембраной, в результате чего и происходит опорожнение пузырька в синаптическую щель. После разрушения пузырька окружающая его мембрана включается в мембрану пресинаптического окончания, увеличивая его поверхность. В дальнейшем, в результате процесса эндоцитоза, небольшие участки пресинаптической мембраны впячиваются внутрь, вновь образуя пузырьки, которые впоследствии снова способны включать медиатор и вступать в цикл его высвобождения.

Синaпс – специализированный контакт между нервными клетками (или нервными и другими возбудимыми клетками), обеспечивающий передачу возбуждения с сохранением его информационной значимости. С помощью синапсов нервные клетки объединяются в нервные сети, которые осуществляют обработку информации. Взаимосвязь между нервной системой и периферическими органами и тканями также осуществляется при помощи синапсов.

Классификация синапсов

По морфологическому принципу синапсы подразделяют на:

• нейро-мышечные (аксон нейрона контактирует с мышечной клеткой);

• нейро-секреторные (аксон нейрона контактирует с секреторной клеткой);

• нейро-нейрональные (аксон нейрона контактирует с другим нейроном):

• аксо-соматические (с телом другого нейрона),
• аксо-аксональные (с аксоном другого нейрона),
• аксо-дендритические (с дендритом другого нейрон).

По способу передачи возбуждения синапсы подразделяют на:

• электрические (возбуждение передается при помощи электрического тока);

• химические (возбуждение передается при помощи химического вещества):

• адренергические (возбуждение передается при помощи норадреналина),
• холинергические (возбуждение передается при помощи ацетилхолина),
• пептидергические, NO -ергические, пуринергические и т. п.

По физиологическому эффекту синапсы подразделяют на:

• возбуждающие (деполяризуют постсинаптическую мембрану и вызывают возбуждение постсинаптической клетки);

• тормозные (гиперполяризуют постсинаптическую мембрану и вызывают торможение постсинаптической клетки).

Ультраструктура синапсов

Все синапсы имеют общий план строения (рис. 1).

Конечная часть аксона (синаптическое окончание), подходя к иннервируемой клетке, теряет миелиновую оболочку и образует на конце небольшое утолщение (синаптическую бляшку). Ту часть мембраны аксона, которая контактирует с иннервируемой клеткой, называют пресинаптической мембраной. Синаптическая щель – узкое пространство между пресинаптической мембраной и мембраной иннервируемой клетки, которое является непосредственным продолжением межклеточного пространства. Постсинаптическая мембрана – участок мембраны иннервируемой клетки, контактирующий с пресинаптической мембраной через синаптическую щель.

Особенности ультраструктуры электрического синапса (см. рис. 1):

• узкая (около 5 нм) синаптическая щель;
• наличие поперечных канальцев, соединяющих пресинаптическую и постсинаптическую мембрану.

Особенности ультраструктуры химического синапса (см. рис. 1):

• широкая (20–50 нм) синаптическая щель;
• наличие в синаптической бляшке синаптических пузырьков (везикул), заполненных химическим веществом, при помощи которого передается возбуждение;
• в постсинаптической мембране имеются многочисленные хемочувствительные каналы (в возбуждающем синапсе – для Nа+ , в тормозном – для Cl – и К +), но отсутствуют потенциалчувствительные каналы.

Механизм передачи возбуждения в электрическом синапсе

Механизм проведения возбуждения аналогичен механизму проведения возбуждения в нервном волокне. Во время развития ПД происходит реверсия заряда пресинаптической мембраны. Электрический ток, возникающий между пресинаптической и постсинаптической мембраной, раздражает постсинаптическую мембрану и вызывает генерацию в ней ПД (рис. 2).

Этапы и механизмы передачи возбуждения
в возбуждающем химическом синапсе

Передача возбуждения в химическом синапсе – сложный физиологический процесс, протекающий в несколько этапов. На пресинаптической мембране осуществляется трансформация электрического сигнала в химический, который на постсинаптической мембране снова трансформируется в электрический сигнал.

Синтез медиатора

Медиатором (посредником) называют химическое вещество, которое обеспечивает одностороннюю передачу возбуждения в химическом синапсе. Некоторые медиаторы (например, ацетилхолин) синтезируются в цитоплазме синаптического окончания, и там же молекулы медиатора депонируются в синаптических пузырьках. Ферменты, необходимые для синтеза медиатора, образуются в теле нейрона и доставляются в синаптическое окончание путем медленного (1–3 мм/сут) аксонного транспорта. Другие медиаторы (пептиды и др.) синтезируются и упаковываются в везикулы в теле нейрона, готовые синаптические пузырьки доставляются в синаптичекую бляшку за счет быстрого (400 мм/сут) аксонного транспорта. Синтез медиатора и образование синаптических пузырьков осуществляется непрерывно.

Секреция медиатора

Содержимое синаптических пузырьков может выбрасываться в синаптическую щель путем экзоцитоза. При опорожнении одного синаптического пузырька в синаптичекую щель выбрасывается порция (квант) медиатора, которая включает около 10000 молекул.

Для активации экзоцитоза необходимы ионы Са++ . В состоянии покоя уровень Са++ в синаптическом окончании низок и выделения медиатора практически не происходит. Приход в синаптическое окончание возбуждения приводит к деполяризации пресинаптической мембраны и открытию потенциалчувствительных Са++ -каналов. Ионы Са++ поступают в цитоплазму синаптического окончания (рис. 3, А,Б) и активируют опорожнение синаптических пузырьков в синаптическую щель (рис. 3, В).

Взаимодействие медиатора с рецепторами постсинаптической мембраны

Молекулы медиатора диффундируют через синаптическую щель и достигают постсинаптической мембраны, где связываются с рецепторами хемочувствительных Na+ -каналов (рис. 3, Г). Присоединение медиатора к рецептору приводит к открытию Na+ -каналов, через которые в клетку входят ионы Na+ (рис. 3, Д). В результате входа в клетку положительно заряженных ионов происходит локальная деполяризация постсинаптической мембраны, которую называют возбуждающий постсинаптический потенциал (ВПСП) (рис. 3, Е).

Инактивация медиатора

Ферменты, находящиеся в синаптической щели, разрушают молекулы медиатора. В результате происходит закрытие Na+ -каналов и восстановление МП постсинаптической клетки. Некоторые медиаторы (например, адреналин) не разрушаются ферментами, а удаляются из синаптической щели путем быстрого обратного всасывания (пиноцитоза) в синаптическое окончание.

Генерация ПД

В нейро-мышечном синапсе амплитуда единичного ВПСП достаточно велика. Поэтому для генерации ПД в мышечной клетке достаточно прихода одного нервного импульса. Генерация ПД в мышечной клетке происходит в области, окружающей постсинаптическую мембрану.

В нейро-нейрональном синапсе амплитуда ВПСП значительно меньше и недостаточна для того, чтобы деполяризовать мембрану нейрона до КУД. Поэтому для генерации ПД в нервной клетке требуется возникновение нескольких ВПСП. ВПСП, образовавшиеся в результате срабатывания разных синапсов, электротонически распространяются по мембране клетки, суммируются и генерируют образование ПД в области аксонного холмика. Мембрана нейрона в области аксонного холмика обладает низким электрическим сопротивлением и имеет большое количество потенциалчувствительных Na+ -каналов.

Особенности работы тормозного химического синапса

В тормозном химическом синапсе молекулы медиатора, взаимодействуя с рецепторами постсинаптической мембраны, вызывают открытие К+ - и Cl – -хемочувствительных каналов. Вход в клетку Cl– и дополнительная утечка из клетки К+ приводят к гиперполяризации постсинаптической мембраны, которую называют тормозным постсинаптическим потенциалом (ТПСП) . Возникшая гиперполяризация, во-первых, снижает возбудимость клетки. Во-вторых, ТПСП может нейтрализовать возникший в другом месте клетки ВПСП.

Свойства синапсов

Сравнительная характеристика свойств электрических и химических синапсов приведена в табл. 1.

Одностороннее проведение возбуждения в химическом синапсе связано с его функциональной асимметрией: молекулы медиатора выделяются только на пресинаптической мембране, а рецепторы медиатора расположены только на постсинаптической мембране.

Высокая утомляемость химического синапса объясняется истощением запасов медиатора. Утомляемость электрического синапса соответствует утомляемости нервного волокна.

Низкая лабильность химического синапса определяется главным образом периодом рефрактерности хемочувствительных каналов на постсинаптической мембране.

Синаптическая задержка – время от момента возникновения возбуждения в пресинаптической мембране до момента возникновения возбуждения в постсинаптической мембране. Относительно длительное время синаптической задержки в химическом синапсе (0,2–0,7 мс) затрачивается на вход Са++ в синаптическое окончание, экзоцитоз, диффузию медиатора.

Чувствительность синапса к внешним воздействиям определяется характером процессов, протекающих в синапсе при передаче возбуждения. Химические синапсы чувствительны к действию химических веществ, влияющих на синтез и секрецию медиатора, взаимодействие медиатора с рецептором.

Таблица 1.Свойства электрических и химических синапсов

Свойство

Электрические синапсы

Химические синапсы

Проведение возбуждения

двустороннее

одностороннее

Утомляемость

Лабильность

Синаптическая задержка

короткая

Трансформация ритма ПД

не происходит

происходит

Чувствительны к действию

электромагнитных излучений

химических агентов

Медиаторы и модуляторы синаптической передачи

По химической структуре медиаторы подразделяют на:

• моноамины (адреналин, норадреналин, ацетилхолин и др.);
• аминокислоты (гамма-аминомасляная кислота (ГАМК), глутамат, глицин, таурин);
• пептиды (эндорфин, нейротензин, бомбезин, энкефалин и др.);
• прочие медиаторы (NO , АТФ).

Амбивалентность действия медиаторов проявляется в том, что один и тот же медиатор в разных синапсах может оказывать различное действие на эффекторную клетку. Результат действия медиатора на постсинаптическую мембрану зависит от того, какие рецепторы и ионные каналы в ней находятся. Если медиатор открывает в постсинаптической мембране Na+ -каналы, то это приводит к развитию ВПСП, если K+ - или Cl – -каналы, то развивается ТПСП. Вследствие этого термины «возбуждающий медиатор» и «тормозный медиатор» неправомерны; следует говорить лишь о возбуждающих и тормозных синапсах.

В синаптическом окончании наряду с медиатором могут синтезироваться и высвобождаться одно или несколько химических веществ. Эти соединения, действуя на постсинаптичекую мембрану, могут повышать или снижать ее возбудимость. Поскольку сами по себе они не могут вызвать возбуждение постсинаптической мембраны, их называют модуляторами синаптической передачи (нейромодуляторами). Большинство нейромодуляторов представляют собой пептиды.

Синапс - это определенная зона контакта отростков нервных клеток и остальных невозбудимых и возбудимых клеток, которые обеспечивают передачу информационного сигнала. Синапс морфологически образуется контактирующими мембранами 2-х клеток. Мембрана, относящаяся к отростку зовется пресинаптической мембраной клетки, в которую поступает сигнал, второе ее название - постсинаптическая. Вместе с принадлежностью постсинаптической мембраны синапс может быть межнейрональным, нейромышечным и нейросекреторным. Слово синапс было введено в 1897 г. Чарльзом Шеррингтоном (англ. физиологом).

Что же такое синапс?

Синапс - это специальная структура, которая обеспечивает передачу от нервного волокна нервного импульса на другое нервное волокно или нервную клетку, а чтобы произошло воздействие на нервное волокно от рецепторной клетки (области соприкосновения друг с другом нервных клеток и другого нервного волокна), требуется две нервные клетки.

Синапс - это небольшой отдел в окончании нейрона. При его помощи идет передача информации от первого нейрона ко второму. Синапс находится в трех участках нервных клеток. Также синапсы находятся в том месте, где нервная клетка вступает в соединение с разными железами или мышцами организма.

Из чего состоит синапс

Строение синапса имеет простую схему. Он образуется из 3-х частей, в каждой из которых осуществляются определенные функции во время передачи информации. Тем самым такое строение синапса можно назвать подходящим для передачи Непосредственно на процесс воздействуют две главные клетки: воспринимающая и передающая. В конце аксона передающей клетки находится пресинаптическое окончание (начальная часть синапса). Оно может повлиять в клетке на запуск нейротрансмиттеров (это слово имеет несколько значений: медиаторы, посредники или нейромедиаторы) - определенные с помощью которых между 2-мя нейронами реализуется передача электрического сигнала.

Синаптической щелью является средняя часть синапса - это промежуток между 2-мя вступающими во взаимодействие нервными клетками. Через эту щель и поступает от передающей клетки электрический импульс. Конечной частью синапса считается воспринимающая часть клетки, которая и является постсинаптическим окончанием (контактирующий фрагмент клетки с разными чувствительными рецепторами в своей структуре).

Медиаторы синапса

Медиатор (от латинского Media - передатчик, посредник или середина). Такие медиаторы синапса очень важны в процессе передачи

Морфологическое различие тормозного и возбуждающего синапса заключается в том, что они не имеют механизм освобождения медиатора. Медиатор в тормозном синапсе, мотонейроне и другом тормозном синапсе считается аминокислотой глицином. Но тормозной или возбуждающий характер синапса определяется не их медиаторами, а свойством постсинаптической мембраны. К примеру, ацетилхолин дает возбуждающее действие в нервно-мышечном синапсе терминалей (блуждающих нервов в миокарде).

Ацетилхолин служит возбуждающим медиатором в холинэргических синапсах (пресинаптическую мембрану в нем играет окончание спинного мозга мотонейрона), в синапсе на клетках Рэншоу, в пресинаптическом терминале потовых желез, мозгового вещества надпочеников, в синапсе кишечника и в ганглиях симпатической нервной системы. Ацетилхоли-нестеразу и ацетилхолин нашли также во фракции разных отделов мозга, иногда в большом количестве, но кроме холинэргического синапса на клетках Рэншоу пока не смогли идентифицировать остальные холинэргические синапсы. По словам ученых, медиаторная возбуждающая функция ацетилхолина в ЦНС весьма вероятна.

Кателхомины (дофамин, норадреналин и адреналин) считаются адренэргическими медиаторами. Адреналин и норадреналин синтезируются в окончании симпатического нерва, в клетке головного вещества надпочечника, спинного и головного мозга. Аминокислоты (тирозин и L-фенилаланин) считаются исходным веществом, а адреналин заключительным продуктом синтеза. Промежуточное вещество, в которое входят норадреналин и дофамин, тоже выполняют функцию медиаторов в синапсе, созданных в окончаниях симпатических нервов. Эта функция может быть либо тормозной (секреторные железы кишечника, несколько сфинктеров и гладкая мышца бронхов и кишечника), либо возбуждающей (гладкие мышцы определенных сфинктеров и кровеносных сосудов, в синапсе миокарда - норадреналин, в подкровных ядрах головного мозга - дофамин).

Когда завершают свою функцию медиаторы синапса, катехоламин поглощается пресинаптическим нервным окончанием, при этом включается трансмембранный транспорт. Во время поглощения медиаторов синапсы находятся под защитой от преждевременного истощения запаса на протяжении долгой и ритмичной работы.

Синапс: основные виды и функции

Лэнгли в 1892 году было предположено, что синаптическая передача у вегетативной ганглии млекопитающих не электрической природы, а химической. Через 10 лет Элиоттом было выяснено, что из надпочечников адреналин получается от того же воздействия, что и стимуляция симпатических нервов.

После этого предположили, что адреналин способен секретироваться нейронами и при возбуждении выделяться нервным окончанием. Но в 1921 году Леви сделал опыт, в котором установил химическую природу передачи в вегетативном синапсе среди сердца и блуждающих нервов. Он заполнил сосуды физиологическим раствором и стимулировал блуждающий нерв, создавая замедление сердцебиения. Когда жидкость перенесли из заторможенной стимуляции сердца в нестимулированое сердце, оно билось медленнее. Ясно, что стимуляция блуждающего нерва вызвала освобождение в раствор тормозящего вещества. Ацетилхолин целиком воспроизводил эффект этого вещества. В 1930 г. роль в синаптической передаче ацетилхолина в ганглии окончательно установил Фельдберг и его сотрудник.

Синапс химический

Химический синапс принципиально отличается передачей раздражения при помощи медиатора с пресинапса на постсинапс. Поэтому и образуются различия в морфологии химического синапса. Химический синапс более распространен в позвоночной ЦНС. Теперь известно, что нейрон способен выделять и синтезировать пару медиаторов (сосуществующих медиаторов). Нейроны тоже имеют нейромедиаторную пластичность - способность изменять главный медиатор во время развития.

Нервно-мышечный синапс

Данный синапс осуществляет передачу возбуждения, однако эту связь могут разрушить различные факторы. Передача заканчивается во время блокады выбрасывания в синаптическую щель ацетилхолина, также и во время избытка его содержания в зоне постсинаптических мембран. Множество ядов и лекарственных препаратов влияют на захват, выход, который связан с холинорецепторами постсинаптической мембраны, тогда мышечный синапс блокирует передачу возбуждения. Организм гибнет во время удушья и остановки сокращения дыхательных мышц.

Ботулинус - микробный токсин в синапсе, он блокирует передачу возбуждения, разрушая в пресинаптическом терминале белок синтаксин, управляемый выходом в синаптическую щель ацетилхолина. Несколько отравляющих боевых веществ, фармокологических препаратов (неостигмин и прозерин), а также инсектициды блокируют проведение возбуждения в нервно-мышечный синапс при помощи инактивации ацетилхолинэстеразы - фермента, который разрушает ацетилхолин. Поэтому идет накопление в зоне постсинаптической мембраны ацетилхолина, снижается чувствительность к медиатору, производится выход из постсинаптических мембран и погружение в цитозоль рецепторного блока. Ацетилхолин будет неэффективен, и синапс будет заблокирован.

Синапс нервный: особенности и компоненты

Синапс - это соединение места контакта среди двух клеток. Причем каждая из них заключена в свою электрогенную мембрану. Нервный синапс состоит из трех главных компонентов: постсинаптическая мембрана, синаптическая щель и пресинаптическая мембрана. Постсинаптическая мембрана - это нервное окончание, которое проходит к мышце и опускается внутрь мышечной ткани. В пресинаптической области имеются везикулы - это замкнутые полости, имеющие медиатор. Они всегда находятся в движении.

Подходя к мембране нервных окончаний, везикулы сливаются с ней, и медиатор попадает в синаптическую щель. В одной везикуле содержится квант медиатора и митохондрии (они нужны для синтеза медиатора - главного источника энергии), далее синтезируется из холина ацетилхолин и под воздействием фермента ацетилхолинтрансферразы перерабатывается в ацетилСоА).

Синаптическая щель среди пост- и пресинаптических мембран

В разных синапсах величина щели различна. наполнено межклеточной жидкостью, в которой имеется медиатор. Постсинаптическая мембрана накрывает место контакта нервного окончания с иннервируемой клеткой в мионевральном синапсе. В определенных синапсах постсинаптическая мембрана создает складку, возрастает контактная площадь.

Дополнительные вещества, входящие в состав постсинаптической мембраны

В зоне постсинаптической мембраны присутствуют следующие вещества:

Рецептор (холинорецептор в мионевральном синапсе).

Липопротеин (обладает большой схожестью с ацетилхолином). У этого белка присутствует электрофильный конец и ионная головка. Головка поступает в синаптическую щель, происходит взаимодействие с катионовой головкой ацетилхолина. Из-за этого взаимодействия идет изменение постсинаптической мембраны, затем происходит деполяризация, и раскрываются потенциально зависимые Na-каналы. Деполяризация мембраны не считается самоподкрепляющим процессом;

Градуален, его потенциал на постсинаптической мембране зависит от числа медиаторов, то есть потенциал характеризуется свойством местных возбуждений.

Холинэстераза - считается белком, у которого имеется ферментная функция. По строению она схожа с холинорецептором и обладает похожими свойствами с ацетилхолином. Холинэстеразой разрушается ацетилхолин, вначале тот, который связан с холинорецептором. Под действием холинэстеразы холинорецептор убирает ацетилхолин, образуется реполяризация постсинаптической мембраны. Ацетилхолином расщепляется до уксусной кислоты и холина, необходимого для трофики мышечной ткани.

При помощи действующего транспорта выводится на пресинаптическую мембрану холин, он используется для синтеза нового медиатора. Под воздействием медиатора меняется проницаемость в постсинаптической мембране, а под холинэстеразой чувствительность и проницаемость возвращается к начальной величине. Хеморецепторы способны вступать во взаимодействие с новыми медиаторами.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта