Главная » 1 Описание » Что позволяет найти формула байеса. Задачи на формулы Байеса

Что позволяет найти формула байеса. Задачи на формулы Байеса

При выводе формулы полной вероятности предполагалось, что событие А , вероятность которого следовало определить, могло произойти с одним из событий Н 1 , Н 2 , ... , Н n , образующих полную группу попарно несовместных событий. При этом вероятности указанных событий (гипотез) были известны заранее. Предположим, что произведен эксперимент, в результате которого событие А наступило. Эта дополнительная информация позволяет произвести переоценку вероятностей гипотез Н i , вычислив Р(Н i /А).

или, воспользовавшись формулой полной вероятности, получим

Эту формулу называют формулой Байеса или теоремой гипотез. Формула Байеса позволяет «пересмотреть» вероятности гипотез после того, как становится известным результат опыта, в результате которого появилось событие А .

Вероятности Р(Н i) − это априорные вероятности гипотез (они вычислены до опыта). Вероятности же Р(Н i /А) − это апостериорные вероятности гипотез (они вычислены после опыта). Формула Байеса позволяет вычислить апостериорные вероятности по их априорным вероятностям и по условным вероятностям события А .

Пример . Известно, что 5 % всех мужчин и 0.25 % всех женщин дальтоники. Наугад выбранное лицо по номеру медицинской карточки страдает дальтонизмом. Какова вероятность того, что это мужчина?

Решение . Событие А – человек страдает дальтонизмом. Пространство элементарных событий для опыта – выбран человек по номеру медицинской карточки – Ω = {Н 1 , Н 2 } состоит из 2 событий:

Н 1 −выбран мужчина,

Н 2 −выбрана женщина.

Эти события могут быть выбраны в качестве гипотез.

По условию задачи (случайный выбор) вероятности этих событий одинаковые и равны Р(Н 1 ) = 0.5; Р(Н 2 ) = 0.5.

При этом условные вероятности того, что человек страдает дальтонизмом, равны соответственно:

Р(А/Н 1 ) = 0.05 = 1/20; Р(А/Н 2 ) = 0.0025 = 1/400.

Так как известно, что выбранный человек дальтоник, т. е. событие произошло, то используем формулу Байеса для переоценки первой гипотезы:

Пример. Имеются три одинаковых по виду ящика. В первом ящике 20 белых шаров, во втором – 10 белых и 10 черных, в третьем – 20 черных шаров. Из выбранного наугад ящика вынули белый шар. Вычислить вероятность того, что шар вынут из первого ящика.

Решение . Обозначим через А событие – появление белого шара. Можно сделать три предположения (гипотезы) о выборе ящика: Н 1 , Н 2 , Н 3 − выбор соответственно первого, второго и третьего ящика.

Так как выбор любого из ящиков равновозможен, то вероятности гипотез одинаковы:

Р(Н 1 )=Р(Н 2 )=Р(Н 3 )= 1/3.

По условию задачи вероятность извлечения белого шара из первого ящика

Вероятность извлечения белого шара из второго ящика



Вероятность извлечения белого шара из третьего ящика

Искомую вероятность находим по формуле Байеса:

Повторение испытаний. Формула Бернулли .

Проводится n испытаний, в каждом из которых событие А может произойти или не произойти, причем вероятность события А в каждом отдельном испытании постоянна, т.е. не меняется от опыта к опыту. Как найти вероятность события А в одном опыте мы уже знаем.

Представляет особый интерес вероятность появления определенного числа раз (m раз) события А в n опытах. подобные задачи решаются легко, если испытания являются независимыми.

Опр. Несколько испытаний называюся независимыми относительно события А , если вероятность события А в каждом из них не зависит от исходов других опытов.

Вероятность Р n (m) наступления события А ровно m раз (ненаступление n-m раз, событие ) в этих n испытаниях. Событие А появляется в самых разных последовательностях m раз).

- формулу Бернулли.

Очевидны следующие формулы:

Р n (mменее k раз в n испытаниях.

P n (m>k) = P n (k+1) + P n (k+2) +…+ P n (n) - вероятность наступления события А более k раз в n испытаниях.

Пусть известны их вероятности и соответствующие условные вероятности . Тогда вероятность наступления события равна:

Эта формула получила название формулы полной вероятности . В учебниках она формулируется теоремой, доказательство которой элементарно: согласно алгебре событий , (произошло событие и или произошло событие и после него наступило событие или произошло событие и после него наступило событие или …. или произошло событие и после него наступило событие ) . Поскольку гипотезы несовместны, а событие – зависимо, то по теореме сложения вероятностей несовместных событий (первый шаг) и теореме умножения вероятностей зависимых событий (второй шаг) :

Наверное, многие предчувствуют содержание первого примера =)

Куда ни плюнь – везде урна:

Задача 1

Имеются три одинаковые урны. В первой урне находятся 4 белых и 7 черных шаров, во второй – только белые и в третьей – только черные шары. Наудачу выбирается одна урна и из неё наугад извлекается шар. Какова вероятность того, что этот шар чёрный?

Решение : рассмотрим событие – из наугад выбранной урны будет извлечён чёрный шар. Данное событие может произойти в результате осуществления одной из следующих гипотез:
– будет выбрана 1-я урна;
– будет выбрана 2-я урна;
– будет выбрана 3-я урна.

Так как урна выбирается наугад, то выбор любой из трёх урн равновозможен , следовательно:

Обратите внимание, что перечисленные гипотезы образуют полную группу событий , то есть по условию чёрный шар может появиться только из этих урн, а например, не прилететь с бильярдного стола. Проведём простую промежуточную проверку:
, ОК, едем дальше:

В первой урне 4 белых + 7 черных = 11 шаров, по классическому определению :
– вероятность извлечения чёрного шара при условии , что будет выбрана 1-я урна.

Во второй урне только белые шары, поэтому в случае её выбора появления чёрного шара становится невозможным : .

И, наконец, в третьей урне одни чёрные шары, а значит, соответствующая условная вероятность извлечения чёрного шара составит (событие достоверно) .



– вероятность того, что из наугад выбранной урны будет извлечен чёрный шар.

Ответ :

Разобранный пример снова наводит на мысль о том, как важно ВНИКАТЬ В УСЛОВИЕ. Возьмём те же задачи с урнами и шарами – при их внешней схожести способы решения могут быть совершенно разными: где-то требуется применить только классическое определение вероятности , где-то события независимы , где-то зависимы , а где-то речь о гипотезах. При этом не существует чёткого формального критерия для выбора пути решения – над ним почти всегда нужно думать. Как повысить свою квалификацию? Решаем, решаем и ещё раз решаем!

Задача 2

В тире имеются 5 различных по точности боя винтовок. Вероятности попада­ния в мишень для данного стрелка соответственно равны 0,5; 0,55; 0,7; 0,75 и 0,4. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из слу­чайно выбранной винтовки?

Краткое решение и ответ в конце урока.

В большинстве тематических задач гипотезы, конечно же, не равновероятны:

Задача 3

В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок производит один выстрел из наудачу взятой винтовки.

Решение : в этой задаче количество винтовок точно такое же, как и в предыдущей, но вот гипотезы всего две:
– стрелок выберет винтовку с оптическим прицелом;
– стрелок выберет винтовку без оптического прицела.
По классическому определению вероятности : .
Контроль:

Рассмотрим событие: – стрелок поразит мишень из наугад взятой винтовки.
По условию: .

По формуле полной вероятности:

Ответ : 0,85

На практике вполне допустим укороченный способ оформления задачи, который вам тоже хорошо знаком:

Решение : по классическому определению: – вероятности выбора винтовки с оптическим и без оптического прицела соответственно.

По условию, – вероятности попадания в мишень из соответствующих типов винтовок.

По формуле полной вероятности:
– вероятность того, что стрелок поразит мишень из наугад выбранной винтовки.

Ответ : 0,85

Следующая задача для самостоятельного решения:

Задача 4

Двигатель работает в трёх режимах: нормальном, форсированном и на холостом ходу. В режиме холостого хода вероятность его выхода из строя равна 0,05, при нормальном режиме работы – 0,1, а при форсированном – 0,7. 70% времени двигатель работает в нормальном режиме, а 20% – в форсированном. Какова вероятность выхода из строя двигателя во время работы?

На всякий случай напомню – чтобы получить значения вероятностей проценты нужно разделить на 100. Будьте очень внимательны! По моим наблюдениям, условия задач на формулу полной вероятности частенько пытаются подзапутать; и я специально подобрал такой пример. Скажу по секрету – сам чуть не запутался =)

Решение в конце урока (оформлено коротким способом)

Задачи на формулы Байеса

Материал тесно связан с содержанием предыдущего параграфа. Пусть событие наступило в результате осуществления одной из гипотез . Как определить вероятность того, что имела место та или иная гипотеза?

При условии , что событие уже произошло , вероятности гипотез переоцениваются по формулам, которые получили фамилию английского священника Томаса Байеса:


– вероятность того, что имела место гипотеза ;
– вероятность того, что имела место гипотеза ;

– вероятность того, что имела место гипотеза .

На первый взгляд кажется полной нелепицей – зачем пересчитывать вероятности гипотез, если они и так известны? Но на самом деле разница есть:

– это априорные (оцененные до испытания) вероятности.

– это апостериорные (оцененные после испытания) вероятности тех же гипотез, пересчитанные в связи «со вновь открывшимися обстоятельствами » – с учётом того факта, что событие достоверно произошло .

Рассмотрим это различие на конкретном примере:

Задача 5

На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии составляет 20%, а во второй – 10%. Наудачу взятое со склада изделие оказалось стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.

Первая часть решения состоит в использовании формулы полной вероятности. Иными словами, вычисления проводятся в предположении, что испытание ещё не произведено и событие «изделие оказалось стандартным» пока не наступило.

Рассмотрим две гипотезы:
– наудачу взятое изделие будет из 1-й партии;
– наудачу взятое изделие будет из 2-й партии.

Всего: 4000 + 6000 = 10000 изделий на складе. По классическому определению :
.

Контроль:

Рассмотрим зависимое событие: – наудачу взятое со склада изделие будет стандартным.

В первой партии 100% – 20% = 80% стандартных изделий, поэтому: при условии , что оно принадлежит 1-й партии.

Аналогично, во второй партии 100% – 10% = 90% стандартных изделий и – вероятность того, что наудачу взятое на складе изделие будет стандартным при условии , что оно принадлежит 2-й партии.

По формуле полной вероятности:
– вероятность того, что наудачу взятое на складе изделие будет стандартным.

Часть вторая. Пусть наудачу взятое со склада изделие оказалось стандартным. Эта фраза прямо прописана в условии, и она констатирует тот факт, что событие произошло .

По формулам Байеса:

а) – вероятность того, что выбранное стандартное изделие принадлежит 1-й партии;

б) – вероятность того, что выбранное стандартное изделие принадлежит 2-й партии.

После переоценки гипотезы , разумеется, по-прежнему образуют полную группу :
(проверка;-))

Ответ :

Понять смысл переоценки гипотез нам поможет Иван Васильевич, которой снова сменил профессию и стал директором завода. Он знает, что сегодня 1-й цех отгрузил на склад 4000, а 2-й цех – 6000 изделий, и приходит удостовериться в этом. Предположим, вся продукция однотипна и находится в одном контейнере. Естественно, Иван Васильевич предварительно подсчитал, что изделие, которое он сейчас извлечёт для проверки, с вероятностью будет выпущено 1-м цехом и с вероятностью – вторым. Но после того как выбранное изделие оказывается стандартным, он восклицает: «Какой же классный болт! – его скорее выпустил 2-й цех». Таким образом, вероятность второй гипотезы переоценивается в лучшую сторону , а вероятность первой гипотезы занижается: . И эта переоценка небезосновательна – ведь 2-й цех произвёл не только больше изделий, но и работает в 2 раза лучше!

Вы скажете, чистый субъективизм? Отчасти – да, более того, сам Байес интерпретировал апостериорные вероятности как уровень доверия . Однако не всё так просто – в байесовском подходе есть и объективное зерно. Ведь вероятности того, что изделие будет стандартным (0,8 и 0,9 для 1-го и 2-го цехов соответственно) это предварительные (априорные) и средние оценки. Но, выражаясь философски – всё течёт, всё меняется, и вероятности в том числе. Вполне возможно, что на момент исследования более успешный 2-й цех повысил процент выпуска стандартных изделий (и/или 1-й цех снизил) , и если проверить бОльшее количество либо все 10 тысяч изделий на складе, то переоцененные значения окажутся гораздо ближе к истине.

Кстати, если Иван Васильевич извлечёт нестандартную деталь, то наоборот – он будет больше «подозревать» 1-й цех и меньше – второй. Предлагаю убедиться в этом самостоятельно:

Задача 6

На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии 20%, во второй – 10%. Наудачу взятое со склада изделие оказалось не стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.

Условие отличатся двумя буквами, которые я выделил жирным шрифтом. Задачу можно решить с «чистого листа», или воспользоваться результатами предыдущих вычислений. В образце я провёл полное решение, но чтобы не возникло формальной накладки с Задачей №5, событие «наудачу взятое со склада изделие будет нестандартным» обозначено через .

Байесовская схема переоценки вероятностей встречается повсеместно, причём её активно эксплуатируют и различного рода мошенники. Рассмотрим ставшее нарицательным АО на три буквы, которое привлекает вклады населения, якобы куда-то их инвестирует, исправно выплачивает дивиденды и т.д. Что происходит? Проходит день за днём, месяц за месяцем и всё новые и новые факты, донесённые путём рекламы и «сарафанным радио», только повышают уровень доверия к финансовой пирамиде (апостериорная байесовская переоценка в связи с произошедшими событиями!) . То есть, в глазах вкладчиков происходит постоянное увеличение вероятности того, что «это серьёзная контора» ; при этом вероятность противоположной гипотезы («это очередные кидалы») , само собой, уменьшается и уменьшается. Дальнейшее, думаю, понятно. Примечательно, что заработанная репутация даёт организаторам время успешно скрыться от Ивана Васильевича, который остался не только без партии болтов, но и без штанов.

К не менее любопытным примерам мы вернёмся чуть позже, а пока на очереди, пожалуй, самый распространенный случай с тремя гипотезами:

Задача 7

Электролампы изготавливаются на трех заводах. 1-й завод производит 30% общего количества ламп, 2-й – 55%, а 3-й – остальную часть. Продукция 1-го завода содержит 1% бракованных ламп, 2-го – 1,5%, 3-го – 2%. В магазин поступает продукция всех трех заводов. Купленная лампа оказалась с браком. Какова вероятность того, что она произведена 2-м заводом?

Заметьте, что в задачах на формулы Байеса в условии обязательно фигурирует некое произошедшее событие, в данном случае – покупка лампы.

Событий прибавилось, и решение удобнее оформить в «быстром» стиле.

Алгоритм точно такой же: на первом шаге находим вероятность того, что купленная лампа вообще окажется бракованной.

Пользуясь исходными данными, переводим проценты в вероятности:
– вероятности того, что лампа произведена 1-м, 2-м и 3-м заводами соответственно.
Контроль:

Аналогично: – вероятности изготовления бракованной лампы для соответствующих заводов.

По формуле полной вероятности:

– вероятность того, что купленная лампа окажется с браком.

Шаг второй. Пусть купленная лампа оказалась бракованной (событие произошло)

По формуле Байеса:
– вероятность того, что купленная бракованная лампа изготовлена вторым заводом

Ответ :

Почему изначальная вероятность 2-й гипотезы после переоценки увеличилась ? Ведь второй завод производит средние по качеству лампы (первый – лучше, третий – хуже). Так почему же возросла апостериорная вероятность, что бракованная лампа именно со 2-го завода? Это объясняется уже не «репутацией», а размером. Так как завод №2 выпустил самое большое количество ламп, то на него (по меньшей мере, субъективно) и пеняют: «скорее всего, эта бракованная лампа именно оттуда» .

Интересно заметить, что вероятности 1-й и 3-й гипотез, переоценились в ожидаемых направлениях и сравнялись:

Контроль: , что и требовалось проверить.

К слову, о заниженных и завышенных оценках:

Задача 8

В студенческой группе 3 человека имеют высокий уровень подготовки, 19 человек – средний и 3 – низкий. Вероятности успешной сдачи экзамена для данных студентов соответственно равны: 0,95; 0,7 и 0,4. Известно, что некоторый студент сдал экзамен. Какова вероятность того, что:

а) он был подготовлен очень хорошо;
б) был подготовлен средне;
в) был подготовлен плохо.

Проведите вычисления и проанализируйте результаты переоценки гипотез.

Задача приближена к реальности и особенно правдоподобна для группы студентов-заочников, где преподаватель практически не знает способностей того или иного студента. При этом результат может послужить причиной довольно-таки неожиданных последствий (особенно это касается экзаменов в 1-м семестре) . Если плохо подготовленному студенту посчастливилось с билетом, то преподаватель с большой вероятностью сочтёт его хорошо успевающим или даже сильным студентом, что принесёт неплохие дивиденды в будущем (естественно, нужно «поднимать планку» и поддерживать свой имидж) . Если же студент 7 дней и 7 ночей учил, зубрил, повторял, но ему просто не повезло, то дальнейшие события могут развиваться в самом скверном ключе – с многочисленными пересдачами и балансировкой на грани вылета.

Что и говорить, репутация – это важнейший капитал, не случайно многие корпорации носят имена-фамилии своих отцов-основателей, которые руководили делом 100-200 лет назад и прославились своей безупречной репутацией.

Да, байесовский подход в известной степени субъективен, но… так устроена жизнь!

Закрепим материал заключительным индустриальным примером, в котором я расскажу о до сих пор не встречавшихся технических тонкостях решения:

Задача 9

Три цеха завода производят однотипные детали, которые поступают на сборку в общий контейнер. Известно, что первый цех производит в 2 раза больше деталей, чем второй цех, и в 4 раза больше третьего цеха. В первом цехе брак составляет 12%, во втором – 8%, в третьем – 4%. Для контроля из контейнера берется одна деталь. Какова вероятность того, что она окажется бракованной? Какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех?

Таки Иван Васильевич снова на коне =) Должен же быть у фильма счастливый конец =)

Решение : в отличие от Задач №№5-8 здесь в явном виде задан вопрос, который разрешается с помощью формулы полной вероятности. Но с другой стороны, условие немного «зашифровано», и разгадать этот ребус нам поможет школьный навык составлять простейшие уравнения. За «икс» удобно принять наименьшее значение:

Пусть – доля деталей, выпускаемая третьим цехом.

По условию, первый цех производит в 4 раза больше третьего цеха, поэтому доля 1-го цеха составляет .

Кроме того, первый цех производит изделий в 2 раза больше, чем второй цех, а значит, доля последнего: .

Составим и решим уравнение:

Таким образом: – вероятности того, что извлечённая из контейнера деталь выпущена 1-м, 2-м и 3-м цехами соответственно.

Контроль: . Кроме того, будет не лишним ещё раз посмотреть на фразу «Известно, что первый цех производит изделий в 2 раза больше второго цеха и в 4 раза больше третьего цеха» и убедиться, что полученные значения вероятностей действительно соответствуют этому условию.

За «икс» изначально можно было принять долю 1-го либо долю 2-го цеха – вероятности выйдут такими же. Но, так или иначе, самый трудный участок пройден, и решение входит в накатанную колею:

Из условия находим:
– вероятности изготовления бракованной детали для соответствующих цехов.

По формуле полной вероятности:
– вероятность того, что наугад извлеченная из контейнера деталь окажется нестандартной.

Вопрос второй: какова вероятность того, что извлечённую бракованную деталь выпустил 3-й цех? Данный вопрос предполагает, что деталь уже извлечена, и она оказалось бракованной. Переоцениваем гипотезу по формуле Байеса:
– искомая вероятность. Совершенно ожидаемо – ведь третий цех производит не только самую малую долю деталей, но и лидирует по качеству!

В данном случае пришлось упрощать четырёхэтажную дробь , что в задачах на формулы Байеса приходится делать довольно часто. Но для данного урока я как-то так случайно подобрал примеры, в которых многие вычисления можно провести без обыкновенных дробей.

Коль скоро в условии нет пунктов «а» и «бэ», то ответ лучше снабдить текстовыми комментариями:

Ответ : – вероятность того, что извлечённая из контейнера деталь окажется бракованной; – вероятность того, что извлечённую бракованную деталь выпустил 3-й цех.

Как видите, задачи на формулу полной вероятности и формулы Байеса достаточно простЫ, и, наверное, по этой причине в них так часто пытаются затруднить условие, о чём я уже упоминал в начале статьи.

Дополнительные примеры есть в файле с готовыми решениями на Ф.П.В. и формулы Байеса , кроме того, наверное, найдутся желающие более глубоко ознакомиться с данной темой в других источниках. А тема действительно очень интересная – чего только стОит один парадокс Байеса , который обосновывает тот житейский совет, что если у человека диагностирована редкая болезнь, то ему имеет смысл провести повторное и даже два повторных независимых обследования. Казалось бы, это делают исключительно от отчаяния… – а вот и нет! Но не будем о грустном.


– вероятность того, что произвольно выбранный студент сдаст экзамен.
Пусть студент сдал экзамен. По формулам Байеса:
а) – вероятность того, что студент, сдавший экзамен, был подготовлен очень хорошо. Объективная исходная вероятность оказывается завышенной, поскольку почти всегда некоторым «середнячкам» везёт с вопросами и они отвечают очень сильно, что вызывает ошибочное впечатление безупречной подготовки.
б) – вероятность того, что студент, сдавший экзамен, был подготовлен средне. Исходная вероятность оказывается чуть завышенной, т.к. студентов со средним уровнем подготовки обычно большинство, кроме того, сюда преподаватель отнесёт неудачно ответивших «отличников», а изредка и плохо успевающего студента, которому крупно повезло с билетом.
в) – вероятность того, что студент, сдавший экзамен, был подготовлен плохо. Исходная вероятность переоценилась в худшую сторону. Неудивительно.
Проверка:
Ответ :

При выводе формулы полной вероятности предполагалось, что вероятности гипотез известны до опыта. Формула Байеса позволяет производить переоценку первоначальных гипотез в свете новой информации, состоящей в том, что событие произошло. Поэтому формулу Байеса называют формулой уточнения гипотез.

Теорема (Формула Байеса). Если событие может происходить только с одной из гипотез
, которые образуют полную группу событий, то вероятность гипотез при условии, что событие произошло, вычисляется по формуле

,
.

Доказательство.

Формула Байеса или байесовский подход к оценке гипотез играет важную роль в экономике, т.к. дает возможность корректировать управленческие решения, оценки неизвестных параметров распределения изучаемых признаков в статистическом анализе и.т.п.

Пример. Электролампы изготовляются на двух заводах. Первый завод производит 60% общего количества электроламп, второй – 40%. Продукция первого завода содержит 70% стандартных ламп, второго – 80%. В магазин поступает продукция обоих заводов. Лампочка купленная в магазине оказалась стандартной. Найти вероятность того, что лампа изготовлена на первом заводе.

Запишем условие задачи, вводя соответствующие обозначения.

Дано: событие состоит в том, что лампа стандартная.

Гипотеза
состоит в том, что лампа изготовлена на первом заводе

Гипотеза
состоит в том, что лампа изготовлена на втором заводе

Найти
.

Решение.

5. Повторные независимые испытания. Формула Бернулли

Рассмотрим схему независимых испытаний или схему Бернулли , которая имеет важное научное значение и разнообразные практические применения.

Пусть производится независимых испытаний, в каждом из которых может произойти некоторое событие.

Определение. Испытания называются независимыми , если в каждом из них событие

, не зависящей от того появилось или не появилось событие
в других испытаниях.

Пример. На испытательный стенд поставлены 20 ламп накаливания, которые испытываются под нагрузкой в течении 1000 часов. Вероятность того, что лампа выдержит испытание, равна 0,8 и не зависит от того, что случилось с другими лампами.

В этом примере под испытанием понимается проверка лампы на ее способность выдержать нагрузку в течении 1000 часов. Поэтому число испытаний равно
. В каждом отдельном испытании возможны только два исхода:


Определение. Серия повторных независимых испытаний, в каждом из которых событие
наступает с одной и той же вероятностью
, не зависящей от номере испытания, называется
схемой Бернулли.

Вероятность противоположного события обозначают
, причем, как было доказано выше,

Теорема. В условиях схемы Бернулли вероятность того, что при независимых испытаниях событиепоявится
раз, определяется по формуле

где
число проведенных независимых испытаний;

число появлений события
;

вероятность наступления события
в отдельном испытании;

вероятность не наступления события
в отдельном испытании;

Сформулируйте и докажите формулу полной вероятности. Приведите пример ее применения.

Если события H 1 , H 2 , …, H n попарно несовместны и при каждом испытании обязательно наступает хотя бы одно из этих событий, то для любого события А справедливо равенство:

P(A)= P H1 (A)P(H 1)+ P H2 (A)P(H 2)+…+ P Hn (A)P(H n) – формула полной вероятности. При этом H 1 , H 2 , …, H n называют гипотезами.

Доказательство: Событие А распадается на варианты: AH 1 , AH 2 , …, AH n . (А наступает вместе с H 1 и т.д.) Иначе говоря, имеем А= AH 1 + AH 2 +…+ AH n . Так как H 1 , H 2 , …, H n попарно несовместны, то несовместны и события AH 1 , AH 2 , …, AH n . Применяя правило сложения, находим: P(А)= P(AH 1)+ P(AH 2)+…+ P(AH n). Заменив каждое слагаемое P(AH i) правой части произведением P Hi (A)P(H i), получаем требуемое равенство.

Пример:

Допустим, у нас есть два набора деталей. Вероятность того, что деталь первого набора стандартна, равна 0,8, а второго – 0,9. Найдем вероятность того, что взятая наудачу деталь – стандартная.

Р(А) = 0,5*0,8 + 0,5*0,9 = 0,85.

Сформулируйте и докажите формулу Байеса. Приведите пример ее применения.

Формула Байеса:

Она позволяет переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

Доказательство: Пусть событие А может наступить при условии появления одного из несовместных событий H 1 , H 2 , …, H n , образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами.

Вероятность появления события А определяется по формуле полной вероятности:

P(A)= P H1 (A)P(H 1)+ P H2 (A)P(H 2)+…+ P Hn (A)P(H n) (1)

Допустим, что произведено испытание, в результате которого появилось событие А. Определим, как изменились, в связи с тем, что событие А уже наступило, вероятности гипотез. Другими словами, будем искать условные вероятности

P A (H 1), P A (H 2), …, P A (H n).

По теореме умножения имеем:

Р(АH i) = Р(А) Р A (H i) = Р(H i)Р Hi (А)

Заменим здесь Р(А) по формуле (1), получаем

Пример:

Имеется три одинаковых по виду ящика. В первом ящике n=12 белых шаров, во втором m=4 белых и n-m=8 черных шаров, в третьем n=12 черных шаров. Из выбранного наугад ящика вынули белый шар. Найдите вероятность Р того, что шар вынут из второго ящика.

Решение.

4) Выведите формулу для вероятности k успехов в серии n испытаний по схеме Бернулли.

Исследуем случай, когда производится n одинаковых и независимых опытов, каждый из которых имеет только 2 исхода {A; }. Т.е. некоторый опыт повторяется n раз, причем в каждом опыте некоторое событие А может появиться с вероятностью P(A)=q или не появиться с вероятностью P()=q-1=p .

Пространство элементарных событий каждой серии испытаний содержит точек или последовательностей из символов А и . Такое вероятностное пространство и носит название схема Бернулли. Задача же заключается в том, чтобы для данного k найти вероятность того, что при n- кратном повторении опыта событие А наступит k раз.

Для большей наглядности условимся каждое наступление события А рассматривать как успех, ненаступление А – как неуспех. Наша цель – найти вероятность того, что из n опытов ровно k окажутся успешными; обозначим это событие временно через B.

Событие В представляется в виде суммы ряда событий – вариантов события В. Чтобы фиксировать определенный вариант, нужно указать номера тех опытов, которые оканчиваются успехом. Например, один из возможных вариантов есть

. Число всех вариантов равно, очевидно, , а вероятность каждого варианта ввиду независимости опытов равна . Отсюда вероятность события В равна . Чтобы подчеркнуть зависимость полученного выражения от n и k, обозначим его . Итак, .

5) Используя интегральную приближённую формулу Лапласа, выведите формулу для оценки отклонения относительной частоты события А от вероятности p наступления A в одном опыте.

В условиях схемы Бернулли с заданными значениями n и p для данного e>0 оценим вероятность события , где k – число успехов в n опытах. Это неравенство эквивалентно |k-np|£en, т.е. -en £ k-np £ en или np-en £ k £ np+en. Таким образом, речь идёт о получении оценки для вероятности события k 1 £ k £ k 2 , где k 1 = np-en, k 2 = np+en. Применяя интегральную приближённую формулу Лапласа, получим: P( » . С учётом нечётности функции Лапласа получаем приближённое равенство P( » 2Ф .

Примечание : т.к. по условию n=1, то подставляем вместо n единицу и получаем окончательный ответ.

6) Пусть X – дискретная случайная величина, принимающая только неотрицательные значения и имеющая математическое ожидание m . Докажите, что P (X ≥ 4) ≤ m/ 4 .

m= (т.к. 1-ое слагаемое положительно, то если его убрать, будет меньше) ³ (заменим a на 4, будет только меньше) ³ = =4×P (X ³4). Отсюда P (X ≥ 4) ≤ m/ 4 .

(Вместо 4 может быть любое число).

7) Докажите, что если X и Y – независимые дискретные случайные величины, принимающие конечное множество значений, то M(XY)=M(X)M(Y)

x 1 x 2
p 1 p 2

называется число M(XY) = x 1 p 1 + x 2 p 2 + …

Если случайные величины X и Y независимы, то математическое ожидание их произведения равно произведению их математических ожиданий (теорема умножения математических ожиданий).

Доказательство: Возможные значения X обозначим x 1 , x 2, … , возможные значения Y - y 1 , y 2, … а p ij =P(X=x i , Y=y j). XY M(XY)= Ввиду независимости величин X и Y имеем: P(X= x i , Y=y j)= P(X=x i) P(Y=y j). Обозначив P(X=x i)=r i , P(Y=y j)=s j , перепишем данное равенство в виде p ij =r i s j

Таким образом, M(XY) = = . Преобразуя полученное равенство, выводим: M(XY)=()() = M(X)M(Y), что и требовалось доказать.

8) Докажите, что если X и Y – дискретные случайные величины, принимающие конечное множество значений, то M (X +Y ) = M (X ) +M (Y ).

Математическим ожиданием дискретной случайной величины с законом распределения

x 1 x 2
p 1 p 2

называется число M(XY) = x 1 p 1 + x 2 p 2 + …

Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых: M(X+Y)= M(X)+M(Y).

Доказательство: Возможные значения X обозначим x 1 , x 2, … , возможные значения Y - y 1 , y 2, … а p ij =P(X=x i , Y=y j). Закон распределения величины X+Y будет выражаться соответствующей таблицей. M(X+Y)= .Эту формулу можно переписать следующим образом: M(X+Y)= .Первую сумму правой части можно представить в виде . Выражение есть вероятность того, что наступит какое-либо из событий (X=x i , Y=y 1), (X=x i , Y=y 2), … Следовательно, это выражение равно P(X=x i). Отсюда . Аналогично, . В итоге имеем: M(X+Y)= M(X)+M(Y), что и требовалось доказать.

9) Пусть Х – дискретная случайная величина, распределенная по биномиальному закону распределения с параметрами n и р . Докажите, что М(Х)=nр , D(Х)=nр(1-р) .

Пусть производится n независимых испытаний, в каждом из которых может появиться событие А с вероятностью р , так что вероятность противоположного события Ā равна q=1-p . Рассмотрим сл. величину Х – число появления события А в n опытах. Представим Х в виде суммы индикаторов события А для каждого испытания: Х=Х 1 +Х 2 +…+Х n . Теперь докажем, что М(Х i)=р, D(Х i)=np . Для этого рассмотрим закон распределения сл. величины, который имеет вид:

Х
Р р q

Очевидно, что М(Х)=р , случайная величина Х 2 имеет тот же закон распределения, поэтому D(Х)=М(Х 2)-М 2 (Х)=р-р 2 =р(1-р)=рq . Таким образом, М(Х i)=р , D(Х i)=pq . По теореме сложения математических ожиданий М(Х)=М(Х 1)+..+М(Х n)=nр. Поскольку случайные величины Х i независимы, то дисперсии тоже складываются: D(Х)=D(Х 1)+…+D(Х n)=npq=np(1-р).

10) Пусть X – дискретная случайная величина, распределенная по закону Пуассона с параметром λ. Докажите, что M (X ) = λ .

Закон Пуассона задается таблицей:

Отсюда имеем:

Таким образом, параметр λ, характеризующий данное пуассоновское распределение, есть не что иное как математическое ожидание величины X.

11) Пусть Х – дискретная случайная величина, распределенная по геометрическому закону с параметром р. Докажите, что M (X) = .

Геометрический закон распределения связан с последовательностью испытаний Бернулли до 1-го успешного события А. Вероятность появления события А в одном испытании равна р, противоположного события q = 1-p. Закон распределения случайной величины Х – числа испытаний имеет вид:

х n
Р р pq pq n-1

Ряд, записанный в скобках, получается почленным дифференцированием геометрической прогрессии

Следовательно, .

12) Докажите, что коэффициент корреляции случайных величин Х и У удовлетворяет условию .

Определение: Коэффициентом корреляции двух слу­чайных величин называется отношение их ковариации к произведе­нию средних квадратических отклонений этих величин: . .

Доказательство: Рассмотрим случайную величину Z = . Вычислим ее дисперсию . Поскольку левая часть неотрицательна, то правая неотрицательна. Следовательно, , |ρ|≤1.

13) Как вычисляется дисперсия в случае непрерывного распределения с плотностью f (x )? Докажите, что для случайной величины X с плотностью дисперсия D (X ) не существует, а математическое ожидание M (X ) существует.

Дисперсия абсолютно непрерывной случайной величины X с функцией плотности f(x) и математическим ожиданием m = M(X) определяется таким же равенством, как и для дискретной величины

В случае когда абсолютно непрерывная случайная величина X сосредоточена на промежутке ,

∞ - интеграл расходится, следовательно, дисперсия не существует.

14) Докажите, что для нормальной случайной величины Х с функцией плотности распределения математическое ожидание М(Х) = μ.

Формула

Докажем, что μ есть математическое ожидание.

Поопределению математического ожидания непрерывной с.в.,

Введем новую переменную . Отсюда . Приняв во внимание, что новые пределы интегрирования равны старым, получим

Первое из слагаемых равно нулю ввиду нечетности подинтегральной функции. Второе из слагаемых равно μ (интеграл Пуассона ).

Итак, M(X)=μ , т.е. математическое ожидание нормального распределения равно параметру μ.

15) Докажите, что для нормальной случайной величины Х с функцией плотности распределения диспресия D(X) = σ 2 .

Формула описывает плотность нормального распределения вероятностей непрерывной с.в..

Докажем, что - среднее квадратическое отклонение нормального распределения. Введем новую переменную z=(х-μ)/ . Отсюда . Приняв во внимание, что новые пределы инте­грирования равны старым, получим Интегрируя по частям, положив u=z , найдем Следовательно, .Итак, среднее квадратическое отклонение нормального распределения равно параметру .

16) Докажите, что для непрерывной случайной величины, распределенной по показательному закону с параметром , математическое ожидание .

Говорят, что случайная величина X, принимающая только неотрицательные значения, распределена по показательному закону, если для некоторого положительного параметра λ>0 функция плотности имеет вид:

Для нахождения математического ожидания воспользуемся формулой

Подробно теорема Байеса излагается в отдельной статье . Это замечательная работа, но в ней 15 000 слов. В этом же переводе статьи от Kalid Azad кратко объясняется самая суть теоремы.

  • Результаты исследований и испытаний – это не события. Существует метод диагностики рака, а есть само событие - наличие заболевания. Алгоритм проверяет, содержит ли письмо спам, но событие (на почту действительно пришел спам) нужно рассматривать отдельно от результата его работы.
  • В результатах испытаний бывают ошибки. Часто наши методы исследований выявляют то, чего нет (ложноположительный результат), и не выявляют то, что есть (ложноотрицательный результат).
  • С помощью испытаний мы получаем вероятности определенного исхода. Мы слишком часто рассматриваем результаты испытания сами по себе и не учитываем ошибки метода.
  • Ложноположительные результаты искажают картину. Предположим, что вы пытаетесь выявить какой-то очень редкий феномен (1 случай на 1000000). Даже если ваш метод точен, вероятнее всего, его положительный результат будет на самом деле ложноположительным.
  • Работать удобнее с натуральными числами. Лучше сказать: 100 из 10000, а не 1%. При таком подходе будет меньше ошибок, особенно при умножении. Допустим, нам нужно дальше работать с этим 1%. Рассуждения в процентах неуклюжи: «в 80% случаев из 1% получили положительный исход». Гораздо легче информация воспринимается так: «в 80 случаях из 100 наблюдали положительный исход».
  • Даже в науке любой факт - это всего лишь результат применения какого-либо метода. С философской точки зрения научный эксперимент – это всего лишь испытание с вероятной ошибкой. Есть метод, выявляющий химическое вещество или какой-нибудь феномен, и есть само событие - присутствие этого феномена. Наши методы испытаний могут дать ложный результат, а любое оборудование обладает присущей ему ошибкой.
Tеорема Байеса превращает результаты испытаний в вероятность событий.
  • Если нам известна вероятность события и вероятность ложноположительных и ложноотрицательных результатов, мы можем исправить ошибки измерений.
  • Теорема соотносит вероятность события с вероятностью определенного исхода. Мы можем соотнести Pr(A|X): вероятность события А, если дан исход X, и Pr(X|A): вероятность исхода X, если дано событие А.

Разберемся в методе

В статье, на которую дана ссылка в начале этого эссе, разбирается метод диагностики (маммограмма), выявляющий рак груди. Рассмотрим этот метод подробно.
  • 1% всех женщин болеют раком груди (и, соответственно, 99% не болеют)
  • 80% маммограмм выявляют заболевание, когда оно действительно есть (и, соответственно, 20% не выявляют)
  • 9,6% исследований выявляют рак, когда его нет (и, соответственно, 90,4% верно определяют отрицательный результат)
Теперь оформим такую таблицу:

Как работать с этим данными?
  • 1% женщин болеют раком груди
  • если у пациентки выявили заболевание, смотрим в первую колонку: есть 80% вероятность того, что метод дал верный результат, и 20% вероятность того, что результат исследования неправильный (ложноотрицательный)
  • если у пациентки заболевание не выявили, смотрим на вторую колонку. С вероятностью 9,6% можно сказать, что положительный результат исследования неверен, и с 90,4% вероятностью можно сказать, что пациентка действительно здорова.

Насколько метод точен?

Теперь разберем положительный результат теста. Какова вероятность того, что человек действительно болен: 80%, 90%, 1%?

Давайте подумаем:

  • Есть положительный результат. Разберем все возможные исходы: полученный результат может быть как истинным положительным, так и ложноположительным.
  • Вероятность истинного положительного результата равна: вероятность заболеть, умноженная на вероятность того, что тест действительно выявил заболевание. 1% * 80% = .008
  • Вероятность ложноположительного результата равна: вероятность того, что заболевания нет, умноженная на вероятность того, что метод выявил заболевание неверно. 99% * 9.6% = .09504
Теперь таблица выглядит так:

Какова вероятность, что человек действительно болен, если получен положительный результат маммограммы? Вероятность события - это отношение количества возможных исходов события к общему количеству всех возможных исходов.

Вероятность события = исходы события / все возможные исходы

Вероятность истинного положительного результата – .008. Вероятность положительного результата - это вероятность истинного положительного исхода + вероятность ложноположительного.

(.008 + 0.09504 = .10304)

Итак, вероятность заболевания при положительном результате исследования рассчитывается так: .008/.10304 = 0.0776. Эта величина составляет около 7.8%.

То есть положительный результат маммограммы значит только то, что вероятность наличия заболевания – 7,8%, а не 80% (последняя величина - это лишь предполагаемая точность метода). Такой результат кажется поначалу непонятным и странным, но нужно учесть: метод дает ложноположительный результат в 9,6% случаев (а это довольно много), поэтому в выборке будет много ложноположительных результатов. Для редкого заболевания большинство положительных результатов будут ложноположительными.

Давайте пробежимся глазами по таблице и попробуем интуитивно ухватить смысл теоремы. Если у нас есть 100 человек, только у одного из них есть заболевание (1%). У этого человека с 80% вероятностью метод даст положительный результат. Из оставшихся 99% у 10% будут положительные результаты, что дает нам, грубо говоря, 10 ложноположительных исходов из 100. Если мы рассмотрим все положительные результаты, то только 1 из 11 будет верным. Таким образом, если получен положительный результат, вероятность заболевания составляет 1/11.

Выше мы посчитали, что эта вероятность равна 7,8%, т.е. число на самом деле ближе к 1/13, однако здесь с помощью простого рассуждения нам удалось найти приблизительную оценку без калькулятора.

Теорема Байеса

Теперь опишем ход наших мыслей формулой, которая и называется теоремой Байеса. Эта теорема позволяет исправить результаты исследования в соответствии с искажением, которое вносят ложноположительные результаты:
  • Pr(A|X) = вероятность заболевания (А) при положительном результате (X). Это как раз то, что мы хотим знать: какова вероятность события в случае положительного исхода. В нашем примере она равна 7,8%.
  • Pr(X|A) = вероятность положительного результата (X) в случае, когда больной действительно болен (А). В нашем случае это величина истинных положительных – 80%
  • Pr(A) = вероятность заболеть (1%)
  • Pr(not A) = вероятность не заболеть (99%)
  • Pr(X|not A) = вероятность положительного исхода исследования в случае, если заболевания нет. Это величина ложноположительных – 9,6 %.
Можно сделать заключение: чтобы получить вероятность события, нужно вероятность истинного положительного исхода разделить на вероятность всех положительных исходов. Теперь мы можем упростить уравнение:
Pr(X) – это константа нормализации. Она сослужила нам хорошую службу: без нее положительный исход испытаний дал бы нам 80% вероятность события.
Pr(X) – это вероятность любого положительного результата, будет ли это настоящий положительный результат при исследовании больных (1%) или ложноположительный при исследовании здоровых людей (99%).

В нашем примере Pr(X) – довольно большое число, потому что велика вероятность ложноположительных результатов.

Pr(X) создает результат 7,8%, который на первый взгляд кажется противоречащим здравому смыслу.

Смысл теоремы

Мы проводим испытания, чтоб выяснить истинное положение вещей. Если наши испытания совершенны и точны, тогда вероятности испытаний и вероятности событий совпадут. Все положительные результаты будут действительно положительными, а отрицательные - отрицательными. Но мы живем в реальном мире. И в нашем мире испытания дают неверные результаты. Теорема Байеса учитывает искаженные результаты, исправляет ошибки, воссоздает генеральную совокупность и находит вероятность истинного положительного результата.

Спам-фильтр

Теорема Байеса удачно применяется в спам-фильтрах.

У нас есть:

  • событие А - в письме спам
  • результат испытания - содержание в письме определенных слов:

Фильтр берет в расчет результаты испытаний (содержание в письме определенных слов) и предсказывает, содержит ли письмо спам. Всем понятно, что, например, слово «виагра» чаще встречается в спаме, чем в обычных письмах.

Фильтр спама на основе черного списка обладает недостатками - он часто выдает ложноположительные результаты.

Спам-фильтр на основе теоремы Байеса использует взвешенный и разумный подход: он работает с вероятностями. Когда мы анализируем слова в письме, мы можем рассчитать вероятность того, что письмо - это спам, а не принимать решения по типу «да/нет». Если вероятность того, что письмо содержит спам, равна 99%, то письмо и вправду является таковым.

Со временем фильтр тренируется на все большей выборке и обновляет вероятности. Так, продвинутые фильтры, созданные на основе теоремы Байеса, проверяют множество слов подряд и используют их в качестве данных.

Дополнительные источники:

Теги: Добавить метки



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта