Главная » 2 Распространение и сезон сбора » Математические действия вынесение общего множителя за скобки. Вынесение общего множителя за скобки

Математические действия вынесение общего множителя за скобки. Вынесение общего множителя за скобки

При сложении и вычитании алгебраический дробей с разными знаменателями сначала дроби приводят к общему знаменателю . Это значит, находят такой один знаменатель, который делится на исходный знаменатель каждой алгебраической дроби, входящей в состав данного выражения.

Как известно, если числитель и знаменатель дроби умножить (или разделить) на одно и то же число, отличное от нуля, то значение дроби не изменится. Это является основным свойством дроби. Поэтому, когда дроби приводят к общему знаменателю, по-сути умножают исходный знаменатель каждой дроби на недостающий множитель до общего знаменателя. При этом надо умножить на этот множитель и числитель дроби (для каждой дроби он свой).

Например, дана такая сумма алгебраических дробей:

Требуется упростить выражение, т. е. сложить две алгебраические дроби. Для этого в первую очередь надо привести слагаемые-дроби к общему знаменателю. Первым делом следует найти одночлен, который делится и на 3x и на 2y. При этом желательно, чтобы он был наименьший, т. е. найти наименьшее общее кратное (НОК) для 3x и 2y.

Для числовых коэффициентов и переменных НОК ищется отдельно. НОК(3, 2) = 6, а НОК(x, y) = xy. Далее найденные значения перемножаются: 6xy.

Теперь надо определить, на какой множитель надо умножить 3x, чтобы получить 6xy:
6xy ÷ 3x = 2y

Значит, при приведении первой алгебраической дроби к общему знаменателю ее числитель надо умножить на 2y (знаменатель уже был умножен при приведении к общему знаменателю). Аналогично ищется множитель для числителя второй дроби. Он будет равен 3x.

Таким образом, получаем:

Далее уже можно действовать как с дробями с одинаковыми знаменателями: складываются числители, а в знаменателе пишется один общий:

После преобразований получается упрощенное выражение, представляющее собой одну алгебраическую дробь, являющуюся суммой двух исходных:

Алгебраические дроби в исходном выражении могут содержать знаменатели, представляющие собой многочлены, а не одночлены (как в приведенном выше примере). В таком случае, перед поиском общего знаменателя следует разложить знаменатели на множители (если это возможно). Далее общий знаменатель собирается из разных множителей. Если множитель есть в нескольких исходных знаменателях, то его берут единожды. Если множитель имеет разные степени в исходных знаменателях, то его берут с большей. Например:

Здесь многочлен a 2 – b 2 можно представить как произведение (a – b)(a + b). Множитель 2a – 2b раскладывается как 2(a – b). Таким образом, общий знаменатель будет равен 2(a – b)(a + b).

Для решения примеров с дробями необходимо уметь находить наименьший общий знаменатель. Ниже приведена подробная инструкция.

Как найти наименьший общий знаменатель – понятие

Наименьший общий знаменатель (НОЗ) простыми словами – это минимальное число, которое делится на знаменатели всех дробей данного примера. Другими словами его называют Наименьшим Общим Кратным (НОК). НОЗ используют только в том случае, если знаменатели у дробей различны.

Как найти наименьший общий знаменатель – примеры

Рассмотрим примеры нахождения НОЗ.

Вычислить: 3/5 + 2/15.

Решение (Последовательность действий):

  • Смотрим на знаменатели дробей, убеждаемся, что они разные и выражения максимально сокращены.
  • Находим наименьшее число, которое делится и на 5, и на 15. Таким числом будет 15. Таким образом, 3/5 + 2/15 = ?/15.
  • Со знаменателем разобрались. Что будет в числителе? Помочь выяснить это нам поможет дополнительный множитель. Дополнительный множитель – это число, получившееся при делении НОЗ на знаменатель конкретной дроби. Для 3/5 дополнительный множитель равен 3, так как 15/5 = 3. Для второй дроби дополнительным множителем будет 1, так как 15/15 = 1.
  • Выяснив дополнительный множитель, умножаем его на числители дробей и складываем получившиеся значения. 3/5 + 2/15 = (3*3+2*1)/15 = (9+2)/15 = 11/15.


Ответ: 3/5 + 2/15 = 11/15.

Если в примере складываются или вычитаются не 2, а 3 или больше дробей, то НОЗ нужно искать уже для стольких дробей, сколько дано.

Вычислить: 1/2 – 5/12 + 3/6

Решение (последовательность действий):

  • Находим наименьший общий знаменатель. Минимальным числом, делящимся на 2, 12 и 6 будет 12.
  • Получим: 1/2 – 5/12 + 3/6 = ?/12.
  • Ищем дополнительные множители. Для 1/2 – 6; для 5/12 – 1; для 3/6 – 2.
  • Умножаем на числители и приписываем соответствующие знаки: 1/2 – 5/12 + 3/6 = (1*6 – 5*1 + 2*3)/12 = 7/12.

Ответ: 1/2 – 5/12 + 3/6 = 7/12.

В рамках изучений тождественных преобразований очень важна тема вынесения общего множителя за скобки. В данной статье мы поясним, в чем именно заключается такое преобразование, выведем основное правило и разберем характерные примеры задач.

Yandex.RTB R-A-339285-1

Понятие вынесения множителя за скобки

Чтобы успешно применять данное преобразование, нужно знать, для каких выражений оно используется и какой результат надо получить в итоге. Поясним эти моменты.

Вынести общий множитель за скобки можно в выражениях, представляющих собой суммы, в которых каждое слагаемое является произведением, причем в каждом произведении есть один множитель, общий (одинаковый) для всех. Он так и называется – общим множителем. Именно его мы будем выносить за скобки. Так, если у нас есть произведения 5 · 3 и 5 · 4 , то мы можем вынести за скобки общий множитель 5 .

В чем состоит данное преобразование? В ходе него мы представляем исходное выражение как произведение общего множителя и выражения в скобках, содержащего сумму всех исходных слагаемых, кроме общего множителя.

Возьмем пример, приведенный выше. Вынесем общий множитель 5 в 5 · 3 и 5 · 4 и получим 5 (3 + 4) . Итоговое выражение – это произведение общего множителя 5 на выражение в скобках, которое является суммой исходных слагаемых без 5 .

Данное преобразование базируется на распределительном свойстве умножения, которое мы уже изучали до этого. В буквенном виде его можно записать как a · (b + c) = a · b + a · c . Поменяв правую часть с левой, мы увидим схему вынесения общего множителя за скобки.

Правило вынесения общего множителя за скобки

Используя все сказанное выше, выведем основное правило такого преобразования:

Определение 1

Чтобы вынести за скобки общий множитель, надо записать исходное выражение в виде произведения общего множителя и скобок, которые включают в себя исходную сумму без общего множителя.

Пример 1

Возьмем простой пример вынесения. У нас есть числовое выражение 3 · 7 + 3 · 2 − 3 · 5 , которое является суммой трех слагаемых 3 · 7 , 3 · 2 и общего множителя 3 . Взяв за основу выведенное нами правило, запишем произведение как 3 · (7 + 2 − 5) . Это и есть итог нашего преобразования. Запись всего решения выглядит так: 3 · 7 + 3 · 2 − 3 · 5 = 3 · (7 + 2 − 5) .

Мы можем выносить множитель за скобки не только в числовых, но и в буквенных выражениях. Например, в 3 · x − 7 · x + 2 можно вынести переменную x и получить 3 · x − 7 · x + 2 = x · (3 − 7) + 2 , в выражении (x 2 + y) · x · y − (x 2 + y) · x 3 – общий множитель (x 2 + y) и получить в итоге (x 2 + y) · (x · y − x 3) .

Определить сразу, какой множитель является общим, возможно не всегда. Иногда выражение нужно предварительно преобразовать, заменив числа и выражения тождественно равными им произведениями.

Пример 2

Так, к примеру, в выражении 6 · x + 4 · y можно вынести общий множитель 2 , не записанный в явном виде. Чтобы его найти, нам нужно преобразовать исходное выражение, представив шесть как 2 · 3 , а четыре как 2 · 2 . То есть 6 · x + 4 · y = 2 · 3 · x + 2 · 2 · y = 2 · (3 · x + 2 · y) . Или в выражении x 3 + x 2 + 3 · x можно вынести за скобки общий множитель x , который обнаруживается после замены x 3 на x · x 2 . Такое преобразование возможно благодаря основным свойствам степени. В итоге мы получим выражение x · (x 2 + x + 3) .

Еще один случай, на котором следует остановиться отдельно, – это вынесение за скобки минуса. Тогда мы выносим не сам знак, а минус единицу. Например, преобразуем таким образом выражение − 5 − 12 · x + 4 · x · y . Перепишем выражение как (− 1) · 5 + (− 1) · 12 · x − (− 1) · 4 · x · y , чтобы общий множитель был виден более отчетливо. Вынесем его за скобки и получим − (5 + 12 · x − 4 · x · y) . На этом примере видно, что в скобках получилась та же сумма, но с противоположными знаками.

В выводах отметим, что преобразование путем вынесения общего множителя за скобки очень часто применяется на практике, например, для вычисления значения рациональных выражений. Также этот способ полезен, когда нужно представить выражение в виде произведения, например, разложить многочлен на отдельные множители.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Чичаева Дарина 8в класс

В работе ученица 8 класса расписала правило разложения многочлена на множители путём вынесения общего множителя за скобки с подробным ходом решения множества примеровм по данной теме. На каждый разобранный пример предложено по 2 примера для самостоятельного решения, к которым есть ответы. Работа поможет изучить данную тему тем ученикам, которые по каким-то причинам её не усвоил при прохождении программного материала 7 класса и (или) при повторении курса алгебры в 8 классе после летних каникул.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа №32

«Ассоциированная школа ЮНЕСКО «Эврика-развитие»

г. Волжского Волгоградской области

Работу выполнила:

Ученица 8В класса

Чичаева Дарина

г. Волжский

2014

Вынесение общего множителя за скобки

  • - Одним из способов разложения многочлена на множители является вынесение общего множителя за скобки;
  • - При вынесении общего множителя за скобки применяется распределительное свойство ;
  • - Если все члены многочлена содержат общий множитель , то этот множитель можно вынести за скобки .

При решении уравнений, в вычислениях и ряде других задач бывает полезно заменить многочлен произведением нескольких многочленов (среди которых могут быть и одночлены). Представление многочлена в виде произведения двух или нескольких многочленов называют разложение многочлена на множители.

Рассмотрим многочлен 6a 2 b+15b 2 . Каждый его член можно заменить произведением двух множителей, один из которых равен 3b: →6a 2 b = 3b*2a 2 , + 15b 2 = 3b*5b →из этого мы получим: 6a 2 b+15b 2 =3b*2a 2 +3b*5b.

Полученное выражение на основе распределительного свойства умножения можно представить в виде произведения двух множителей. Один из них – общий множитель 3b , а другой – сумма 2а 2 и 5b→ 3b*2a 2 +3b*5b=3b(2a 2 +5b) →Таким образом, мы разложили многочлен: 6a 2 b+15b 2 на множители, представив его в виде произведения одночлена 3b и многочлена 2a 2 +5b. Данный способ разложения многочлена на множители называют вынесение общего множителя за скобки.

Примеры:

Разложите на множители:

А) kx-px.

Множитель х х выносим за скобки.

kx:x=k; px:x=p.

Получим: kx-px=x*(k-p).

б) 4a-4b.

Множитель 4 есть и в 1 слагаемом и во 2 слагаемом. Поэтому 4 выносим за скобки.

4а:4=а; 4b:4=b.

Получим: 4a-4b=4*(a-b).

в) -9m-27n.

9m и -27n делятся на -9 . Поэтому выносим за скобки числовой множитель -9.

9m: (-9)=m; -27n: (-9)=3n.

Имеем: -9m-27n=-9*(m+3n).

г) 5y 2 -15y.

5 и 15 делятся на 5; y 2 и у делятся на у.

Поэтому выносим за скобки общий множитель 5у .

5y 2 : 5у=у; -15y: 5у=-3.

Итак: 5y 2 -15y=5у*(у-3).

Замечание: Из двух степеней с одинаковым основанием выносим степень с меньшим показателем.

д) 16у 3 +12у 2 .

16 и 12 делятся на 4; y 3 и y 2 делятся на y 2 .

Значит, общий множитель 4y 2 .

16y 3 : 4y 2 =4y; 12y 2 : 4y 2 =3.

В результате мы получим: 16y 3 +12y 2 =4y 2 *(4у+3).

е) Разложите на множители многочлен 8b(7y+a)+n(7y+a).

В данном выражении мы видим, присутствует один и тот же множитель (7y+a) , который можно вынести за скобки. Итак, получим: 8b(7y+a)+n(7y+a)=(8b+n)*(7y+a).

ж) a(b-c)+d(c-b).

Выражения b-c и c-b являются противоположными. Поэтому, чтобы сделать их одинаковыми, перед d меняем знак «+» на «-»:

a(b-c)+d(c-b)=a(b-c)-d(b-c).

a(b-c)+d(c-b)=a(b-c)-d(b-c)=(b-c)*(a-d).

Примеры для самостоятельного решения:

  1. mx+my;
  2. ах+ау;
  3. 5x+5y ;
  4. 12x+48y;
  5. 7ax+7bx;
  6. 14x+21y;
  7. –ma-a ;
  8. 8mn-4m 2 ;
  9. -12y 4 -16y;
  10. 15y 3 -30y 2 ;
  11. 5c(y-2c)+y 2 (y-2c);
  12. 8m(a-3)+n(a-3);
  13. x(y-5)-y(5-y);
  14. 3a(2x-7)+5b(7-2x);

Ответы.

1) m(х+у); 2) а(х+у); 3) 5(х+у); 4) 12(х+4у); 5) 7х(a+b); 6) 7(2х+3у); 7) -а(m+1); 8) 4m(2n-m);

9) -4y(3y 3 +4); 10) 15у 2 (у-2); 11) (y-2c)(5с+у 2 ); 12) (a-3)(8m+n); 13) (y-5)(x+y); 14) (2x-7)(3a-5b).

На этом уроке мы познакомимся с правилами вынесения за скобки общего множителя, научимся находить его в различных примерах и выражениях. Поговорим о том, как простая операция, вынесение общего множителя за скобки, позволяет упростить вычисления. Полученные знания и навыки закрепим, рассмотрев примеры разных сложностей.

Что такое общий множитель, зачем его искать и с какой целью выносить за скобки? Ответим на эти вопросы, разобрав простейший пример.

Решим уравнение . Левая часть уравнения является многочленом, состоящим из подобных членов. Буквенная часть является общей для данных членов, значит, она и будет общим множителем. Вынесем за скобки:

В данном случае вынесение за скобки общего множителя помогло нам преобразовать многочлен в одночлен. Таким образом, мы смогли упростить многочлен и его преобразование помогло нам решить уравнение.

В рассмотренном примере общий множитель был очевиден, но будет ли так просто найти его в произвольном многочлене?

Найдём значение выражения: .

В данном примере вынесение общего множителя за скобки значительно упростило вычисление.

Решим еще один пример. Докажем делимость на выражения .

Полученное выражение делится на , что и требовалось доказать. И снова вынесение общего множителя позволило нам решить задачу.

Решим еще один пример. Докажем, что выражение делится на при любом натуральном : .

Выражение является произведением двух соседних чисел натурального ряда. Одно из двух чисел обязательно будет четным, значит, выражение будет делиться на .

Мы разобрали разные примеры, но применяли один и тот же метод решения: выносили общий множитель за скобки. Мы видим, что эта простая операция значительно упрощает вычисления. Было легко найти общий множитель для этих частных случаев, а что делать в общем случае, для произвольного многочлена?

Вспомним, что многочлен - сумма одночленов.

Рассмотрим многочлен . Данный многочлен является суммой двух одночленов. Одночлен - произведение числа, коэффициента, и буквенной части. Таким образом, в нашем многочлене каждый одночлен представлен произведением числа и степеней, произведение множителей. Множители могут быть одинаковыми для всех одночленов. Именно эти множители нужно определить и вынести за скобку. Сначала находим общий множитель для коэффициентов, причем целочисленных.

Было легко найти общий множитель, но давайте определим НОД коэффициентов: .

Рассмотрим ещё один пример: .

Найдем , что позволит нам определить общий множитель для данного выражения: .

Мы вывели правило для целых коэффициентов. Нужно найти их НОД и вынести за скобку. Закрепим это правило, решив ещё один пример.

Мы рассмотрели правило вынесения общего множителя для целочисленных коэффициентов, перейдем к буквенной части. Сначала ищем те буквы, которые входят во все одночлены, а потом определяем наибольшую степень буквы, которая входит во все одночлены: .

В этом примере была всего одна общая буквенная переменная, но их может быть несколько, как в следующем примере:

Усложним пример, увеличив количество одночленов:

После вынесения общего множителя мы преобразовали алгебраическую сумму в произведение.

Мы рассмотрели правила вынесения для целых коэффициентов и буквенных переменных отдельно, но чаще всего для решения примера нужно применять их вместе. Рассмотрим пример:

Иногда бывает сложно определить, какое выражение остается в скобках, рассмотрим легкий прием, который позволит вам быстро решить эту проблему.

Общим множителем также может быть искомое значение :

Общим множителем может быть не только число или одночлен, но и любое выражение, как, например, в следующем уравнении.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта