Главная » 2 Распространение и сезон сбора » Подземные воды. По температуре подземные воды бывают

Подземные воды. По температуре подземные воды бывают

Оценка эксплуатационных запасов подземных вод при наличии привлекаемых естественных ресурсов

дипломная работа

1.3 Запасы подземных вод

По различным признакам в настоящее время выделяется также несколько групп запасов подземных вод.

Естествениые запасы -- масса гравитационной воды в пласте в естественных условиях. Та часть этой массы, которая может быть извлечена из напорного водоносного горизонта за счет упругих свойств воды и горных пород без осушения пласта, называется упругими запасами. При оценке запасов подземных вод для водоснабжения (пресные воды) запасы удобнее выражать не массой, а объемом воды, так как численно значения единицы массы и объема воды в этом случае достаточно близки. В такой приближенной трактовке естественные запасы равны сумме объема воды, заключенной в пласте (эти запасы иногда называют «емкостными»), и объема воды, извлекаемой в напорных условиях без осушения пласта («упругие запасы»). Величина последних по сравнению с емкостными запасами обычно составляет доли пропета.

Искусственные запасы подземных вод--это их объем в пласте, образовавшийся в результате орошения, подпора водохранилищами, искусственного заводнения пласта.

Эксплуатационные запасы подземных вод -- количество подземных вод, которое может быть получено рациональными в технико-экономическом отношении водозаборными сооружениями при заданном режиме эксплуатации и при качестве воды, удовлетворяющем требованиям в течение всего расчетного срока водопотребления. Количество воды, о котором идет речь в приведенном выше определении, рекомендуется выражать расходом воды. Следовательно, строго говоря, речь идет не об эксплуатационных запасах, а об эксплуатационных ресурсах водоносного горизонта. С термином эксплуатационные запасы можно согласиться лить с практической точки зрения -- ГКЗ утверждает запасы полезных ископаемых (подавляющая их часть -- твердые ископаемые, где термин «запасы» является точным), а не ресурсы.

Термин «эксплуатационные ресурсы» применяется при прогнозных оценках в региональном плане, как характеристика потенциальных возможностей эксплуатации подземных вод в том или ином крупном регионе.

С учетом их восполнения выделяют восполняемые запасы (при условии поступления ресурсов) и невосполняемые (при отсутствии источников их формирования). К последним принадлежат, так называемые, геологические запасы подземных вод, равные объему воды в горизонте.

Как и ресурсы, запасы с учетом площади их распространения, подразделяются на региональные и локальные, а на основе генетических признаков - на естественные и искусственные (накапливаются с участием антропогенного воздействия). Если запасы определенного горизонта восполняются частично за счет притока воды из других водоносных объектов, то поступающее из них количество воды относят к привлекаемым запасам.

Особую группу составляют эксплуатационные запасы, которые могут быть извлечены или извлекаются из эксплуатируемых водоносных объектов, прежде всего, из месторождений подземных вод с соблюдением природоохранных мероприятий (7). Как правило, эксплуатационные запасы приурочены к месторождениям подземных вод, обеспечивающим экономически обоснованную их добычу. Степень сложности этих месторождений (или их участков) различна. В связи с этим они подразделяются на три группы.

К первой из них приурочены эксплуатационные запасы месторождений подземных вод с простыми условиями. На площади их распространения водоносные горизонты (подразделения) выдержаны по площади и строению, однородны по фильтрационным свойствам, обеспечены питанием (ресурсами) и характеризуются устойчивым кондиционным химическим составом.

Вторая группа месторождений подземных вод характеризуется сложным строением, а также сложными гидрогеохимическими и геотермическими условиями. При этом, однако, представляется возможным оценить изменения различных компонентов природной среды, применяя в ограниченных объемах специальные технологии при разведке и освоении запасов.

В третью группу входят эксплуатационные запасы месторождений с очень сложными условиями, характеризующимися невыдержанным геологическим строением, крайней изменчивостью мощностей и фильтрационных свойств водовмещающих пород, а также сложными гидрогеохимическими и геотермическими условиями. Проведение разведочных работ на таких месторождениях требует применения специальных дорогостоящих технологий, реализация которых на стадии разведки может быть технически неосуществима или экономически нецелесообразна.

Эксплуатационные запасы подразделяются на категории (А, В, С1, С2) по степени изученности условий формирования, количества и качества подземных вод, а также условий эксплуатации и подготовленности месторождений подземных вод к дальнейшему изучению или освоению.

По условиям освоения, хозяйственному и экономическому значению эксплуатационные запасы подразделяются на балансовые и забалансовые. К первой из этих групп относятся запасы, целесообразность использования которых установлена на основе всех геолого-экономических и санитарно-гигиенических факторов, учитываемых действующими инструктивными документами. Возможность их использования должна быть подтверждена соответствующими федеральными или территориальными органами. К забалансовым относятся запасы, использование которых на период оценки не может быть признано целесообразным по ряду причин (технико-экономическим, технологическим, экологическим).

Геологическая деятельность подземных вод

Подземные воды формируются в основном из вод атмосферных осадков, выпадающих на земную поверхность и просачивающихся (инфильтрующих) в землю на некоторую глубину, из вод, болот, рек, озер и водохранилищ, также просачивающихся в землю...

Загрязнение и охрана подземных вод

подземный вода загрязнение бактериальный Охрана подземных вод как комплексная проблема имеет два основных направления: охрану подземных вод как полезного ископаемого на эксплуатирующихся или разведываемых месторождениях подземных вод и...

Все воды, находящиеся в порах и трещинах горных пород ниже поверхности Земли, относятся к подземным водам. Часть этих вод свободно перемещается в верхней части земной коры под действием гравитационных сил...

Инженерная геология для строительства

Закон Дарси -- закон фильтрации жидкостей и газов в пористой среде. Получен экспериментально. Выражает зависимость скорости фильтрации флюида от градиента напора: где: -- скорость фильтрации, K -- коэффициент фильтрации, -- градиент напора...

Оптимизация работы установок электроцентробежных насосов на Первомайском нефтяном месторождении

Запасы нефти месторождений Васюганского района по степени своей изученности относятся к категориям В, С1 и С2...

Особенности строения и подсчет запасов шахтного поля в Южно-Донбасском угленосном районе Донецкого бассейна

Результаты подсчёта запасов, произведённых по состоянию на 1956 г. приводится в табл. Приведенный подсчёт базировался только на данных поисковой разведки и прогнозной региональной оценки...

Оценка гидрогеологических и инженерно-геологических условий Стойленского месторождения

4.3.1 Движение подземных вод в напорном пласте Рассчитаем приток воды НВГ в подземную выработку шириной В=100м, находящуюся между скважинами и и вскрывающую водоносный пласт трещиноватых известняков на всю его мощность т...

Оценка эксплуатационных запасов подземных вод при наличии привлекаемых естественных ресурсов

Практическое значение и охрана подземных вод

Охрана подземных вод -- это система мер, направленных на предотвращение и устранение последствий загрязнения и истощения вод; при этом ставится цель сохранить такое качество и количество вод...

Применение технологии солянокислотной обработки установок ЭЦН на Мишкинском месторождении

Подсчет запасов нефти выполнен трестом "Удмуртнефтеразведка" по состоянию на 15.10.69 г. Результаты подсчета утверждены ГКЗ СССР (протокол № 5942 от 10.04.70 г.)...

Прогнозирование показателей разработки месторождения

Запасы VII и VIIа горизонтов были утверждены ГКЗ в 1970 г. (VII горизонт - 1647 млн. м3 и VIIа горизонт - 1023 млн. м3 категории С1) и с тех пор не пересматривались. Позднее пробуренные скважины...

Расчет динамики подземных вод

Для определения направления движения подземных вод используют карты гидроизогипс, на которых в виде изолиний показан «рельеф» зеркала грунтовых вод. Перпендикуляры к гидроизогипсам, направленные в сторону снижения отметок...

Сравнительная характеристика подземных вод Подпорожского и Осташковского водоносных горизонтов, как потенциального источника водоснабжения северного района г. Полярные Зори

Нормативные требования к качеству питьевых вод, которые подаются населению определяются СанПиН 2.1.4.1074-01 (централизованное водоснабжение) и СанПиН 2.1.4.1175-02 (нецентрализованное водоснабжение). Согласно ГОСТ 2761-84...

Строение подземной гидросферы

В настоящее время выделяют по происхождению следующие типы подземных вод: 1) инфильтрационные, образующиеся от просачивания в породы атмосферных и поверхностных вод; 2) конденсационные...

Штокманское месторождение

По разведанным запасам природного газа Штокмановское месторождение на сегодняшний день является одним из крупнейших в мире. Геологические запасы месторождения составляют 3,9 трлн м3газа и около 56 млн т газового конденсата Шишлов Э.В., Мурзин Р...

- Химический состав подземных вод. - Минеральные воды. - Происхождение подземных вод. Образование подземных вод. - Добыча подземных вод. Лицензия на подземные воды.

Подземные воды – запасы подземных вод, ресурсы подземных вод.

Подземные воды являются частью гидросферы планеты (2 % от объема) и участвуют в общем круговороте воды в природе. Запасы подземных вод еще до конца не разведаны. Сейчас в официальных данных фигурирует цифра в 60 млн кубических километров, но гидрогеологи уверены в том, что в недрах Земли находятся колоссальные неразведанные месторождения подземных вод и общее количество воды в них может исчисляться сотнями миллионами кубометров.

Подземные воды встречаются в буровых скважинах на глубине до нескольких километров. В зависимости от условий, в которых залегают подземные воды (таких как температура, давление, виды горных пород и т.п.), они могут быть в твердом, жидком и газообразном состоянии. По данным В.И. Вернадского, подземные воды могут существовать до глубины 60 км в связи с тем, что молекулы воды даже при температуре 2000 о С диссоциированы всего на 2%.

  • О запасах подземной воды читайте: Океаны воды под землей. Сколько же воды на Земле?

При оценке подземных вод, кроме понятия «запасы подземных вод» используется термин «ресурсы подземных вод», характеризующий питание водоносного горизонта.

Классификация запасов и ресурсов подземных вод:

1. Естественные запасы – объем гравитационной воды, заключенной в порах и трещинах водовмещающих пород. Естественные ресурсы – количество подземных вод, поступающих в водоносный горизонт в естественных условиях путем инфильтрации атмосферных осадков, фильтрации из рек , перетекания из выше- и нижерасположенных водоносных горизонтов.

2. Искусственные запасы - это объем подземных вод в пласте, сформировавшийся в результате орошения, фильтрации из водохранилищ, искусственного пополнения подземных вод. Искусственные ресурсы – это расход воды, поступающей в водоносный горизонт при фильтрации из каналов и водохранилищ, на орошаемых площадях.

3. Привлекаемые ресурсы – это расход воды, поступающей в водоносный пласт при усилении питания подземных вод, вызванном эксплуатацией водозаборных сооружений.

4. Понятия эксплуатационные запасы и эксплуатационные ресурсы являются, в сущности, синонимами. Под ними понимается то количество подземных вод, которое может быть получено рациональными в технико-экономическом отношении водозаборными сооружениями при заданном режиме эксплуатации и при качестве воды, удовлетворяющем требованиям в течение всего расчетного срока водопотребления.

По степени общей минерализации выделяют воды (по В.И. Вернадскому):

  • пресные (до 1 г/л),
  • соло­новатые (1 -10 г/л),
  • соленые (10-50 г/л),
  • рассолы (более 50 г/л) - в ряде классификаций принято значение 36 г/л, соответствующее средней солёности вод Мирового океана.

В бассейнах Восточно-Европейской платформы мощность зоны пресных подземных вод варьирует от 25 до 350 м, солёных вод - от 50 до 600 м, рассолов - от 400 до 3000 м.

Приведенная классификация указывает на значительные изменения в минерализации воды – от десятков миллиграммов до сотен граммов на 1 литр воды. Максимальная величина минерализации, достигающая 500 – 600 г/л, встречена в последнее время в Иркутском бассейне.

Более подробно о химическом составе подземных вод, химических свойствах подземных вод, классификации по химическому составу, факторах, влияющих на химический состав подземных вод, и других аспектах читайте в отдельной статье: Химический состав подземных вод.

Подземные воды - происхождение и образование подземных вод.

В зависимости от происхождения подземные воды бывают:

  • 1) инфильтрационные,
  • 2) конденсационные,
  • 3) седиментогенные,
  • 4) «ювенильные» (или магмогенные),
  • 5) искусственные,
  • 6) метаморфогенные.

Подземные воды - температура подземных вод.

По температуре подземные воды подразделяются на холодные (до +20 °С) и термальные (от +20 до +1000 °С). Термальные воды обычно отличаются высоким содержанием различных солей, кислот, металлов, радиоактивных и редкоземельных элементов.

По температуре подземные воды бывают:

Холодные подземные воды подразделяются на:

  • переохлажденные (ниже 0°С),
  • хо­лодные (от 0 до 20 °С)

Термальные подземные воды подразделяются на:

  • теплые (20 – 37 °С),
  • горячие (37 – 50 °С),
  • очень горячие (50 – 100 °С),
  • перегретые (свыше 100 °С).

Температура подземных вод зависит также и от глубины залегания водоносных пластов:

1. Грунтовые воды и неглубоко залегающие межпластовые воды испытывают сезонные колебания температуры.
2. Подземные воды, залегающие на уровне пояса постоянных температур , сохраняют неизменную температуру в течение всего года, равную среднегодовой температуре местности.

  • Там, где средние годовые температуры отрицательные , подземные воды в поясе постоянных температур круглый год находится в виде льда. Так образуется многолетняя мерзлота («вечная мерзлота»).
  • В районах, где среднегодовая температура положительная , подземные воды пояса постоянных температур, наоборот, не замерзают даже зимой.

3. Подземные воды, циркулирующие ниже пояса постоянной температуры , нагреты выше среднегодовой температуры местности и за счёт эндогенного тепла. Температура вод в данном случае определяется величиной геотермического градиента и достигает максимальных значений в областях современного вулканизма (Камчатка, Исландия и др.), в зонах срединно-океанических хребтов, достигая температур 300-4000С. Высокотермальные подземные воды в районах современного вулканизма (Исландия, Камчат­ка) используются для отопления жилищ, стро­ительства геотермальных электростанций, теп­личного теплоснабжения и т. д.

Подземные воды - методы поиска подземных вод.

  • геоморфологическая оценка местности,
  • геотермические исследования,
  • радонометрия,
  • бурение разведочных скважин,
  • изучение керна, извлечённого из скважин, в лабораторных условиях,
  • опытные откачки из скважин,
  • наземная разведочная геофизика (сейсморазведка и электроразведка) и каротаж скважин

Подземные воды – добыча подземных вод.

Важной особенностью подземных вод как полезного ископаемого является непрерывный характер водопотребления, что вызывает необходимость постоянного отбора воды из недр в заданном количестве.

При определении целесообразности и рациональности добычи подземных вод учитываются следующие факторы:

  • Общие запасы подземных вод,
  • Ежегодное поступление воды в водоносные горизонты,
  • Фильтрационные свойства водовмещающих пород,
  • Глубина залегания уровня,
  • Технические условия эксплуатации.

Таким образом, даже при условии больших запасов подземной воды и значительном ежегодном ее поступлении в водоносные горизонты, добыча подземных вод не всегда является рациональной с экономической точки зрения.

Например, нерациональным будет добыча подземных вод в следующих случаях:

  • очень маленькие дебиты скважин;
  • сложность эксплуатации в техническом отношении (пескование, солеотложение в скважинах и др.);
  • отсутствие необходимого насосного оборудования (например, при эксплуатации агрессивных промышленных или термальных вод).

Высокотермальные подземные воды в районах современного вулканизма (Исландия, Камчат­ка) используются для отопления жилищ, стро­ительства геотермальных электростанций, теп­личного теплоснабжения и т. д.

В этой статье мы рассмотрели тему Подземные воды: общая характеристика. Далее читайте: История изучения подземных вод.

Подземные воды являются полезным ископаемым, запасы которого в отличие от других видов полезных ископаемых возобновимы в процессе эксплуатации. Площади водоносных горизонтов и их комплексов, в пределах которых имеются условия для отбора подземных вод определённого состава, отвечающего установленным кондициям, в количестве, достаточном для экономически целесообразного их использования, называется месторождениями подземных вод. По характеру использования подземные воды подразделяются на 4 вида: питьевые и технические, применяемые для хозяйственно-питьевого и производственно-технического водоснабжения, орошения земель и обводнения пастбищ; лечебные минеральные воды, используемые в бальнеологических целях и в качестве столовых напитков; теплоэнергетические (включая пароводяные смеси) - для теплоснабжения промышленных, сельскохозяйственных и гражданских объектов, а в отдельных случаях - и для выработки электроэнергии; промышленные воды - для извлечения из них ценных компонентов. В ряде случаев подземные воды одновременно являются минеральными и теплоэнергетическими, промышленными и теплоэнергетическими, в связи с чем они рассматриваются как комплексное полезное ископаемое. Месторождения пресных и солоноватых вод, используемых для хозяйственно-питьевого водоснабжения и орошения, подразделяются на основные типы: месторождения речных долин, артезианских бассейнов, конусов выноса предгорных шлейфов и межгорных впадин, ограниченных по площади структур или массивов трещинных и трещинно-карстовых пород, тектонических нарушений, песчаных массивов пустынь и полупустынь, надморенных и межморенных водоледниковых отложений, областей развития многолетнемёрзлых пород.

При оценке возможности использования подземных вод производится подсчёт эксплуатационных запасов подземных вод. Эти данные используются при разработке схем развития народного хозяйства, составлении годовых, пятилетних и долгосрочных государственных планов экономического и социального развития, планировании геологоразведочных работ, а по месторождениям - для проектирования водозаборных сооружений и предприятий, добывающих и использующих подземные воды. Различают также прогнозные ресурсы подземных вод, наличие которых предполагается на основе общих гидрогеологических представлений, теоретических предпосылок, результатов геологического и гидрогеологического картирования, геофизических, гидрохимических, гидрологических и воднобалансовых исследований. Они оцениваются в границах артезианских бассейнов, гидрогеологических массивов и районов и отражают их потенциальные эксплуатационные возможности.

Запасы подземных вод - количество воды, содержащееся в водоносном горизонте в естественных условиях или поступающее в него в результате проведения водохозяйственных мероприятий. Под термином " запасы подземных вод" часто понимают также то количество воды, которое может быть использовано. Существует ряд классификаций запасов подземных вод для оценки количества подземных вод. В большинстве из них различают понятия "ресурсы" и "запасы". Термином "запасы" обычно обозначают объём (массу) подземных вод в водоносном горизонте, термином "ресурсы" - расход подземных вод в единицу времени. Выделяют естественные и упругие запасы. Естественные (называемые также статическими, геологическими, вековыми или ёмкостными) запасы подземных вод характеризуют в объёмных единицах общее количество воды в водоносном пласте, упругие запасы - количество воды, высвобождающееся при вскрытии водоносного пласта и снижении пластового давления в нём при откачке или самоизливе за счёт объёмного расширения воды и уменьшения порового пространства самого пласта.

В практике гидрогеологических исследований обычно производят оценку естественных и эксплуатационных ресурсов подземных вод. Естественные ресурсы (или динамические запасы) характеризуют величину питания подземных вод за счёт инфильтрации атмосферных осадков, поглощения речного стока и перетекания из других водоносных горизонтов, суммарно выраженную величиной расхода потока или толщиной слоя воды, поступающего в подземные воды. Среднемноголетняя величина питания подземных вод, за вычетом испарения, равна величине подземного стока, поэтому при региональных оценках естественные ресурсы подземных вод часто выражаются cpеднегодовыми и минимальными значениями модулей подземного стока.

Эксплуатационные запасы подземных вод (ресурсы) - количество воды, которое может добываться в единицу времени из водоносного горизонта рациональным в технико-экономическом отношении водозабором при заданном режиме эксплуатации и при качестве воды, удовлетворяющем требованиям в течение всего расчётного периода эксплуатации. Эксплуатационные запасы (ресурсы) являются одним из основных критериев возможности и целесообразности использования подземных вод для различных целей. При этом, по сложившейся традиции, при региональных оценках обычно пользуются термином "эксплуатационные ресурсы", а при оценках для водоснабжения конкретных объектов - "эксплуатационных запасы". При оценке эксплуатационных запасов (ресурсов) учитывается возможность использования естественных (в том числе упругих) запасов, естественных ресурсов, а также привлекаемых (дополнительных) ресурсов, образующихся непосредственно вследствие эксплуатации водозаборов (привлечение поверхностных вод, подземных вод "непродуктивных" горизонтов и т.п.).

Важным источником формирования эксплуатационных запасов могут служить искусственные запасы и ресурсы, создаваемые за счёт закачивания поверхностных вод в природные подземные ёмкости с помощью специальных сооружений, фильтрационных потерь из водохранилищ и каналов, инфильтрации поливных вод на орошаемых массивах и т.п. Ресурсы (запасы) пресных подземных вод определяют на локальных участках с целью водоснабжения конкретных объектов (городов, предприятий) и больших территории, для которых даётся региональная оценка естественных и эксплуатационных ресурсов с целью перспективного планирования возможностей использования подземных вод. Оценка эксплуатационных запасов подземных вод на локальных участках проводится на основании специальных разведочных гидрогеологических работ или данных эксплуатации действующих водозаборов применительно к выделенным месторождениям подземных вод или их отдельным участкам.

Эксплуатационные запасы подземных вод в зависимости от степени разведанности месторождений, изученности качества вод и условий эксплуатации подразделяются на 4 категории - А, В, С1 и С2. К категории А относятся запасы, разведанные и изученные с детальностью, обеспечивающей полное выяснение условий залегания, строения, величин напора и фильтрационных свойств водоносных горизонтов, условий их питания, возможностей восполнения эксплуатационных запасов, установление связи водоносных горизонтов между собой и с поверхностными водами, изучение качества подземных вод с достоверностью, подтверждающей возможность их использования по заданному назначению на расчётный срок водопотребления. Эксплуатационные запасы подземных вод категории А определяются по данным эксплуатации, опытно-эксплуатационных или опытных откачек применительно к намеченной схеме расположения каптажных сооружений. В современной практике при определении запасов категории А допускается расчётная экстраполяция результатов эксплуатации и опытных данных.

К категории В относятся запасы, разведанные и изученные с детальностью, обеспечивающей выяснение основных особенностей условий залегания, строения и питания водоносных горизонтов, установление связи подземных вод (запасы которых оцениваются) с другими водоносными горизонтами и с поверхностными водами, определение приблизительного количества естественных водных ресурсов как возможных источников восполнения эксплуатационных запасов подземных вод. Качество подземных вод должно быть изучено с такой же детальностью, как и для запасов категории А. Эксплуатационные запасы категории В определяют в пределах детально изученного участка по данным опытных откачек или по расчётной экстраполяции применительно к намеченной схеме водозабора.

Запасы категории С1 изучаются с детальностью, обеспечивающей выяснение в общих чертах строения, условий залегания и распространения водоносных горизонтов. Качество подземных вод изучается в той мере, чтобы можно было предварительно решить вопрос о возможности их использования по заданному назначению. Запасы оцениваются по данным пробных откачек из единичных скважин, а также по аналогии со сходными районами.

К категории С2 относятся запасы, установленные на основании общих геолого-гидрогеологических данных, подтверждённых опробованием водоносного горизонта в отдельных точках, или по аналогии. Качество подземных вод также определяется по пробам, взятым в отдельных точках водоносного горизонта, или по аналогии. Эксплуатационные запасы категории С2 оцениваются в пределах водоносных комплексов и выявленных благоприятных структур

Запасы подземных вод

количество, объём (масса) подземных вод, содержащихся в водоносном горизонте. Различают статические (естественные, ёмкостные, вековые) З. п. в., которые характеризуют общее количество воды в водоносном пласте и выражаются в объёмных единицах, и упругие З. п. в., под которыми понимается количество воды, высвобождающееся при вскрытии водоносного пласта и снижении пластового давления в нём (при откачке или самоизливе) за счёт объёмного расширения воды и уменьшения пористости самого пласта.

В практике гидрогеологических исследований для целей водоснабжения обычно производят оценку естественных и эксплуатационных ресурсов подземных вод. Под естественными ресурсами (динамическими запасами) понимается (по Б. И. Куделину) обеспеченный питанием расход подземного потока. Естественные ресурсы подземных вод непрерывно возобновляются в процессе влагооборота на Земле и в среднемноголетнем разрезе эквивалентны подземному стоку. Они характеризуют естественную производительность водоносных горизонтов. Эксплуатационные ресурсы соответствуют количеству воды, которое может добываться в единицу времени из водоносного пласта рациональным в технико-экономическом отношении водозабором, без прогрессирующего снижения производительности и динамических уровней и ухудшения качества воды в течение всего периода эксплуатации. При оценке эксплуатационных ресурсов учитывается возможность использования статических и упругих запасов, притока вод со стороны и др. факторы.

В СССР проводится определение эксплуатационных ресурсов подземных вод для конкретных потребителей (города, завода и пр.) и оценка естественных и эксплуатационных ресурсов подземных вод крупных территорий и страны в целом (региональная оценка).

З. п. в. оцениваются по категориям А, В, C 1 и С 2 , утверждаемым Государственной Комиссией по запасам полезных ископаемых (ГКЗ). К категории А принадлежат З. п. в., разведанные и изученные с детальностью, обеспечивающей полное выяснение геологического строения, условий залегания и питания водоносных горизонтов, напоров, фильтрационных свойств, связи используемых вод с водами др. водоносных горизонтов и поверхностными водами, а также возможность восполнения эксплуатационных запасов. Категория В включает запасы, разведанные и изученные с детальностью, обеспечивающей выяснение лишь основных особенностей залегания, строения и питания водоносных горизонтов. При определении З. п. в. категории C 1 выясняются только общие черты строения, условий залегания и распространения водоносного горизонта. Запасы категории 02 устанавливаются на основании общих геолого-гидрогеологических данных, подтвержденных опробованием водоносных горизонтов в отдельных точках, либо по аналогии с изученными или разведанными участками.

Лит.: Биндеман Н. Н., Оценка эксплуатационных запасов подземных вод, М., 1963; Бочевер Ф. М., Теория и практические методы гидрогеологических расчетов эксплуатационных запасов подземных вод, М., 1968; Карта модулей прогнозных эксплуатационных ресурсов пресных и солоноватых подземных вод СССР масштаба 1: 5 000 000, М., 1964; Карта подземного стока СССР масштаба 1: 5 000 000, М., 1964; Куделин Б. И., Принципы региональной оценки естественных ресурсов подземных вод, М., 1960; Справочное руководство гидрогеолога, под ред. В. М. Максимова, 2 изд., т. 1, Л., 1967.

И. С. Зекцер.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Запасы подземных вод" в других словарях:

    Количество гравитационной воды, которое находится в порах, пустотах и трещинах водоносных г. п. Различают: З. п. в. геол., вековые, общие, статические, динамические, эксплуатационные, возобновляемые, невозобновляемые, упругие, регулировочные,… … Геологическая энциклопедия

    запасы подземных вод - Общий объем воды в месторождении подземных вод … Словарь по географии

    ЗАПАСЫ ПОДЗЕМНЫХ ВОД - См. Ресурсы подземных вод … Словарь по гидрогеологии и инженерной геологии

    Равны естественному расходу потока подземных вод; их определяют по формулам расхода подземного потока или косвенно по величине питания подземных вод. Син.: запасы подземных вод возобновляемые. Геологический словарь: в 2 х томах. М.: Недра. Под… … Геологическая энциклопедия

    Объем подземных вод, участвующих в подземном стоке и заполняющих поровое пространство зоны насыщения литосферы; включают все формы подземных вод, кроме прочно связанной. Различаются запасы динамические, статические, упругие. Геологический словарь … Геологическая энциклопедия

    Суммарные статические и динамические запасы подземных вод. См. Ресурсы подземных вод естественные. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    Запасы напорных вод, высвобождающихся при вскрытии водоносного пласта и снижении пластового давления в нем при откачке (или самоизливе) за счет объемного расширения воды и уменьшения порового пространства самого пласта, в связи с уменьшением… … Геологическая энциклопедия

Санкт- Петербургский государственный университет

Факультет географии и геоэкологии

Ресурсы подземных вод

Студентки II курса

Кафедры геоэкологии и

природопользования

Губогло Н.В.

Санкт- Петербург

Подземные воды.

Подземные воды – ценный природный ресурс, который используют в различных областях человеческой деятельности. Загрязнение поверхностных вод стало причиной увеличения интереса к возможности использования подземных месторождений вод, к которым относится скопление воды определенного качества, которое можно извлекать для водоснабжения различных объектов в нужном количестве и в течение заданного срока эксплуатации.

Выделяют воды используемые для:

    Воды питьевого и хозяйственного водоснабжения

Распределение ресурсов пресных подземных вод в недрах земли подчиняется широтной зональности. Особенно эффективным фактором является климат. В районах с гумидным климатом пресных вод чаще всего бывает достаточно для хозяйственно- питьевого водоснабжения или наблюдается их избыток, в то время как в аридных или полуаридных областях пресных подземных вод не хватает.

Большое значение в распространении пресных подземных вод имеет геологическое строение территории. Наибольшими их запасами обладают предгорные и межгорные впадины, в особенности аллювиальные отложения в их пределах, а также конусы выноса и предгорные шлейфы, сложенные преимущественно песчано-галечным материалом, где модули стока достигают нескольких десятков литров в секунду с 1 квадратного километра. Весьма значительны ресурсы пресных подземных вод в артезианских бассейнах платформенного типа, находящихся в гумидной зоне.

    Минеральные подземные воды

В настоящее время минеральными лечебными водами принято считать только те воды, использование которых возможно в бальнеологических или питьевых целях. Современная медицина насчитывает несколько десятков типов лечебных минеральных вод, каждый из которых может формироваться только в определенных гидрогеологических условиях и определенной физико-химической обстановке. При этом все лечебные воды подразделяются на две группы: питьевые (лечебные и лечебно- столовые) и бальнеологические (наружное применение: ванны, душ и т. д.).

    Промышленные подземные воды

Промышленные подземные воды - это воды, из которых можно извлекать промышленно ценные компоненты; такие воды можно назвать жидкими рудами. В настоящее время из подземных вод извлекают большую часть мировых запасов брома и йода. Кроме того, из подземных вод можно извлекать каменную соль, соду, бор, литий, цезий, рубидий, стронций, радий и ряд других компонентов.

    Гидротермальные ресурсы

Ресурсы подземных вод в Российской Федерации.

Прогнозированные ресурсы подземных вод составляют более 869 млн. м3/сут и в основном формируются в бассейнах Волги (116,46 млн. м3/сут) и Оби (282, 35 млн. м3/сут) - около 46% от общего количества по России. Свыше 77% (670 млн. м3/сут) сосредоточено в Северо-Западном, Уральском, Сибирском и Дальневосточном федеральных округах, при этом наибольшая часть (29%) - на территории Сибирского федерального округа.

На территории Российской Федерации разведано 4483 месторождения подземных вод, в эксплуатации находится 1990. Общее количество разведанных эксплуатационных запасов подземных вод, пригодных для хозяйственно-питьевого, производственно-технического водоснабжения, орошения земель и обводнения пастбищ составляет 89,4 млн. м3/сут, в том числе подготовленных для промышленного освоения (по категориям А+В+С1) - 80,4 млн. м3/сут. Общая добыча подземных вод составляет 28,15 млн. м3/сут, в том числе на участках с разведанными запасами - 15,32 млн. м3/сут, или 54,4%, на неутвержденных запасах подземных вод - 12,83 млн. м3/сут.

Наибольшим количеством разведанных месторождений и эксплуатационных запасов подземных вод располагает Центральный федеральный округ - 1119 (25%) и 26,12 млн. м3/сут (29%) соответственно. По федеральным округам (рис. 1.1) количество разведанных месторождений варьирует от 416 (Северо-Западный) до 749 млн. м3/сут (Сибирский федеральный округ), эксплуатационные запасы - от 4,5 (Северо-Западный) до 15,9 млн. м3/сут (Приволжский федеральный округ).

Наибольшим количеством разведанных запасов подземных вод располагают, млн. м3/сут: Московская область - 8,67; Краснодарский край - 4,39; Самарская область - 2,82; Нижегородская область - 2,67; Республика Башкортостан - 2,43; Алтайский край - 2,28; Иркутская область - 2,05; Оренбургская область - 1,98; Хабаровский край - 1,84; Владимирская область - 1,83; Ставропольский край - 1,81; Кемеровская область - 1,70; Воронежская область - 1,68; Новосибирская область - 1,66; Красноярский край - 1,65; Республика Северная Осетия - Алания - 1,62; Волгоградская область - 1,52. Суммарная величина запасов по этим 17 субъектам Российской Федерации составляет 42,60 млн. м3/сут, или 47,7% от общего по России.

Наибольшее количество запасов подземных вод разведано в бассейнах, млн. м3/сут: Волги - 33,03, Оби - 10,77, Дона - 7,68, Енисея - 5,13, Амура - 4,91 и Кубани - 3,32 (табл. 1.6). Суммарная величина разведанных эксплуатационных запасов по 7 этим речным бассейнам составляет 64,84 млн. м3/сут (72,5%).

Таблица 1. Прогнозные ресурсы и эксплуатационные запасы подземных вод Российской Федерации по речным бассейнам

При оценке обеспеченности населения ресурсами подземных вод по условиям их защищенности выделены:

    надежно защищенные (напорные водоносные горизонты, перекрытые выдержанны ми слабопроницаемыми отложениями, на участках, расположенных вне зон селитебной застройки и промышленных зон);

    защищенные (напорные горизонты на участках в пределах указанных выше зон и без напорные горизонты при мощности зоны аэрации более 8-10 м и наличии в ее составе слабопроницаемых прослоев мощностью не менее 3 м);

    практически незащищенные (безнапорные горизонты с небольшой мощностью зоны аэрации, а также водоносные горизонты, эксплуатируемые инфильтрационными водозаборами при непосредственной взаимосвязи поверхностных и подземных вод).

Наибольшее количество - около 40% - составляют защищенные месторождения. Практически не защищено около 37% месторождений, причем в ряде регионов (Мурманская, Ленинградская, Ивановская, Воронежская, Липецкая, Белгородская, Волгоградская, Самарская, Ростовская, Оренбургская, Свердловская области, республики Башкортостан, Бурятия, Хакасия, Приморский край) они преобладают. Однако даже на месторождениях, относящихся к этой категории, защищенность подземных вод, как правило, значительно выше, чем поверхностных, что существенно повышает их ценность, особенно в чрезвычайных ситуациях.

Большинство административных районов субъектов Российской Федерации относятся к обеспеченным и надежно обеспеченным подземными водами. Это означает, что все потребители (в том числе и крупные) могут быть обеспечены ресурсами подземных вод, формирующимися на территории района.

В то же время, в связи с неравномерностью распределения прогнозных ресурсов, отсутствием на отдельных площадях подземных вод кондиционного качества, в ряде субъектов выделяются недостаточно обеспеченные районы, где за счет местных ресурсов подземных вод не могут быть удовлетворены потребности рассредоточенных водопотребителей. Больше всего таких районов находится в республиках Калмыкия, Дагестан, Якутия и Удмуртской, в Ростовской, Астраханской, Волгоградской, Саратовской, Новосибирской, Омской, Тюменской, Ленинградской и Новгородской областях, Ставропольском крае и некоторых других субъектах Российской Федерации.

В ряде административных районов при полном удовлетворении рассредоточенных водопотребителей выделяются отдельные крупные водопотребители, не обеспеченные местными ресурсами подземных вод. К таким территориям относятся центральные и восточные районы Московской области, отдельные районы Владимирской, Ивановской, Тульской, Ярославской, Тамбовской, Новосибирской, Омской, Мурманской, Ульяновской, Челябинской, Свердловской, Иркутской, Курганской, Сахалинской областей, Ненецкого автономного округа, Ставропольского края, республик Карелия, Коми, Чувашской и некоторые другие.

С точки зрения использования подземных вод для питьевого водоснабжения на территории России выделяются три группы районов, отличающихся различным качеством вод:

    районы, в гидрогеологическом разрезе которых выделяются водоносные горизонты с пресными водами, качество которых по макро и микрокомпонентному составу в естественных условиях полностью отвечают требованиям, установленным для питьевых вод;

    районы, где содержание каких-либо микрокомпонентов в пресных подземных водах отдельных водоносных горизонтов превышает установленные предельно допустимые концентрации; на территории России выделено несколько гидрогеохимических провинций, подземные воды которых характеризуются повышенным содержанием таких нормируемых компонентов, как железо, фтор, стабильный стронций, селен, реже с повышенным содержанием марганца, мышьяка, бериллия; на отдельных участках отмечается повышение содержания бора, брома, кадмия, лития;

    районы практического отсутствия пресных подземных вод, где распространены подземные воды повышенной минерализации, либо районы, в которых при минерализации, не превышающей установленные требования, подземные воды характеризуются повышенным содержанием хлоридов, сульфатов, а также повышенной общей жесткостью.

Повышенное содержание в подземных водах железа, марганца либо повышенная минерализация и общая жесткость, а также пониженное содержание фтора в целом не являются препятствием к использованию таких вод, так как с применением хорошо разработанных методов водоподготовки качество воды может быть доведено до требуемой кондиции. В то же время для ряда микрокомпонентов подобная технология не разработана.

Россия обладает огромной ресурсной базой питьевых и технических подземных вод, в том числе значительной величиной разведанных запасов: ресурсный потенциал оценивается в 869 млн.м3/сут (316 км3/год), разведанные запасы - 89,9 млн.м3/сут, количество разведанных и включенных в государственный учет месторождений подземных вод - 4624.

Фактически введено в эксплуатацию (полностью или частично) - 2142 месторождений, добыча питьевых подземных вод на которых составляет 14,6 млн.м3/сут. Степень использования разведанных запасов в среднем составляет 16-18 %, а на введенных в эксплуатацию месторождениях - 30-32 %.

Вместе с тем, при низком уровне использования разведанных запасов подземных вод для хозяйственно-питьевого водоснабжения в значительных масштабах осуществляется добыча подземных вод водозаборами, созданными на участках, где не производились разведочные работы, не осуществлялся подсчет эксплуатационных запасов, их государственная экспертиза и постановка на госучет (баланс). В целом на территории Российской Федерации действует около 2300 групповых водозаборов с водоотбором более 1 тыс.м3/сут, из которых (совместно с отбором из одиночных скважин) суммарная добыча составляет 12,5 млн.м3/сут, что соизмеримо с водоотбором на участках с разведанными запасами.

Общая добыча подземных вод составляет 31,1 млн.м3/сут, из них 19,5 млн.м3/сут используется на хозяйственно-питьевое водоснабжение населения; 5,6 млн.м3/сут - на производственно-техническое водоснабжение; 0,55 млн.м3/сут - на орошение земель. Величина потерь и сброса вод без использования составляет 5,5 млн.м3/сут и, в основном, приходится на шахтный и карьерный водоотливы.

В пределах федеральных округов больше всего разведано запасов подземных вод (в млн.м3/сут): в Центральном - 26,57; Приволжском - 15,87; Южном - 15,39 и Сибирском - 14,93. В этих четырех округах сосредоточено 72,76 млн.м3/сут или 81 % от всех запасов Российской Федерации.

Наибольшее количество подземных вод добывается и извлекается в пределах Центрального федерального округа - 9,68 млн.м3/сут или 31 % от общей величины по Российской Федерации, от 14 до 18 % приходится на долю трех округов: Сибирского - 5,37 (17 %), Приволжского - 5,68 (18 %) и Южного - 4,39 (14 %). По остальным трем округам суммарная величина добычи и извлечения подземных вод составляет 6,02 м3/сут или 19 % от общего количества по России.

Основная часть подземных вод используется на хозяйственно-питьевое водоснабжение. Самое крупное потребление на хозяйственно-питьевые цели отмечается (млн.м3/сут) в Центральном - 6,83; Приволжском - 3,86; Южном - 2,98 и Сибирском - 2,95 федеральных округах. В этих четырех округах на хозяйственно-питьевое водоснабжение населения используется 16,62 млн.м3/сут или 85,2 %.

Больше всего расходуются подземные воды на производственно-техническое водоснабжение (млн.м3/сут) в Центральном - 2,04; Приволжском - 1,15 и Сибирском - 0,91 федеральных округах. Суммарный расход по этим трем округам равен 4,10 млн.м3/сут или 73,6 % от общей величины использования на эти нужды по Российской Федерации.

На орошение земель наибольшее количество подземных вод используется в Сибирском федеральном округе - 325,5 тыс.м3/сут.

Необходимо отметить, что не по всем месторождениям качество подземных вод отвечает современным требованиям государственных стандартов хотя бы по одному показателю. Так, признаки несоответствия качества подземных вод отмечены в 62 % разрабатываемых и 51 % не разрабатываемых месторождениях, а также в 50 % водозаборах, расположенных на участках с неоцененными запасами. При этом в 83-90 % такое несоответствие связано с природными условиями формирования качества подземных вод и примерно в 24 % - с техногенным их загрязнением. Поэтому на 445 водозаборах, сооруженных на месторождениях, и 15 водозаборах, расположенных на участках с неоцененными запасами, производится специальная водоподготовка.

Загрязнение подземных вод, в основном первого от поверхности водоносного горизонта, не являющегося в большинстве случаев источником централизованного водоснабжения, происходит на территории расположения накопителей отходов и сточных вод, нефтепромыслов, нефтебаз, складов горючесмазочных материалов на промплощадках, в районах крупных свалок твердых бытовых отходов. Участки с таким типом загрязнения выявлены в 25 субъектах Российской Федерации, где источниками загрязнения, в основном, являются предприятия химической, энергетической, нефтехимической, нефтедобывающей и машиностроительной отраслей промышленности.

На территории России выявлено около 1000 водозаборов подземных вод, включая рассредоточенные одиночные скважины, в которых отмечено постоянное или эпизодическое загрязнение подземных вод. При этом на 120 водозаборах производительность составляет более 1 тыс.м3/ сут. В большинстве водозаборов (80%) загрязнение подземных вод отмечается лишь в отдельных скважинах и по интенсивности (в основном 1-10 ПДК) относятся к незначительно загрязненным подземным водам.

По экспертным оценкам общая добыча загрязненных подземных вод не превышает 5- 8% от общего водоотбора.

Главным достоинством подземных вод для питьевого водоснабжения является существенно более высокая степень их защищенности от загрязнения по сравнению с поверхностными водами.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта