Главная » 2 Распространение » Получение иттрия. Другие сферы применения

Получение иттрия. Другие сферы применения

(Yttrium; от назв. швед, селения Иттербю), Y - хим. элемент III группы периодической системы элементов; ат. н. 39, ат. м. 88,9059; относится к редкоземельным элементам. Металл светло-серого цвета, на воздухе тускнеет. В соединениях проявляет степень окисления + 3. Известны с массовыми числами от 82 до 97. К важнейшим долго-живущим относятся с массовыми числами 91; 90; 88 и 89. Открыт в 1794 финск. химиком И. Гадолином. Металлический И. получил в 1828

И. в земной коре около 2,8 х 10-3%. И. входит в состав лопарита, монацита, иттропаризита, эвксенита, ксе нотима и др. минералов. Полиморфен, т-ра полиморфного превращения 1490-1495° С. Кристаллическая решетка низкотемпературной модификации - гексагональная плотноупа-кованная типа магния, с периодами а = 3,6474 А и с = 5,7306 А, а высокотемпературной - кубическая объемноцентрированная с периодом а = 4,11 А. Плотность 4,472 г/см3; tпл 1526° С; tкип 3340° С; коэфф. термического расширения (т-ра 25- 1000° С) 10,1 х 10-6 град»-1; теплоемкость 6,34 кал/г-атом град; электрическое сопротивление 57 мком см; сечение захвата тепловых нейтронов 1,31 барн; парамагнитен; работа выхода электронов 3,07 эв. Модуль норм, упругости 6600 кгс/мм2; модуль сдвига 2630 кгс/мм2; предел прочности 31,5 кгс/мм2; предел текучести 17,5 кгс/мм2; сжимаемость 26,8 х 10-7 см2/кг; удлинение 35%; HV = 38.

Чистый иттрий легко поддается мех. обработке и деформированию. Его куют и прокатывают до лент толщиной 0,05 мм на холоду с промежуточными отжигами в вакууме при т-ре 900-1000° С. И.- химически активный металл, реагирует со щелочами и к-тами, сильно окисляется при нагревании на воздухе. Работы с И. проводят в защитных камерах и высоком вакууме. И. с металлами Iа, IIа и Va подгрупп, а также с хромом и ураном образует несмешиваю-щиеся двойные системы; с титаном, цирконием, гафнием, молибденом и вольфрамом - двойные системы эвтектического типа; с редкоземельными элементами, скандием и торием - непрерывные ряды твердых растворов и широкие области растворов; с остальными элементами - сложные системы с наличием хим. соединений.

Получают иттрий металлотер-мическим восстановлением, действуя на его фторид кальцием при т-ре выше т-ры плавления металла. Затем металл переплавляют в вакууме и дистиллируют, получая И. чистотой до 99,8-т-99,9%. Чистоту металла повышают двух- и трехкратной дис тилляцией. И. выпускают в виде монокристаллов, слитков различной чистоты и массы, а также в виде сплавов с магнием и алюминием. Чистый И. используют для исследовательских целей. В качестве основы сплавов его применяют редко. Наиболее широко И. используется как легирующая и модифицирующая добавка к сплавам почти на всех основах. И. используют при произ-ве легированной стали (его добавка уменьшает величину зерна, улучшает мех., Электр, и магн. св-ва) и модифицированного чугуна. Он повышает жаростойкость и жаропрочность сплавов на основе никеля, хрома, молибдена и др. металлов; увеличивает пластичность тугоплавких металлов и сплавов на основе ванадия, тантала, вольфрама и молибдена; упрочняет титановые, медные, магниевые и алюминиевые ; увеличивает жаропрочность магниевых и алюминиевых сплавов.

В атомной энергетике иттрий используют как носитель водорода, разбавитель ядерного горючего, как конструкционный материал реакторов. Широкое применение находит И. в электронике и радиотехнике в качестве катодных материалов ( И.), геттеров ( И. с лантаном, алюминием, цирконием), ферритов-гранатов, люминофоров. Из тугоплавких и огнеупорных материалов на основе боридов, сульфидов и окислов И. изготовляют катоды для мощных генераторных установок, тигли для плавки тугоплавких металлов и др.; ортованадат И.- эффективный материал для цветного телевидения. И. и его применяют как катализаторы органических реакций, при произв. нефти См. также Иттрийсодержащие .

Иттрий в природе

Встречается в виде устойчивого изотоп 89 Y (100%) . В литосфере содержится иттрия 5 ⋅ 10 ⁻ ⁴ . Встречаются достаточно богатые этим элементом, например, тортвейтит Y 2 Si 2 O 7 , однако эти настолько рассеяны, что переработка связана с концентрированием (отделением больших количеств пустой породы) , что связано с большими энергозатратами.

Поскольку иттрий имеет отрицательное значение стандартных электронных потенциалов, получают его электролизом расплавленных хлоридов или нитратов, а для понижения температур плавления добавляют соли других металлов.

Помимо электролиза его получают восстанавливая при высоких температурах из их хлоридов или фторидов наиболее активными металлами (калием и кальцием) :

YCl 3 + 3K = Y + 3KCl

Физические и химические свойства

Иттрий — серебристо — белый металл, существующий в двух кристаллических видоизменениях с различными типами и параметрами решеток.

В химических реакциях атом иттрия теряет по три электрона и ведёт себя как сильный восстановитель.

При обычных температурах поверхность его окисляется кислородом с образованием защитных плёнок. Но при нагревании в кислороде горит и образуются оксиды Sc 2 O 3 .

С водой иттрий взаимодействует медленно, образующиеся при этом гидроксиды покрывают его защитной плёнкой:

2Y + 6H 2 O = 2Y(OH) 3 ↓ + 3H 2

2Y + 3H 2 SO 4 = Y 2 (SO 4 ) 3 + 3H 2

и растворяется в кислотах.

Соединения иттрия

Проявляет степень окисления +3 , их ионы имеют на внешнем уровне по 8 электронов, большой заряд этих ионов Э ⁺ ³ обусловливается склонность иттрия к комплексообразованию.

Его оксиды отвечают формуле Y2O3 , бесцветны, тугоплавки, получаются разложением нитратов:

4Y(NO 3 ) 3 = 2YO 3 + 12NO 2 + 3O 2

Он обладает основным характером, энергично реагировать с водой, образуя гидроксиды:

Y 2 O 3 + 3H 2 O = 2Y(OH) 3

Он мало растворим в воде, но легко растворяется в кислотах, гидроксид иттрия Y(OH) 3 проявляет признаки амфотерности.

Соли иттрия из воды кристаллизуются в виде аквасоединений. , нитраты и ацетаты растворимы в воде и гидролизуются в незначительной степени.

Мало растворимые в воде фториды, и оксалаты иттрия переходят в раствор под действием избытка осадителя с образованием комплексных соединений.

Положительные ионы иттрия имеют координационные числа от 3 до 6 . Важнейшие лиганды в комплексе металла — это фторид — , карбонат — , сульфат — , оксалат- ионы. Ион иттрия Y ⁺ ³ образует с фторид — ионами комплексные соединения:

В 1794 г.в шведском минерале из Иттербю финский химик Юхан Гадолин обнаружил оксид неизвестного элемента, который был назван в 1797 г. Экебертом "иттриевой землей". Впоследствии оказалось, что "иттриевая земля" - смесь оксидов, из которой были выделены оксид иттрия, а также оксиды 10 других редкоземельных элементов. Только в 1828 г. немецкий ученый Фридрих Велер получил металлический иттрий в виде серого ппорошка при восстановлении безводного хлорида иттрия калием.

Получение:

Физические свойства:

Чистый иттрий - мягкий металл, по своим механическим свойствам он напоминает алюминий. Температура плавления примерно 1500°С, плотность 4,47 г/см 3 .

Химические свойства:

Иттрий медленно разлагает кипящую воду, легко растворим в обычных кислотах. При температуре около 400 0 С на иттрии образуется плотно пристающая пленка оксида Y 2 O 3 .

Важнейшие соединения:

Оксид: В свободном виде кристаллы Y 2 O 3 - бесцветны, гигроскопичны и поглощают из воздуха CO 2 . Y 2 O 3 проявляет слабоосновные свойства, практически не растворим в воде (0,0002 г. в 100 г. Н 2 O), растворяется в кислотах.

Гидроксид иттрия(III) не растворим в воде,имеет характер слабого основания. При стоянииY(OH) 3 постепенно под действием двуокиси углерода воздуха переходит в карбонат:
2Y(OH) 3 +3CO 2 = Y 2 (CO 3) 3 + 3H 2 O

Соли иттрия. Большинство солей иттрия (III) представляют собой белые порошки, образуют кристаллогидраты:
карбонат -Y 2 (CO 3) 3 *3H 2 O, хлорид - YCl 3 *6H 2 O, сульфат - Y 2 (SO 4) 5 *8H 2 O и т.п.

Применение:

Металлический иттрий используется добавка при производстве легированной стали, модифицированного чугуна, других сплавов. Из иттрия изготовляют трубопроводы для транспортирования жидкого ядерного горючего - расплавленного урана или плутония. Оксид иттрия(III) расходуется на изготовление иттриевых ферритов, применяемых в радиоэлектрике, в слуховых приборах, ячейках памяти.

Оксид иттрия также находит применение в производстве керамики, катализаторов, ювелирных украшений, оптических лазеров. См. также: Металлический иттрий. Оксид иттрия марки ИтО-ЛЮМ.

См. также:
С.И. Венецкий О редких и рассеянных. Рассказы о металлах

ИТТРИЙ

1. Иттрий металлический

Физические и химические свойства

Иттрий — светло-серый металл. Температура плавления около 1500°С, плотность 4,47 г/см 3 , твердость по Бринеллю 628 МПа, модуль упругости 66 ГПа, модуль сдвига 264 ГПа, коэффициент Пуассона 0,265, коэффициент сжимаемости 26,8.10 -7 см 2 /кг. По своим механическим свойствам он напоминает алюминий. Легко поддается механической обработке.

Иттрий легко растворяется в минеральных кислотах. В кипящей воде он постепенно окисляется, на воздухе при температуре 400 °C окисление иттрия идет достаточно быстро. Но при этом образуется темная блестящая пленка окиси, плотно окутывающая металл и препятствующая окислению в массе. Лишь при 760°C эта пленка теряет защитные свойства, и тогда окисление превращает светло-серый металл в бесцветную или черную (от примесей) окись.

Хранение

В нормальной атмосфере иттрий весьма устойчив, он лишь слегка тускнеет, но никогда не теряет металлический блеск. Иттрий окисляется при более высокой температуре. С иттриевыми стружками следует обращаться осторожно, так как при нагревании они энергично сгорают. В атмосфере водяного пара при 750°C иттрий покрывается окисной пленкой, предохраняющей металл от дальнейшего окисления.

Производство

Как и многие лантаноиды, иттрий относится к числу довольно распространенных металлов. По данным геохимиков, содержание иттрия в земной коре 0,0028% - это значит, что элемент входит в число 30 наиболее распространенных элементов Земли.

Свыше ста минералов содержат иттрий. Среди них есть собственно иттриевые - ксенотим, фергюсонит, эвксенит, таленит и другие, промышленное значение имеют только ксенотим и эвксенит.

Главнейшие месторождения иттрия расположены в КНР, США, Канаде, Австралии, Индии, Малайзии, Бразилии. Китай является основным мировым поставщиком иттрия. Промышленное месторождение иттрия и иттриевых редких земель (тяжелых лантаноидов) имеется в Киргизии.

Извлечь чистый иттрий из руды чрезвычайно трудно. Мешает сходство с другими редкими землями.

Процесс переработки руд на иттрий и редкоземельные элементы, разработанный Спеллингом и Лоуэллом, заключается в следующем. Исходный ксенотим вскрывают путем обработки серной кислотой при высокой температуре. Полученный после такой обработки раствор подают на колонки с катионообменной смолой. Для их элюирования применяют раствор этилендиаминтетрауксусной кислоты. Иттрий и редкоземельные элементы содержатся в разных фракциях элюата. Их осаждают из этих фракций в виде оксалатов и прокаливают до окисей.

Универсальный способ получения совершенно чистых редко­земельных металлов и иттрия заключается в восстановлении безводных фторидов кальцием. Безводные фториды редкоземельных металлов получают либо фторированием окислов безводным фтористым водородом при 575°С, либо прокаливанием фтори­дов, осажденных из водных растворов плавиковой кислотой, либо же сплавлением окислов редкоземельных металлов с бифторидом аммония.

Безводный фторид смешивают с порошком металлического кальция, Танталовый тигель с загрузкой нагревают в атмосфере аргона, пока не начнется реакция. По завершении реакции и редкоземельный металл, и шлак (фторид кальция) должны на­ходиться в расплавленном состоянии.

Полученный таким способом иттрий кальциетермический по содержанию контролируемых примесей должен удовлетворять требованиям и нормам ТУ 48-4-208-72:

Марка

Сумма гадолиния, тербия, диспрозия, гольмия

железо

кальций

медь

Тантал, вольфрам (в зависимости от материала аппаратуры)

ИтМ-1

0,10

0,01

0,01

0,03

0,02

ИтМ-2

0,20

0,02

0,03

0,05

0,20

ИтМ-3

0,50

0,05

0,05

0,10

0,30

ИтМ-4

2,80

0,05

0,50

0,10

0,70

ИтМ-5

3,80

0,05

1,60

0,10

1,00

Применение металлического иттрия

Сплавы иттрия

Иттрий является металлом, обладающим рядом уникальных свойств, и эти свойства в значительной степени определяют очень широкое применение его в промышленности сегодня и, вероятно, ещё более широкое применение в будущем. Предел прочности на разрыв для нелегированного чистого иттрия около 300 МПа (30 кг/мм). Очень важным качеством, как металлического иттрия, так и ряда его сплавов является то обстоятельство, что, будучи активным химически, иттрий при нагревании на воздухе покрывается пленкой оксида и нитрида предохраняющих его от дальнейшего окисления до 1000 °C .

Перспективными областями применения сплавов иттрия являются авиакосмическая промышленность, атомная техника, автомобилестроение. Очень важно, что иттрий и некоторые его сплавы не взаимодействуют с расплавленным ураном и плутонием, и их использование позволяет применить их в ядерном газофазном ракетном двигателе.

Изучается перспективный магнитный сплав - неодим -иттрий-кобальт .

Легирование

Иттрий широко используется в черной и цветной металлургии.

Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов.

Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а, кроме того, у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов).

Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2-3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет громадное экономическое значение.

Введение незначительных количеств иттрия в сталь делает ее структуру мелкозернистой, улучшает механические, электрические и магнитные свойства. При добавлении небольших количеств иттрия (десятые, сотые доли процента) в чугун, твердость его возрастет почти вдвое, а износостойкость - в четыре раза. Такой чугун становится менее хрупким, по прочностным характеристикам он приближается к стали, легче переносит высокие температуры. И особенно важно, что иттриевый чугун можно переплавлять несколько раз, но прочностные характеристики при этом сохраняются.

Общие сведения и методы получения

Иттрий (Y) - редкоземельный металл светло-серого цвета. Свое назва­ние получил от шведского селения Иттербю. Открыт в 1794 г. финским химиком И. Гадолином. Металлический иприй получен в 1828 г. немец­ким химиком Ф. Велером.

Для отделения основной массы иттрия от других элементов лучшим способом считается его отделение на ионообменных колоннах в процессе разделения РЗМ иттриевой подгруппы.

Для получения иттрия высокой чистоты применяют метод металло-термического восстановления его фторида с использованием в качестве восстановителя стружки кальция. Затем путем переплавки в вакууме и дистилляции получается иттрий чистотой 99,8-99 % Для повышения чистоты его подвергают дву- и трехкратной дистилляции.

Физические свойства

Атомные характеристики. Атомный номер 39, атомная масса 88 ,905 а.е.м, атомный объем 19,886*10- 6 м 3 /моль, атомный радиус 0 ,181 нм, ионный радиус Y + 3 0 ,097 нм. Конфигурация внешних электронных оболочек ато­ма 4 d "5 s 2 .

Природный иттрий состоит из одного устойчивого изотопа 89 Y . Из­вестно 18 искусственных радиоактивных изотопов, важнейшими из ко­торых являются 90 Y и 91 Y , образующегося при делении урана и тория.

Химические свойства

Нормальный электродный потенциал реакции Y -3 e »± Y 3+ , (р 0 =-2,1 В. Электрохимический эквивалент 0,30715 мг/Кл.

В соединениях проявляет степень окисления +3. В атмосфере возду­ха при нормальных условиях иттрий весьма устойчив: он лишь слегка тускнеет, но не теряет металлического блеска. При 370-425 °С на по­верхности иттрия образуется черная и плотная пленка оксидов: интен­сивно* 1 окисление начинается выше 760 "С.

Компактный иттрий медленно окисляется в кипящей воде, легко раст­воряется в серной, соляной и азотной кислотах, медленно - в уксусной н почти инертен к плавиковой кислоте. В щелочных средах (1 н. раство­ры NaOH и NH

Иттрий легко взаимодействует с галогенами.

С водородом иттрий образует в интервале 314-1540"С устойчивые металлические гидриды различного состава. При 760 °С иттрий взаи­модействует с азотом, образуя YN.

Технологические свойства

Иттрий - металл достаточно пластичный. Поддается обработке давле­нием в горячем и холодном состояниях. Однако деформируемость его зависит от степени чистоты. Так, в холодном состоянии недостаточно чистый иттрий можно прокатать со степенью обжатия не более 10- 15 % за одни проход. Путем холодной прокатки с небольшими обжати­ями и промежуточными отжигами можно получить из иттрия ленту и фольгу толщиной 0,5-0,05 мм. Горячая прокатка, а также горячая ков­ка и прессование легко осуществляются при 800-850 °С. Однако выше 760 °С происходит интенсивное окисление иттрия, поэтому обработку его давлением прн высоких температурах следует проводить, принимая специальные меры против окисления и газонасыщения (вакуум, защит­ные оболочки, нейтральная атмосфера и др.).

Температура конца рекристаллизации технического иттрия 600°С, а дистиллированного 450-500 °С.

Иттрий легко обрабатывается резанием (обточка, фрезерование, сверление и др.), однако во избежание его возгорания скорости резания необходимо поддерживать минимальными, а также применять постоян­ное охлаждение эмульсией или маслом.

Иттрий легко сваривается дуговой сваркой с неплавящимся воль­фрамовым электродом в атмосфере инертного газа. При сварке иттрия с другими металлами оптимальные результаты достигаются при приме­нении присадочного материала (например, хрома для улучшения диффу­зии). Металлический иттрий, содержащий 0,1-0,3 % кислорода, отли­чается склонностью к растрескиванию в процессе сварки.

Области применения

В качестве основы сплавов иттрий применяют редко, но широко исполь­зуют для легирования и модифицирования.

В настоящее время наиболее широкие области применения иттрия, его соединений, сплавов и лигатур в промышленности следующие: производство легированной стали; модифицирование чугуна; производст­во сплавов на основе никеля, хрома, молибдена и других металлов - для повышения жаростойкости и жаропрочности; выплавка ванадия, тантала, вольфрама и молибдена и сплавов на их основе - для увеличения плас­тичности; производство медных, титановых, алюминиевых и магниевых сплавов; атомная энергетика; электроника - в качестве катодных ма­териалов (оксиды иттрия), а также для поглощения газов в электрова­куумных приборах; изготонление квантовых генераторов - лазеров; про­изводство тугоплавких и огнеупорных материалов; химия - в качестве катализаторов; производство стекла и керамики. Рафинирование метал­лов и сплавов от примесей (кислород, азот, водород и углерод), вызы­вающих хрупкость сплавов, что особенно важно для тугоплавких хлад­ноломких металлов с объемноцентрированной кубической решеткой, а также примесей, вызывающих хладноломкость (сера, фосфор, мышьяк в стали, хромоникелевых и никелевых сплавах; свинец и висмут в медных сплавах).

Имеются сведения об использовании изотопа 90 Y в медицине.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта