Главная » 2 Распространение » Степень с целым и дробным показателем. Возведение числа в натуральную степень

Степень с целым и дробным показателем. Возведение числа в натуральную степень

Рассмотрим небольшой пример. Вычислим 4√(5 12).

Воспользуемся свойствами корня и степени числа. 5 12 = (5 3) 4 , следовательно, можем записать условие следующим образом:

  • 4√((5 3) 4) = (4√(5 3)) 4 = 5 3 = 125.

Таким образом получаем, что 4√(5 12) = 5 (12/4) . Так же можно показать, что, например,

  • 5√(3 (-4)) = 3 (-4/3) .

Доказательство

  • Если n некоторое натуральное число, причем n больше либо равно 2, m – некоторое целое число, и частное m/n будет являться целым числом, то при а >0 справедливо следующее равенство: n√(a m) = a (m/n) .

Докажем этот факт. m/n – некоторое целое число (по условию), то есть в результате деления мы получим целое k (m/n = k). Тогда можно записать, что m=k*n. Далее, применяя свойства степени и арифметического корня получим:

  • n√ (a m) = n√(a (n*k)) =n√((a k) n) = a k = a (m/n) .

То есть n√(a m) = a (m/n) . Что и требовалось доказать.

Если же при делении m на n получится не целое число, то степень вида a (m/n) , где а>0, определяют таким образом, чтобы формула написанная выше (n√(a m) = a (m/n)), оставалась верной.

  • То есть, формула n√(a m) = a (m/n) будет справедлива для любого целого числа m, любого натурального числа n больше либо равного двум и а>0.

Например,

  • 16 (3/4) = 4√(16 3) = 4√(2 12) = 2 3 = 8.
  • 7 (5/4) = 4√(7 5) = 4√((7 4)*7) = 7*4√7.

Как мы уже знаем, числа вида m/n, где n – некоторое натуральное число, а m – некоторое целое число, называют дробными или рациональными числами.

Из всего вышесказанного получаем, что степень определена, для любого рационального показателя степени и любого положительного основания степени.

Особенности

Стоит отметить, что если рациональное число в показателе будет положительным, то выражение n√(a m) будет иметь смысл не только при положительных а, но и при а равном нулю.

  • n√(0 m) = 0.

Поэтому, в математике считается, что при m/n > 0 выполняется равенство 0 (m/n) = 0.

Отметим также, что при любом целом, любых натуральных m и n, и положительном а верно следующее равенство:

a (m/n) = a ((mk)/(nk)) .

Например, 134 (3/4) = 134 (6/8) = 134 (9/12) .


В продолжение разговора про степень числа логично разобраться с нахождением значения степени. Этот процесс получил название возведение в степень . В этой статье мы как раз изучим, как выполняется возведение в степень, при этом затронем все возможные показатели степени – натуральный, целый, рациональный и иррациональный. И по традиции подробно рассмотрим решения примеров возведения чисел в различные степени.

Навигация по странице.

Что значит «возведение в степень»?

Начать следует с объяснения, что называют возведением в степень. Вот соответствующее определение.

Определение.

Возведение в степень – это нахождение значения степени числа.

Таким образом, нахождение значение степени числа a с показателем r и возведение числа a в степень r – это одно и то же. Например, если поставлена задача «вычислите значение степени (0,5) 5 », то ее можно переформулировать так: «Возведите число 0,5 в степень 5 ».

Теперь можно переходить непосредственно к правилам, по которым выполняется возведение в степень.

Возведение числа в натуральную степень

На практике равенство на основании обычно применяется в виде . То есть, при возведении числа a в дробную степень m/n сначала извлекается корень n -ой степени из числа a , после чего полученный результат возводится в целую степень m .

Рассмотрим решения примеров возведения в дробную степень.

Пример.

Вычислите значение степени .

Решение.

Покажем два способа решения.

Первый способ. По определению степени с дробным показателем . Вычисляем значение степени под знаком корня, после чего извлекаем кубический корень: .

Второй способ. По определению степени с дробным показателем и на основании свойств корней справедливы равенства . Теперь извлекаем корень , наконец, возводим в целую степень .

Очевидно, что полученные результаты возведения в дробную степень совпадают.

Ответ:

Отметим, что дробный показатель степени может быть записан в виде десятичной дроби или смешанного числа, в этих случаях его следует заменить соответствующей обыкновенной дробью, после чего выполнять возведение в степень.

Пример.

Вычислите (44,89) 2,5 .

Решение.

Запишем показатель степени в виде обыкновенной дроби (при необходимости смотрите статью ): . Теперь выполняем возведение в дробную степень:

Ответ:

(44,89) 2,5 =13 501,25107 .

Следует также сказать, что возведение чисел в рациональные степени является достаточно трудоемким процессом (особенно когда в числителе и знаменателе дробного показателя степени находятся достаточно большие числа), который обычно проводится с использованием вычислительной техники.

В заключение этого пункта остановимся на возведении числа нуль в дробную степень. Дробной степени нуля вида мы придали следующий смысл: при имеем , а при нуль в степени m/n не определен. Итак, нуль в дробной положительной степени равен нулю, например, . А нуль в дробной отрицательной степени не имеет смысла, к примеру, не имеют смысла выражения и 0 -4,3 .

Возведение в иррациональную степень

Иногда возникает необходимость узнать значение степени числа с иррациональным показателем . При этом в практических целях обычно достаточно получить значение степени с точностью до некоторого знака. Сразу отметим, что это значение на практике вычисляется с помощью электронной вычислительной техники, так как возведение в иррациональную степень вручную требует большого количества громоздких вычислений. Но все же опишем в общих чертах суть действий.

Чтобы получить приближенное значение степени числа a с иррациональным показателем , берется некоторое десятичное приближение показателя степени , и вычисляется значение степени . Это значение и является приближенным значением степени числа a с иррациональным показателем . Чем более точное десятичное приближение числа будет взято изначально, тем более точное значение степени будет получено в итоге.

В качестве примера вычислим приближенное значение степени 2 1,174367... . Возьмем следующее десятичное приближение иррационального показателя: . Теперь возведем 2 в рациональную степень 1,17 (суть этого процесса мы описали в предыдущем пункте), получаем 2 1,17 ≈2,250116 . Таким образом, 2 1,174367... ≈2 1,17 ≈2,250116 . Если взять более точное десятичное приближение иррационального показателя степени, например, , то получим более точное значение исходной степени: 2 1,174367... ≈2 1,1743 ≈2,256833 .

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

В этой статье мы разберемся, что такое степень числа . Здесь мы дадим определения степени числа, при этом подробно рассмотрим все возможные показатели степени, начиная с натурального показателя, заканчивая иррациональным. В материале Вы найдете массу примеров степеней, покрывающих все возникающие тонкости.

Навигация по странице.

Степень с натуральным показателем, квадрат числа, куб числа

Для начала дадим . Забегая вперед, скажем, что определение степени числа a с натуральным показателем n дается для a , которое будем называть основанием степени , и n , которое будем называть показателем степени . Также отметим, что степень с натуральным показателем определяется через произведение, так что для понимания нижеизложенного материала нужно иметь представление об умножении чисел.

Определение.

Степень числа a с натуральным показателем n - это выражение вида a n , значение которого равно произведению n множителей, каждый из которых равен a , то есть, .
В частности, степенью числа a с показателем 1 называется само число a , то есть, a 1 =a .

Сразу стоит сказать о правилах чтения степеней. Универсальный способ чтения записи a n таков: «a в степени n ». В некоторых случаях также допустимы такие варианты: «a в n -ой степени» и «n -ая степень числа a ». Для примера возьмем степень 8 12 , это «восемь в степени двенадцать», или «восемь в двенадцатой степени», или «двенадцатая степень восьми».

Вторая степень числа, а также третья степень числа имеют свои названия. Вторую степень числа называют квадратом числа , например, 7 2 читается как «семь в квадрате» или «квадрат числа семь». Третья степень числа называется кубом числа , к примеру, 5 3 можно прочитать как «пять в кубе» или сказать «куб числа 5 ».

Пришло время привести примеры степеней с натуральными показателями . Начнем со степени 5 7 , здесь 5 – основание степени, а 7 – показатель степени. Приведем еще пример: 4,32 является основанием, а натуральное число 9 – показателем степени (4,32) 9 .

Обратите внимание, что в последнем примере основание степени 4,32 записано в скобках: чтобы избежать разночтений мы будем брать в скобки все основания степени, которые отличны от натуральных чисел. В качестве примера приведем следующие степени с натуральными показателями , их основания не являются натуральными числами, поэтому они записаны в скобках. Ну и для полной ясности в этом моменте покажем разницу, заключенную в записях вида (−2) 3 и −2 3 . Выражение (−2) 3 – это степень −2 с натуральным показателем 3, а выражение −2 3 (его можно записать как −(2 3) ) соответствует числу, значению степени 2 3 .

Заметим, что встречается обозначение степени числа a с показателем n вида a^n . При этом, если n – многозначное натуральное число, то показатель степени берется в скобки. Например, 4^9 – это другая запись степени 4 9 . А вот еще примеры записи степеней при помощи символа «^ »: 14^(21) , (−2,1)^(155) . В дальнейшем мы преимущественно будем пользоваться обозначением степени вида a n .

Одной из задач, обратной возведению в степень с натуральным показателем, является задача нахождения основания степени по известному значению степени и известному показателю. Эта задача приводит к .

Известно, что множество рациональных чисел состоит из целых и дробных чисел, причем каждое дробное число может быть представлено в виде положительной или отрицательной обыкновенной дроби. Степень с целым показателем мы определили в предыдущем пункте, поэтому, чтобы закончить определение степени с рациональным показателем, нужно придать смысл степени числа a с дробным показателем m/n , где m – целое число, а n - натуральное. Сделаем это.

Рассмотрим степень с дробным показателем вида . Чтобы сохраняло силу свойство степени в степени, должно выполняться равенство . Если учесть полученное равенство и то, как мы определили , то логично принять при условии, что при данных m , n и a выражение имеет смысл.

Несложно проверить, что при справедливы все свойства степени с целым показателем (это сделано в разделе свойства степени с рациональным показателем).

Приведенные рассуждения позволяют сделать следующий вывод : если при данных m , n и a выражение имеет смысл, то степенью числа a с дробным показателем m/n называют корень n -ой степени из a в степени m .

Это утверждение вплотную подводит нас к определению степени с дробным показателем. Остается лишь расписать, при каких m , n и a имеет смысл выражение . В зависимости от ограничений, накладываемых на m , n и a существуют два основных подхода.

    Проще всего наложить ограничение на a , приняв a≥0 для положительных m и a>0 для отрицательных m (так как при m≤0 степень 0 m не определена). Тогда мы получаем следующее определение степени с дробным показателем.

    Определение.

    Степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называется корень n -ой из числа a в степени m , то есть, .

    Также определяется дробная степень нуля с той лишь оговоркой, что показатель должен быть положительным.

    Определение.

    Степень нуля с дробным положительным показателем m/n , где m – целое положительное, а n – натуральное число, определяется как .
    При степень не определяется, то есть, степень числа нуль с дробным отрицательным показателем не имеет смысла.

    Следует отметить, что при таком определении степени с дробным показателем существует один нюанс: при некоторых отрицательных a и некоторых m и n выражение имеет смысл, а мы отбросили эти случаи, введя условие a≥0 . Например, имеют смысл записи или , а данное выше определение заставляет нас говорить, что степени с дробным показателем вида не имеют смысла, так как основание не должно быть отрицательным.

    Другой подход к определению степени с дробным показателем m/n заключается в раздельном рассмотрении четных и нечетных показателях корня . Этот подход требует дополнительного условия: степень числа a , показателем которой является , считается степенью числа a , показателем которой является соответствующая несократимая дробь (важность этого условия поясним чуть ниже). То есть, если m/n – несократимая дробь, то для любого натурального числа k степень предварительно заменяется на .

    При четных n и положительных m выражение имеет смысл при любом неотрицательном a (корень четной степени из отрицательного числа не имеет смысла), при отрицательных m число a должно быть еще отличным от нуля (иначе будет деление на нуль). А при нечетных n и положительных m число a может быть любым (корень нечетной степени определен для любого действительного числа), а при отрицательных m число a должно быть отличным от нуля (чтобы не было деления на нуль).

    Приведенные рассуждения приводят нас к такому определению степени с дробным показателем.

    Определение.

    Пусть m/n – несократимая дробь, m – целое, а n – натуральное число. Для любой сократимой обыкновенной дроби степень заменяется на . Степень числа a с несократимым дробным показателем m/n - это для

    Поясним, зачем степень с сократимым дробным показателем предварительно заменяется степенью с несократимым показателем. Если бы мы просто определили степень как , и не оговорились о несократимости дроби m/n , то мы бы столкнулись с ситуациями, подобными следующей: так как 6/10=3/5 , то должно выполняться равенство , но , а .

1)Степени с натуральным показателем:

В стране чисел возникли проблемы. Астрономы собрались посчитать размеры видимой части Вселенной. Они утверждали, что для этого необходимо умножить 25 раз число 10 само на себя. Поскольку для этого требовалось очень много места, они требовали снести Дворец алгоритма Евкида, выставку чисел-близнецов и многие другие объекты. Хотя всем хотелось узнать, какая же наша Вселенная, но никому не хотелось жертвовать столь прекласными и ценными сооружениями. Была создана комиссия, которая занялась поисками требуемой свободной площади, но вскоре зашла в тупик.

Неожиданно положение Таблица умножения. Она рассказла свою историю: - Меня придумали для того, чтобы не складывать большое количество одинаковых слагаемых. Ведь теперь никто не пишет 3 + 3 + 3 + 3 + 3 + 3 + 3, теперь записывают 3 х 7. Это очень экономит место. Давайте придумаем что-нибудь похожее для умножения.

И сразу придумали. Число множителей стали записываь маленькой цифрой сзади числа:

Все выражение стали на зывать степенью, количество множителей (маленькую цифру сверху) – показателем степени, а сам множитель – основание степени.

Не прошло и получаса, как торжественно ввели новое действие – возведение в степень, как по стране чисел стали бегать 5 6 , 17 4 и многие другие. Но только бегать неинтересно, хочется выполнять сложение, умножение, вычитание, то есть вести себя как все порядочные числа. и ту возникли следующие проблемы. После введения действий надо установить правила действий , так, чтобы никому не мешать и никакие законы не нарушать.

Сначала попробовали выполнять сложение, открыли свод законов и ничего не нашли. О вычитании даже думать не стали, а умножение пошло очень легко, ведь всякая степень получается из множителей, значит, если взять одинаковые основания степени, то

Сразу записали в свод законов новое правило:

При умножении степеней с одинаковым основание основание остается неизменным, а показатели складывают



С делением возникли проблемы. Всем казалось, что если деление действие обратное уиножению, то приделении надо показатели вычитать, но если , а если .Тогда постановили (под влиянием консервативного меньшинства), что

, если m>n, и , если n>m.

Провести проверку нового правил предложили 6 5 и 6 3: , а

При делении степеней с одинаковыми основаниями показатели вычитаются . а полностью правило сформулировать трудно.

Разобралися также со степенями с разными основаниями и одинаковыми показателями. На помощь пришли переместительный и сочетательный законы: , потому, что ;

Чтобы умножить степени с одинаковыми показателями надо перемножить основания, а показатель оставить без изменения.

Чтобы разделить степени содинаковыми основаниями надо разделит основания, а показатель оставить без изменения.

Оказалось, что можно даже возводить степени в степень.

Наступил всеобщий праздник. Особенно понравилось сокращать дроби, раскладывая их на множители:

Подарок преподнес распределительный закон. Он предложил как складывать одинаковые степени , например, , ,т.е. можно складывать коэффициенты .

А если степени с одинаковыми основаниями, но с разными коэффициентами, то можно общий множитель вынести за скобку:

2)степени с отрицательным показателем:

Все уже привыкли к действиям со степенями с натуральными показателями (их так называют, потомучто показатели – натуральные числа).

И нашлись недовольные, те кто не принял участие в создании новых чисел.Революционно настроенные представители отрицательных чисел выступили с заявлением, что их притесняют, не дают развиваться науке,

Всем известно, что при вычитании может получаться 0, а также отрицательные числа, - говорили они и организовали движение в поддержку степеней с отрицательным показателе.

Как же может быть отрицательное количество сомножителей?- удивились натуральные числа.

Надо определить , это как раз подходит под ваше правило: .

А степени с отрицательным показателем определить, как (Z - - отрицательнын целые числа).

Например,

Тогда формула для деления степеней станет просто

Хорошо, - сказали хранители Свода законов, - тогда докажите, что все правила действий со степенями сохранятся и при введении степеней с отрицательным показателями.

Больше того, отрицательные числа предложили план доказательства всех теорем, о действиях со степенями.

1.В выражении по определению заменить степень с отрицательным показателем на степень с натуральным показателем.

2.Выполнить действия по правилам действий со степенями с натуральными показателями

3.По определению перейти от степеней с натуральными показателя к степеням с отрицательными показателями.

А также привели поясняющие примеры: , записывать можно короче:

Итак, оказалось, что все правила действий сохранились для степеней с отрицательными показателями.

3)степени с дробным показателем:

при извлечении корня из степени делят показатель степени на показатель корня, если такое деление выполнется нацело; например: √a 4 = a 2 , 3 √x 9 = x 3 и т. п. Условимся теперь распространить это правило и на те случаи, когда показатель степени не делится нацело на показатель корня. Например, мы условимся принимать, что

Вообще мы условимся, что выражение означает корень, показатель которого есть знаменатель, а показатель подкоренного числа - числитель дробного показателя (т. е. n a m ).

Условимся еще допускать и отрицательные дробные показатели в том же смысле, в каком мы допустили отрицательные целые показатели; например, условимся, что

Замечание. Дробные показатели были введены в алгебру главным образом голландским инженером Симоном Стевином в начале XVII столетия Позднее, в конце XVII столетия, Оксфордский профессор Джон Валлис ввел в употребление отрицательные показатели.

259. Основное свойство дробного показателя. Величина степени с дробным показателем не изменится, если мы умножим или разделим на одно и то же число (отличное от нуля) числитель и знаменатель дробного показателя. Так:

Действительно, знаменатель дробного показателя означает показатель корня, а числитель его означает показатель подкоренного выражения, а такие показатели, как мы видели можно умножать и делить на одно и то же число.

Основываясь на этом свойстве, мы можем преобразовывать дробный показатель совершенно так же, как и обыкновенную дробь : например, мы можем сокращать дробный показатель, или приводить несколько дробных показателей к одному знаменателю.

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n -ной степенью числа a когда:

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

a m ·a n = a m + n .

2. В делении степеней с одинаковым основанием их показатели вычитаются:

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

(a/b) n = a n /b n .

5. Возводя степень в степень, показатели степеней перемножают:

(a m) n = a m n .

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

2. Корень из отношения равен отношению делимого и делителя корней:

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .

Например . a 4:a 7 = a 4 - 7 = a -3 .

Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта