Главная » 3 Как собирать » Анатомия и физиология-как наука: предмет изучения и методы исследования. Современные принципы изучения анатомии человека

Анатомия и физиология-как наука: предмет изучения и методы исследования. Современные принципы изучения анатомии человека

Современная анатомия располагает большим набором различных методов исследования строения человеческого тела. Выбор метода зависит от задачи исследования.

Старейший, но не потерявший своего значения метод препарирования, рассечения, давший название науке (anatemno, греч. - рассекаю), применяется при изучении внешнего строения и топографии крупных образований. Объекты, видимые при увеличении до 20 - 30 раз, могут быть описаны после их макро- микроскопического препарирования. Этот метод имеет ряд разновидностей: препарирование под падающей каплей, под слоем воды. Он может дополняться разрыхлением соединительной ткани различными кислотами, избирательной окраской изучаемых структур (нервов, желез), наполнением (инъекцией) трубчатых систем (сосудов, протоков) окрашенными массами.

Метод инъекции часто сочетается с рентгенографией, если инъекционная масса задерживает рентгеновские лучи, с просветлением, когда объект после специальной обработки делается прозрачным, а инъецированные сосуды или протоки делаются контрастными, непрозрачными. Широко используются инъекции сосудов, протоков и полостей с последующим растворением тканей в кислотах (коррозионный метод). В результате получают слепки изучаемых образований.

Расположение какого-либо органа (сосуд, нерв и т. д.) по отношению к другим анатомическим образованиям исследуют на распилах замороженного тела, получивших название "пироговские срезы" по имени H. И. Пирогова, впервые применившего метод распила. Полученные на таких срезах данные могут быть дополнены сведениями о тканевых соотношениях, если изготовить срез толщиной, измеряемой микрометрами, и обработать его гистологическими красителями. Такой метод носит название гистотопографии.

По серии гистологических срезов и гистотопограмм можно восстановить изучаемое образование на рисунке или объемно. Такое действие представляет собой графическую или пластическую реконструкцию.

Для решения ряда анатомических задач применяются гистологические и гистохимические методы, когда объект исследования может быть обнаружен при увеличениях, разрешаемых световым микроскопом.

Активно внедряется в анатомию электронная микроскопия, позволяющая видеть структуры столь тонкие, что они не видны в световом микроскопе. Перспективен метод сканирующей электронной микроскопии, дающий как бы объемное изображение объекта исследования, как при малых, так и при больших увеличениях.

Все упомянутые методы применимы при работе с трупом. Но "при изучении анатомии главным объектом должен всегда быть живой организм, из наблюдений над которым должно исходить всякое изучение, мертвый же препарат должен служить только проверкой и дополнением к изучаемому живому организму".

Современная техника еще не позволяет глубоко исследовать структуру живого человеческого тела, и изучение трупа остается в анатомии ведущим направлением. В то же время существуют методы, в равной мере применимые для исследования трупа и для исследования живого человека. Это методы, связанные с применением рентгеновских лучей (рентгенография), и эндоскопия (изучение внутренних органов при помощи специальных приборов, например гастроскопа, бронхоскопа и т. д.). Пользоваться этими методами для изучения живых людей допускается только в тех случаях, когда они необходимы для уточнения диагноза.

Новыми методами рентгенологического исследования являются:

  • 1. Электрорентгенография, позволяющая получать рентгеновское изображение мягких тканей (кожи, подкожной клетчатки, связок, хрящей, соединительно-тканного каркаса паренхиматозных органов и др.), которые на обычных рентгенограммах не выявляются, так как почти не задерживают рентгеновские лучи.
  • 2. Томография, с помощью которой можно получать изображения задерживающих рентгеновские лучи образований, лежащих в заданной плоскости.
  • 3. Компьютерная томография, дающая возможность видеть на телевизионном экране изображение, суммированное из большого числа томографических изображений.
  • 4. Рентгеноденсиметрия, позволяющая прижизненно определять количество минеральных солей в костях.

Многие вопросы анатомии решаются в экспериментах на животных. Такие эксперименты сыграли и продолжают играть большую роль в познании строения и функции, как отдельных органов, так и организма в целом.

Для изучения морфологических особенностей человека выделяют две группы методов. Первая группа применяется для изучения строения организма человека на трупном материале, а вторая - на живом человеке.

В первую группу входят:

  • 1) метод рассечения с помощью простых инструментов (скальпель, пинцет, пила и др.) - позволяет изучать строение и топографию органов;
  • 2) метод вымачивания трупов в воде или в специальной жидкости продолжительное время для выделения скелета, отдельных костей для изучения их строения;
  • 3) метод распиливания замороженных трупов - разработан Н.И. Пироговым, позволяет изучать взаимоотношения органов в отдельно взятой части тела;
  • 4) метод коррозии - применяется для изучения кровеносных сосудов и других трубчатых образований во внутренних органах путем заполнения их полостей затвердевающими веществами (жидкий металл, пластмассы), а затем разрушением тканей органов при помощи сильных кислот и щелочей, после чего остается слепок от налитых образований;
  • 5) инъекционный метод - заключается в введении в органы, имеющие полости, красящих веществ с последующим осветлением паренхимы органов глицерином, метиловым спиртом и др. Широко применяется для исследования кровеносной и лимфатической систем, бронхов, легких и др.;
  • 6) микроскопический метод - используют для изучения структуры органов при помощи приборов, дающих увеличенное изображение. Ко второй группе относятся:

Вторая группа:

  • 1) рентгенологический метод и его модификации (рентгеноскопия, рентгенография, ангиография, лимфография, рентгенокимография и др.) - позволяет изучать структуру органов, их топографию на живом человеке в разные периоды его жизни;
  • 2) соматоскопический (визуальный осмотр) метод изучения тела человека и его частей - используют для определения формы грудной клетки, степени развития отдельных групп мышц, искривления позвоночника, конституции тела и др.;
  • 3) антропометрический метод - изучает тело человека и его части путем измерения, определения пропорции тела, соотношение мышечной, костной и жировой тканей, степень подвижности суставов и др.;
  • 4) эндоскопический метод - дает возможность исследовать на живом человеке с помощью световодной техники внутреннюю поверхность пищеварительной и дыхательной систем, полости сердца и сосудов, мочеполовой аппарат.

В современной анатомии используются новые методы исследования, такие как компьютерная томография, ультразвуковая эхолокация, стереофотограмметрия, ядерно-магнитный резонанс и др.

В свою очередь из анатомии выделились гистология - учение о тканях и цитология - наука о строении и функции клетки. Для исследования физиологических процессов обычно использовали экспериментальные методы.

На ранних этапах развития физиологии применялся метод экстирпации (удаления) органа или его части с последующим наблюдением и регистрацией полученных показателей.

Фистульный метод основан на введении в полый орган (желудок, желчный пузырь, кишечник) металлической или пластмассовой трубки и закреплении ее на коже. При помощи этого метода определяют секреторную функцию органов.

Метод катетеризации применяется для изучения и регистрации процессов, которые происходят в протоках экзокринных желез, в кровеносных сосудах, сердце. При помощи тонких синтетических трубок - катетеров - вводят различные лекарственные средства.

Метод денервации основан на перерезании нервных волокон, иннервирующих орган, с целью установить зависимость функции органа от воздействия нервной системы. Для возбуждения деятельности органа используют электрический или химический вид раздражения.

В последние десятилетия широкое применение в физиологических исследованиях нашли инструментальные методы (электрокардиография, электроэнцефалография, регистрация активности нервной системы путем вживления макро- и микроэлементов и др.).

В зависимости от формы проведения физиологический эксперимент делится на острый, хронический и в условиях изолированного органа.

Острый эксперимент предназначен для проведения искусственной изоляции органов и тканей, стимуляции различных нервов, регистрации электрических потенциалов, введения лекарств и др.

Хронический эксперимент применяется в виде целенаправленных хирургических операций (наложение фистул, нервнососудистых анастомозов, пересадка разных органов, вживление электродов и др.).

Функцию органа можно изучать не только в целом организме, но и изолировано от него. В таком случае органу создают все необходимые условия для его жизнедеятельности, в том числе подачу питательных растворов в сосуды изолированного органа (метод перфузии). Применение компьютерной техники в проведении физиологического эксперимента значительно изменило его технику, способы регистрации процессов и обработку полученных результатов.

Остановимся на некоторых из них.

Рентгенография

Рентгенография -исследование внутренней структуры объектов, которые проецируются при помощи рентгеновских лучей на специальную плёнку или бумагу. Наиболее часто термин используется в медицинском контексте, описывающий неинвазивное исследование, основанное на изучении костных структур и мягких тканей, при помощи суммационного проекционного изображения. Содержание

Рентгенография применяется для диагностики:

лёгких и средостения - инфекционные, опухолевые и другие заболевания,

позвоночника - дегенеративно-дистрофические (остеохондроз, спондиллез, искривления), инфекционные и воспалительные (различные виды спондилитов), опухолевые заболевания,

различных отделов периферического скелета - на предмет различных травматических (переломы, вывихи), инфекционных и опухолевых изменений,

брюшной полости - перфорации органов, функции почек (экскреторная урография) и другие изменения.

Метросальпингография - контрастное рентгенологическое исследование полости матки и проходимости фаллопиевых труб.

Метод получения изображения

Получение изображения основано на ослаблении рентгеновского излучения при его прохождении через различные ткани с последующей регистрацией его на рентгеночувствительную плёнку. Таким образом на плёнке получается усреднённое, суммационное изображение всех тканей (тень).

В современных цифровых аппаратах регистрация выходного излучения может производиться на специальную кассету с плёнкой или на электронную матрицу. При этом печать плёнок производится только при необходимости, а диагностическое изображение выводится на монитор и, в некоторых системах, сохраняется в базе данных, вместе с остальными данными о пациенте.

Одним из применяемых методов получения снимков пригодной к использованию плотности является переэкспозиция с последующей недопроявкой, сделанной при визуальном контроле. Другой способ - адекватная экспозиция (что сложнее) и полная проявка. При первом методе рентгеновская нагрузка на пациента получается завышенной, однако при втором возможно появление необходимости проведения повторной съёмки. Появление возможности предпросмотра на экране компьютеризированной рентгеновской установки с цифровой матрицей и автоматических проявочных машин снижают потребности и возможности использования первого метода.

Многие современные рентгеновские плёнки имеют очень низкую собственную рентгеновскую чувствительность, и рассчитаны на применение с усиливающими флуоресцентными экранами, светящимися голубым или зелёным видимым светом при облучении рентгеновским излучением. Такие экраны вместе с плёнкой помещаются в кассету, которая после снимка переносится из рентгеновского аппарата в проявочную машину, которая из неё извлекает плёнку, проявляет, фиксирует и сушит.

Преимущества рентгенографии

Широкая доступность метода и легкость в проведении исследований.

Для большинства исследований не требуется специальной подготовки пациента.

Относительно низкая стоимость исследования.

Снимки могут быть использованы для консультации у другого специалиста или в другом учреждении (в отличие от УЗИ-снимков, где необходимо проведения повторного исследования, так как полученные изображения являются оператор-зависимыми).

Недостатки рентгенографии

Относительно плохая визуализация мягких тканей (связки, мышцы, диски и др.).

"Замороженность" изображения - сложность оценки функции органа.

Наличие ионизирующего излучения.

Рентгеноскопия

Рентгеноскопия(анг. fluoroscopy), (рентгеновское просвечивание) - классическое определение - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Анатомия (от греч. ?нб- -- вновь, сверху и фЭмнщ -- «режу», «рублю») -- раздел биологии, изучающий строение тела организмов и их частей на уровне выше клеточного. Для филогенетически близких видов организмов показано сходство на уровне анатомического строения.

Современная анатомия стремится не только описывать факты, но и обобщать их, выяснять не только как устроен организм, но и почему он имеет такое строение. Для ответа на этот вопрос она исследует как внутренние, так и внешние связи организма. Известно, что все в природе взаимосвязано. Также и живой организм человека является целостной системой. Поэтому анатомия изучает организм не как простую механическую сумму составляющих его частей, не зависимую от окружающей его среды, а как целое, находящееся в единстве с условиями существования.

1. Метод изучения анатомии на живом человеке

Каждая наука имеет свои методы исследования, свои способы познания объекта изучения, постижения научной истины. О значении методов ярко сказал великий экспериментатор - физиолог И.П. Павлов: «Наука движется толчками, в зависимости от успехов, делаемых методикой. С каждым шагом методики вперед мы как бы поднимаемся ступенью выше, с которой открывается нам более широкий горизонт с невидимыми ранее предметами». Методы, применяемые в анатомии, позволяют изучать как внешнее, так и внутреннее строение человека.

Соматоскопия - осмотр тела - дает сведения о форме тела и его частей, их поверхности, рельефе. Рельеф тела образуют возвышения различной формы и углубления - ямки, отверстия, борозды, щели, складки, кожные линии. Возвышения и углубления зависят отчасти от свойств самой кожи, но преимущественно от анатомических образований, расположенных сразу под кожей или более глубоко. При изучении анатомии нужно развивать в себе способность определять глубокие части тела через наружный покров, не нарушая его целостности.

Соматометрия - измерение тела и его частей - дополняет данные осмотра. Основные размеры тела - общая его длина (рост), окружность грудной клетки, ширина плеч, длина конечностей - используются для суждения о телосложении человека, для оценки его физического развития. Измерение отдельных частей тела используется во многих областях медицины. Например, измерение позвоночного столба применяется для характеристики осанки тела, определение размеров таза необходимо в акушерской практике и т.п.

Пальпация - прощупывание тела руками и пальцами - позволяет найти костные опознавательные точки, определить пульсацию артерий, положение и состояние внутренних органов, лимфатических узлов. В повседневной практике врача пальпация является одним из главных методов исследования.

Вскрытие трупов и препарирование - старейшие, но не потерявшие своего значения, методы. С этими двумя методами связано в первую очередь развитие анатомии как науки. Вскрытия в научных целях впервые стали производиться в древних рабовладельческих государствах. Великий ученый эпохи Возрождения Андрей Везалий разработал и довел до совершенства метод препарирования. Начиная с Везалия, метод препарирования становится главным в анатомии, с его помощью была получена основная масса сведений о строении человеческого тела. До сих пор препарирование является неотъемлемой частью учебного процесса на кафедре анатомии человека.

Мацерация - также один их древнейших методов анатомии. Он представляет собой процесс размачивания мягких тканей с последующим их размягчением и отгниванием и применяется, в частности, для выделения костей.

Метод инъекции - применяется с XVII - XVIII веков. В широком смысле под этим подразумевают заполнение полостей, щелей, просветов, трубчатых структур в человеческом теле окрашенной или бесцветной уплотняющей массой. Это часто делают в целях получения слепка исследуемой полости или сосуда, а также для того, чтобы этот сосуд легче было отделить от окружающих тканей. В настоящее время метод инъекции применяется, главным образом, для изучения кровеносных и лимфатических сосудов. Этот метод сыграл прогрессивную роль в развитии анатомических знаний, в частности, он позволил узнать ход и распределение кровеносных и лимфатических сосудов внутри органов, выяснить протяженность сосудов, особенности их хода.

Метод коррозии - в общих чертах заключается в том, что трудно препарируемые ткани удаляются путем вытравливания их кислотами или при постепенном отгнивании в теплой воде. Предварительно кровеносные сосуды или полость органа наполняют массой, которая не разрушается под действием кислоты. Следовательно, этот метод тесно связан с методом инъекции. Метод коррозии дает более точные данные относительно хода и расположения кровеносных сосудов, чем метод простого препарирования. Недостатком метода является то, что после удаления тканей теряются естественные топографические взаимоотношения между отдельными частями органа.

Метод окрашивания - имеет целью контрастную цветовую дифференцировку различных элементов организма. В качестве красок используются вещества животного (кармин) или растительного (гематоксилин) происхождения, искусственные анилиновые или каменноугольные (метиленовый синий, фуксин) краски или соли металлов.

В XIX веке для изучения топографических отношений в организме был предложен метод распила замороженных трупов (пироговские срезы). Достоинство этого метода состоит в том, что на определенном участке тела сохраняется существующее в действительности взаиморасположение между различными образованиями. Он позволил уточнить анатомические данные почти обо всех областях человеческого тела и тем самым способствовал развитию хирургии. Пользуясь этим методом, великий русский хирург и топографоанатом Н.И. Пирогов составил атлас распилов тела человека в различных направлениях и заложил основы хирургической анатомии. Полученные на пироговских срезах данные могут быть дополнены сведениями о соотношении тканей, если изготовить срез толщиной несколько микрометров и обработать его гистологическими красителями. Такой метод носит название гистотопографии. По серии гистологических срезов и гистотопограмм можно восстановить изучаемое образование на рисунке или объемно. Такое действие представляет собой графическую или пластическую реконструкцию.

В конце XIX века немецкий анатом В. Шпальтегольц разработал метод просветления анатомических препаратов. Под просветлением тканей понимают такую обработку органов или их частей, при которой изучаемый объект на фоне просветленных тканей становится хорошо видимым. Метод просветления чаще всего используется для изучения нервной и сосудистой систем.

В начале XX века харьковский анатом В.П. Воробьев разработал метод макро-микроскопического исследования, сущность которого заключается в тонком препарировании окрашенных объектов (мелких сосудов, нервов) с последующим изучением их под бинокулярной лупой. Данный метод открыл новую, пограничную область исследования анатомических структур. Этот метод имеет ряд разновидностей: препарирование под падающей каплей, под слоем воды. Он может дополняться разрыхлением соединительной ткани кислотами, избирательной окраской изучаемых структур (нервов, желез), инъекцией трубчатых систем (сосудов, протоков) окрашенными массами.

На рубеже прошлого и нынешнего столетия в анатомию вошел рентгеновский метод. Рентгеновские лучи были открыты в 1895 году. И уже в 1896 году их применили для изучения скелета отечественные анатомы П.Ф. Лесгафт и В.Н. Тонков. Преимущество рентгеновского метода перед методами, ранее применявшимися в анатомии, состоит в том, что он позволяет изучать строение живого человека, видеть функционирующие органы, исследовать в динамике их возрастные изменения. Рентгеновская анатомия выделилась в особый раздел анатомии, необходимый для клиники. В настоящее время помимо рентгеноскопии и рентгенографии применяют специальные рентгеновские методы. Стереорентгенография дает объемные изображения частей тела и органов. Рентгенокинематография позволяет изучать движения органов, сокращения сердца, прохождение контрастного вещества по сосудам. Томография - послойная рентгеновская съемка - дает четкое, без посторонних наслоений, изображение анатомических образований, расположенных в снимаемом слое. Компьютерная томография позволяет получать изображения поперечных срезов головы, туловища, конечностей, на которых органы и ткани различаются по их плотности. Электрорентгенография позволяет получить рентгеновское изображение мягких тканей (кожи, подкожной клетчатки, связок, хрящей, соединительнотканного каркаса паренхиматозных органов), которые на обычных рентгенограммах не выявляются, так как почти не задерживают рентгеновские лучи. Рентгеноденситометрия позволяет прижизненно определять количество минеральных солей в костях.

Изучению анатомии на живом человеке служат методы эндоскопии - наблюдения с помощью специальных оптических приборов внутренней поверхности органов: гортани - ларингоскопия, бронхов - бронхоскопия, желудка - гастроскопия и других.

Ультразвуковая эхолокация (эхография), основанная на различиях акустических свойств органов и тканей, позволяет получить изображения некоторых органов, которые трудно поддаются рентгеновскому исследованию, например, печени, селезенки.

2. Антропометрия

Антропометрия (от греч. Бнисщрпт -- человек и мефсещ -- мерить) -- один из основных методов антропологического исследования, который заключается в измерении тела человека и его частей с целью установления возрастных, половых, расовых и других особенностей физического строения, позволяющий дать количественную характеристику их изменчивости.

В зависимости от объекта исследования различают соматометрию (измерение живого человека), краниометрию (измерение черепа), остеометрию (измерение костей скелета). К антропометрии относят также антропоскопию -- качественную (описательную) характеристику форм частей тела, формы головы, черт лица, пигментации кожи, волос, радужной оболочки глаз и т.п.

Потребность в антропометрических исследованиях обуславливается большой изменчивостью размеров тела человека. Пределы колебания размеров людей одной группы, как правило, заходят за пределы колебаний размеров людей другой группы. Это трансгрессивная изменчивость, которая обусловливает необходимость количественных определений. Результаты антропометрических измерений сравниваются по специально разработанным правилам, которые основываются на принципах вариационной статистики.

Антропометрические методы имеют большое значение в прикладной антропологии, а в последние годы стали играть важную роль в антропометрической (ортопедической) косметологии; до широкого внедрения идентификации по отпечаткам пальцев антропометрия использовалась в криминалистике для идентификации людей (так называемый «Бетрильонаж»).

3. Типы телосложения

Уровень физического развития определяют совокупностью методов, основанных на измерениях морфологических и функциональных признаков. Различают основные и дополнительные антропометрические показатели. K первым относят рост, массу тела, окружность грудной клетки (при максимальном вдохе, паузе и максимальном выдохе), силу кистей и становую силу (силу мышц спины). Кроме того, к основным показателям физического развития относят определение соотношения «активных» и «пассивных» тканей тела (тощая масса, общее количество жира) и других показателей состава тела. K дополнительным антропометрическим показателям относят рост, сидя, окружность шеи, размер живота, талии, бедра и голени, плеча, сагиттальный и фронтальный диаметры грудной клетки, длину рук и др. Таким образом, антропометрия включает в себя определение длины, диаметров, окружностей и др.

Дополнительные признаки, участвующие в разграничении типов: форма грудной клетки, брюшной области и спины.

Выделяются три главных типа телосложения - грудной, мускульный и брюшной, а также четыре переходных - грудно-мускульный, мускульно-грудной, мускульно-брюшной, брюшно-мускульный, и два смешанных типа - грудно-брюшной и брюшно-грудной. Последние два типа скорее оцениваются как неопределенные (слабо развитая мускулатура, вздутый живот).

Грудной тип телосложения. К грудному типу телосложения следует отнести мужчин со слаборазвитым жироотложением и слабой степенью развития мускулатуры, с плоской грудной клеткой, впалым животом и, как правило, сутулой спиной.

Мускульный тип телосложения. К мускульному типу телосложения следует отнести мужчин со среднеразвитым жироотложением и с хорошо развитой мускулатурой, с цилиндрической грудной клеткой, прямой формой брюшной области и обычной (волнистой), а иногда сутулой спиной.

Брюшной тип телосложения. К брюшному типу телосложения следует отнести мужчин с сильно развитым или обильным жироотложением, со слабо или среднеразвитой мускулатурой, с конической формой грудной клетки, с выпуклой формой живота. Форма спины у индивидуумов брюшного типа телосложения может быть как обычная (волнистая), так и прямая и сутулая.

Промежуточные или переходные типы телосложения характеризуются сочетанием признаков каких-либо из двух основных типов.

4. Роль спорта, труда, социального и биологического фактора на строение костей

Медико-биологические и педагогические науки имеют дело с человеком как с существом не только биологическим, но и социальным. Социальность - специфическая сущность человека, которая не упраздняет его биологической субстанции, ведь биологическое начало человека - необходимое условие для формирования и проявления социального образа жизни. Между тем творят историю, изменяют живой и неживой мир, созидают и разрушают, устанавливают мировые и олимпийские рекорды не организмы, а люди, человеческие личности. Таким образом, социально-биологические основы физической культуры - это принципы взаимодействия социальных и биологических закономерностей в процессе овладения человеком ценностями физической культуры. Естественно-научные основы физической культуры - комплекс медико-биологических наук (анатомия, физиология, биология, биохимия, гигиена и др.).

Анатомия и физиология - важнейшие биологические науки о строении и функциях человеческого организма. Человек подчиняется биологическим закономерностям, присущим всем живым существам. Однако от представителей животного мира он отличается не только строением, но развитым мышлением, интеллектом, речью, особенностями социально-бытовых условий жизни и общественных взаимоотношений. Труд и влияние социальной среды в процессе развития человечества повлияли на биологические особенности организма современного человека и его окружение. В основе изучения органов и межфункциональных систем человека принцип целостности и единства организма с внешней природной и социальной средой.

Из данного обзора можно сделать выводы, что на сегодняшний день существует большое количество методов для изучения прижизненной анатомии. Высокая информативность и специфичность этих методов может быть использована для исследования, как топографии всего органа, так и анатомической характеристики его отделов. Для выполнения работы надо активно использовать архивы медицинских учреждений, так как высокая стоимость обследования и наличие строгих показаний к ним не позволяют широко применять их для научных целей.

Современная анатомия, как и медицина в целом, развивается в русле научно-технического прогресса. Это выражается в усилении взаимосвязи анатомии с другими научными дисциплинами, возрастании роли эксперимента в научных исследованиях, в применении новых технических методов. Анатомия использует достижения физики, химии, кибернетики, информатики, математики, механики. Свои достижения анатомия ставит на службу медицине.

соматометрия антропологический мускульный телосложение

Литература

1. Громов И.А., Мацкевич И.А., Семёнов В.А. Западная социология. -- СПб.: ООО «Издательство ДНК», 2003. -- С. 537.

2. Бунак В.В. Антропометрия. Практический курс. -- М., 1941.

3. Тегако Л.И., Марфина О.В. Практическая антропология. -- Ростов-на-Дону, 2003.

Размещено на Allbest.ru

...

Подобные документы

    Массовость антропометрических исследований, позволяющих оценивать и сравнивать изменчивость признаков различных расовых, возрастных, половых групп на основе измерений большого числа индивидуумов. Тотальные размеры тела. Основные типы его пропорций.

    презентация , добавлен 21.05.2014

    Понятие антропометрии, её признаки, методики и развитие как науки, принципы антропометрических исследований. Телосложение человека и его виды. Основные типы пропорций тела. Генетические условия соматической конституции. Типология человека по Э. Кречмеру.

    презентация , добавлен 30.05.2012

    Вскрытие тела человека в Древнем Египте. Краткая характеристика макроморфологического, микроскопического и молекулярно-биологического этапов развития научной патологической анатомии. Ведущие ученые и их труды. Современные методы научного познания болезни.

    презентация , добавлен 25.05.2014

    Первые упоминания о строении человеческого тела в Древнем Египте. Ознакомление с познаниями в анатомии таких представителей греческой, как Гиппократ и Герофил. Рассмотрение труда "О медицине" древнеримского энциклопедиста и врача Авла Корнелия Цельса.

    реферат , добавлен 22.05.2015

    Сущность, основные задачи, предмет изучения и методы патологической анатомии. Возможности современной патологогистологической техники. Основные этапы развития патологической анатомии. Патологическая анатомия в России и СССР, выдающиеся патологоанатомы.

    реферат , добавлен 25.05.2010

    Развитие макромикроскопической анатомии в Советском Союзе. Основы изучения лимфатической системы. Исследования по вопросам эмбриогенеза вегетативной и периферической нервной системы. Изучение сегментарного строения органов и кровеносных сосудов человека.

    презентация , добавлен 18.04.2016

    Понятие о физиологии животных, как о науке, значимость для жизнедеятельности человека. Виды анатомии домашних животных. Развитие ветеринарной анатомии и физиологии в Китае, Персии, Египте, Греции, Месопотамии и Индии. Значение учения Гиппократа.

    реферат , добавлен 17.05.2014

    Биография ученого эпохи Древнего Рима Клавдия Галена. Изучение анатомии и физиологии животных. Последовательное и полное описание строения организма. Применение экспериментального метода для изучения анатомии. Суставный аппарат человека, диартрозы.

    курсовая работа , добавлен 14.11.2010

    Разнообразие интересов и талантов Леонардо да Винчи. Проведение анатомических вскрытий художником, создание системы изображений органов и частей тела в поперечном сечении. Исследования в области сравнительной анатомии, содержание дневниковых записей.

    презентация , добавлен 28.10.2013

    Изучение анатомии и физиологии животных Галеном. Эразистрат как основатель научной физиологии, открывший метод экспериментального изучения коры и извилин головного мозга. Влияние взглядов и идей Галена на древнерусских ревнителей медицинского просвещения.

1. Анатомия и физиология-как наука: предмет изучения и методы исследования, их связь с другими науками, значение в медицине.

Анатомия- изучает особенности внутреннего и внешнего строения организма, строение органов, их расположение.

Физиология- изучает функции организма и отдельных органов и систем.

Методы исследования в анатомии:

Секционный (вскрытие трупов)

Препаровочный (приборами)

Эндоскопический

Микроскопический (микроскопом)

Томографический

Рентгеновский

Инъекционный

Методы исследования в физиологии:

Удаление органа

Метод перерезки нерва (денервация)

Инструментальный (ЭКГ)

Вариоционно-статистические методы с применением компьютерной техники

Анатомия и физиология являются научным фундаментом для биологических наук - медицины, гигиены и психологии.
Гигиена изучает влияние условий быта, учебы и труда на здоровье людей. Базируясь на анатомии и физиологии, она разрабатывает нормы питания, определяет продолжительность рабочего дня и отпуска для представителей различных профессий, в том числе для артистов балета.
Психология - наука о психической, «душевной» деятельности человека. С помощью анатомии и физиологии она выявляет зависимость психической деятельности (мышления, сознания) от физиологических процессов, протекающих в организме человека.

Анатомия и физиология являются теоретическим фундаментом для всех клинических дисциплин. Только основы­ваясь на знаниях анатомии и физиологии, медицина может правильно распознавать болезни, устанавливать их причины, правильно лечить их и предупреждать. Плохо зная строение тела человека и жизнедеятельность организма, медицинский работник вместо пользы может нанести вред и непоправимый урон больному.

2. Организм как единое целое. Структура организма: клетка, ткани, органы, системы органов. Строение клетки.

Организм- живая биологически целостная система, способная к самовоспроизведению, саморазвитию и самоуправлению.

Целостность организма, т.е. его объединение (интегрирование) обеспечивается:

Структурным соединением всех частей организма: клеток, тканей, органов, частей органов, жидкостей.

Связью всех частей организма при помощи: жидкостей, циркулирующих в его сосудах, полостях и пространствах (гуморальная связь); нервной системы, которая регулирует все процессы организма (нервная регуляция).

Структура организма: уровни организации- молекулы-клетки-ткани-органы-системы-организм.

Клетка- является структурно-функциональной единицей организма.

Ткань- система клеток и неклеточных структур, объединенных общей физиологической функцией, строением и происхождением, которая составляет морфологическую основу обеспечения жизнедеятельности организма.

Виды ткани:

Эпителиальная: клетки плотно прилегают друг к другу; межклеточного вещества мало.

Соединительная: клетки расположены рыхло; сильно развито межклеточное вещество.

Нервная: состоит из клеток с отростками, способна возбуждаться и передавать возбуждение.

Мышечная: образована мышечными волокнами, способна возбуждаться и сокращаться.

Эпителиальная ткань-покрывает поверхность тела и полости различных трактов и протоков, за исключением сердца, кровеносных сосудов и некоторых полостей.

Слои эпителиальных клеток на поверхности кожи защищают тело от инфекций и внешних повреждений.

Клетки, выстилающие пищеварительный тракт от рта до анального отверстия, обладают функциями:

Они секретируют пищеварительные ферменты, слизь и гормоны

Всасывают воду и продукты пищеварения.

Эпителиальные клетки, выстилающие дыхательную систему, секретируют слизь и удаляют ее из легких вместе с задерживаемой ее пылью и другими инородными частицами.

В мочевой системе эпителиальные клетки осуществляют выделение различных веществ; выстилают протоки, по которым моча выводится из организма.

Производными эпителиальных клеток являются половые клетки человека-яйцеклетки и сперматозоиды, а весь мочеполовой тракт покрыт специальными эпителиальными клетками, секретирующими ряд веществ, необходимых для существования яйцеклетки и сперматозоида.

Соединительная ткань, или ткани внутренней среды-представлена разной по структуре и функциям группой тканей, которые располагаются внутри организма и не граничат ни с внешней средой, ни с полостями органов.

Ткань защищает, изолирует и поддерживает части тела, выполняет транспортную функцию внутри организма.

Соединительная ткань характеризуется большим количеством межклеточного вещества, состоит из клеток различных типов, располагающихся далеко друг от друга; их потребности в кислороде и питательных веществах невелики.

Подтипы соединительной ткани:

Фиброзная

Эластическая

Лимфоидная

Хрящевая

Рыхлая соединительная ткань- состоит из клеток, разбросанных в межклеточном веществе и переплетенных неупорядоченных волокон. волнистые пучки волокон состоят из коллагена, а прямые-из эластина, их совокупность обеспечивает прочность и упругость соединительной ткани. По прозрачному полужидкому матриксу, содержащему эти волокна, разбросаны клетки различных типов:

Овальные тучные клетки окружают кровеносные сосуды, они выбрасываются в матрикс; продуцируют гепарин (противодействие свертыванию крови), геспарин (расширение сосудов, сокращение мышц, стимуляция секреции желудочного сока).

Фибробласты- клетки, продуцирующие волокна

Макрофаги (гистоциты)-амебоидные клетки, поглощающие болезнетворные организмы.

Плазматические клетки-компонент иммунной системы

Хромотофоры- сильно разветвленные клетки, содержащин меланин; имеются в глазах и коже.

Жировые клетки

Плотная соединительная ткань-состоит из волокон, а не из клеток.

Белая ткань-содержится в сухожилиях, связках, роговице глаза, надкостнице и других органов. Она состоит из собранных в параллельные пучки прочных и гибких коллагеновых волокон. Она прочнее из-за пучков.

Желтая соединительная ткань-находится в связках, стенках артерий, легких. Она образована беспорядочным переплетением желтых эластичных волокон.

Скелетные ткани- представлены хрящом и костью.

Хрящ-прочная ткань, состоящая из клеток (хондробластов), погруженных в упругое вещество-хондрин. Снаружи он покрыт более плотной надхрящницей, в которой формируются новые клетки хряща. Хрящ покрывает суставные поверхности костей, содержится в ухе и глотке, в суставных сумках и межпозвоночных дисках.

Нервная ткань-характеризуется max развитием таких свойств, как раздражимость, проводимость, возбудимость. Состоит из нервных клеток-нейронов и клеток нейроглии (окружают клетки нейронов). Она содержит рецепторные клетки.

Раздражимость-способность реагировать на физические (тепло, холод, звук, прикосновение) и химические (вкус, запах) раздражители.

Проводимость-способность передавать возникший в результате раздражения импульс (нервный импульс)

Возбудимость-может генерировать потенции.

Мышечная ткань. Мышцы обеспечивают передвижение организма в пространстве, его позу и сократительную активность внутренних органов. Способность к сокращению, в какой-то степени, присущая всем клеткам в мышечных клетках, развита наиболее сильно-это возбудимая ткань. Состоит из сократительных волокон.

3 типа мышц:

Скелетные (поперечнополосатые или произвольные)

Гладкие (висцеральные или непроизвольные)

Сердечная

Это часть организма, имеющие определенную форму, выполняющие определенные функции, состоящие из нескольких тканей и занимающие определенное место в организме.

Система органов-органы, выполняющие одинаковую функцию и общее происхождение, формируют аппараты органов: опорно-двигательный, эндокринный, дыхательный, половой, пищеварительный и др.

Функциональные системы организма-динамически саморегулирующиеся центрально-периферические организации, обеспечивающие своей деятельностью полезные для метаболизма организма и его приспособление к окружающей среде результаты.

Функциональные системы организма:

Фс, поддерживающая температуру тела

Фс, поддерживающая оптимальный состав крови

Фс, поддерживающая оптимальное АД

Фс, поддерживающее дыхание, питание, выделение

Строение клетки:

Состоит из 3-х основных компонентов:

Цитоплазма

Клеточная мембрана

Клеточная мембрана-ограничивает клетку о внешней среды и других клеток, защищает цитоплазму от химических и физических воздействий, регулирует транспорт веществ в клетку и из нее, образует жгутики, ворсинки. Через поры в мембране в клетку поступают вода и ионы.

Цитоплазма-вкл. в себя гиалоплазму и находящиеся в ней органоиды и включения. Гиалоплазма-сложная коллоидная система, содержащая воду, минер соли, белки, нуклеиновые кислоты, углеводы, жиры и ферменты. Она объединяет клеточные структуры, обеспечивает их химическое взаимодействие, осуществляет транспорт клетки и из нее.

Ядро-хранит и воспроизводит генетическую информацию, регулирует обмен веществ в клетке, участвует в синтезе белка. В ядре различают: ядерную оболочку, хроматин, одно или несколько ядрышек, нуклеоплазму.

Ядерная оболочка содержит крупные поры, через которые происходит обмен веществ между ядром и цитоплазмой.

Хроматин-это деспирализованные хромосомы в интерфазном ядре. Во время деления клетки хромосомы спирализуются и становятся видимыми.

Нуклеоплазма (или ядерный сок)-вязкая жидкость ядра, в которой находятся ядрышки. Ядрышки состоят из РНК, ДНК и белка.

Мембранные органоиды клеток:

Эндоплазматическая сеть-разветвленная система канальцев, которые пронизываю цитоплазму.

Митохондрии-их оболочки состоит из 2-х мембран:наружной-гладкой-и внутренней, образующей складки (кристы). На внутренней мембране расположены ферменты, участвующие в процессах окисления (клеточного дыхания) и синтеза АТФ.

Лизосомы-тела, окруженные мембраной, они содержат ферменты, которые разрушают белки, жиру, углеводы, нуклеиновые кислоты, осуществляя внутриклеточное пищеварение.

Комплекс Гольджи-многослойная система плоских мембранных цистерн. Пластинчатый комплекс накапливает и выделяет из клетки продукты внутриклеточного синтеза и продукты распада, обеспечивает формирование лизосом.

Немембранные органоиды клетки:

Рибосомы-мелкие тельца округлой формы, состоящие из 2-х субъединиц., которые образуются в ядрышках отдельно и объединяются на м-РНК. Функция-синтез белка.

Клеточный центр (центросома)- состоит из 2-х центриолей. Центриоли содержат ДНК и способны к самоудвоению, при делении клетки они формируют веретено деления.

3. Нервная ткань. Нейрон, строение и функции. Структура синапса.

Нервная ткань состоит из нервных клеток (нейронов) и нейроглии (окружают клетки нейронов), которая осуществляет

Защитную

Разграничительную функции.

Структурно-функциональной единицей нервной ткани является нервная клетка (нейрон). Нейрон состоит из тела и отростков различной длины.

Аксон-длинный отросток, не ветвящийся. По нему нервный импульс движется от тела нервной клетки к рабочим органам или к другой нервной клетке.

Дендрит-один или несколько коротких, ветвистых отростков. иго окончания воспринимают раздражения и проводят нервные импульсы к телу нейрона.

Чувствительные (афферентные)- функция-принимают информацию и передают ее в ЦНС

Вставочные- функция-обрабатывают информацию

Двигательные (эфферентные)-функция-передают сигналы к рабочим органам.

Структура синапса (на примере химического синапса):

С помощью синапсов идут контакты, в которых идет передача сигнала от нейрона к нейрону.

Пресинаптическая часть-(окончание аксоная)

Синаптическая

Постсинаптическя часть-(структура воспринимающей клетки)

Пресинаптическая часть ограничена пресинаптической мембраной, там накапливаются хим вещества-едиаторы (передатчики нервного импульса)

Постсинаптическая часть имеет постсинаптическую мембрану+синаптичекую щель.

В синапсе передача нервных импульсов-в одном направлении.

Классификация синапсов:

По месторасположению: нервно-мышечные, нейро-нейрональные синапсы

По характеру действия: возбуждающие, тормозящие

По способу передачи сигналов: химические, электрические синапсы.

4. Мышечная ткань, виды. Строение мышцы. Строение мышечного волокна, сократительные белки.

Мышечная ткань- ткань, различная по строению и происхождению, но сходная по способности к выраженным сокращениям.

Гладкая мышечная ткань

Поперечно-полосатая скелетная мышечная ткань

Поперечно-полосатая сердечная мышечная ткань

Строение мышцы:

Брюшко- средняя активно сокращающаяся часть.

Пассивная часть, при помощи которой мышца прикрепляется к костям-сухожилие (состоит из соединительной ткани). Имеет головку и хвост. При помощи головки мышца начинается от кости, это неподвижная и фиксированная точка. Хвост мышцы прикрепляется к другой кости, перебрасываясь через один или несколько суставов, это подвижная точка, она находится на другой кости и при сокращении мышцы изменяет свое положение.

Фасция-тонкая соединительнотканная оболочка, покрывающая мышцу снаружи. Фасции отграничивают мышцы друг от друга, устраняя трение, фиксируют и защищают мышцы, не позволяя им смещаться при сокращении. При воспалительных процессах фасции ограничивают распространение гноя, а при кровоизлияниях- крови.

Строение мышечного волокна:

Структурной единицей мышечного волокна является саркомер.

Мышечное волокно большая клетка диаметром 10-100 мкм и длиной в несколько сантиметров. Она состоит из оболочки, цитоплазмы, ядра, митохондрий и других внутриклеточных включений. В отличие от других клеток, мышечное волокно имеет много ядер. Кроме того, в мышечном волокне есть тонкие нити - миофибриллы, которые играют основную роль при сокращении и свойственны только мышечным волокнам.

Исчерченность мышечного волокна обусловлена тем, что каждая миофибрилла состоит из светлых и темных участков-дисков.

Посредине каждого светлого диска имеется темная плоская Z-мембрана, которая проходит через все миофибриллы мышечного волокна, разделяя его на саркомеры. Каждый саркомер состоит из расположенных параллельно миомеров - участков миофибрилл, ограниченных двумя Z-мембранами. Каждый миомер состоит из темного диска и двух половинок дисков по обе стороны от него. Посредине темного диска расположена светлая полоска. С помощью электронного микроскопа установлено, что миофибрилла построена из еще более тонких нитей - протофибрилл. Различают два вида протофибрилл: толстые - около 10 нм - и тонкие - 5 нм, Толстые протофибриллы состоят из белка миозина, тонкие - из белка актина. Диск содержит лишь тонкие актиновые протофибриллы, светлая полоска - только миозиновые нити. Темные части диска по обе стороны от светлой полоски состоят из обоих типов протофибрилл.

Сократительные белки:

3 вида белков:

Сократительные

Саркоплазматичекие

Белки стромы

Филамент-сократительный белок.

Актин – сократительный белок мышц, который составляет основу тонких нитей.

Тропомиозин – это структурный белок актиновой нити, представляющий собой вытянутую в виде тяжа молекулу.

Миоглобин - (саркоплазмотичекий белок)- это белок-пигмент (наподобие гемоглобина), обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (и поступление кислорода при этом резко падает).

Коллаген и эластин-белки стромы, обеспечивают упругость и эластичность мышцам.

5. Костная ткань. Строение кости как органа. Классификация костей.

Костная ткань- разновидность соединительной ткани, из которой построены кости – органы, составляющие костный скелет тела человека. Костная ткань состоит из взаимодействующих структур: клеток кости, межклеточного органического матрикса кости (органического скелета кости) и основного минерализованного межклеточного вещества. (В ее состав входят особые клетки и межклеточное вещество. Последнее включает органический матрикс, состоящий из коллагеновых волокон.) (образована плотным компактным веществом и рыхлым губчатым веществом).

Строение кости как органа:

Кость-элемент опорно-двигательного аппарата человека, представляет собой жесткую конструкцию из нескольких материалов.

Остеон-структурная единица кости.

Надкостница – располагается на поверхности кости и состоит из двух слоев. Наружный (фиброзный) слой построен из плотной соединительной ткани и выполняет защитную функцию, укрепляет кость и увеличивает ее упругие свойства. Внутренний (oстеогенный) слой надкостницы построен из рыхлой соединительной ткани, в которой имеются нервы, сосуды и значительное количество остеобластов (остеообразующих клеток). За счет этого слоя происходит развитие, рост в толщину и регенерация костей после повреждения. Надкостница прочно срастается с костью при помощи соединительно-тканных прободающих волокон, проникающих в глубь кости. Таким образом, надкостница выполняет защитную, трофическую и остеообразующую функции.

Компактное (плотное) вещество кости –располагается за надкостницей и построено из пластинчатой костной ткани, которая формирует костные перекладины (балки). Отличительной особенностью компактного вещества является плотное расположение костных перекладин. Прочность компакты обеспечивается слоистым строением и каналами, внутри которых располагаются сосуды, несущие кровь.

Губчатое вещество кости – располагается под компактным веществом внутри кости и построено так же из пластинчатой костной ткани. Отличительной особенностью губчатого вещества является то, что костные перекладины располагаются рыхло и образуют ячейки, поэтому губчатое вещество действительно напоминает по строению губку. По сравнению с компактным, оно обладает гораздо больше выраженными деформационными свойствами и формируется именно в тех местах, где на кость действуют силы сжатия и растяжения.

Внутри кости располагается костномозговая полость –стенки которой изнутри, так же как и поверхность костных балок покрыта тонкой волокнистой соединительно-тканной оболочкой.

В ячейках губчатого вещества и костномозговой полости находится красный костный мозг – в котором протекают процессы кроветворения. У плодов и новорожденных все кости кроветворят, но с возрастом, постепенно, происходит замещение кроветворной ткани на жировую и красный косный мозг превращается в желтый и теряет функцию кроветворения. Дольше всего сохраняется красный костный мозг в губчатом веществе позвонков и грудной кости.

Суставной хрящ – покрывает суставные поверхности кости и построен из гиалиновой хрящевой ткани. Толщина хряща очень сильно варьирует. Как правило, в проксимальном отделе кости он тоньше, чем в дистальном. Суставной хрящ не имеет надхрящницы и никогда не подвергается окостенению. При большой статической нагрузке он истончается.

Классификация костей:

Трубчатые

Губчатые

Смешанные

Воздухоносные

Трубчатая кость-построена из губчатого и компактного вещества, образующие трубку с костномозговой полостью. Выполняют функции опоры, защиты, движения. Трубчатая кость имеет тело (диафиз) и 2 утолщенных конца (эпифизы), на которых имеются суставные поверхности. Участок кости, где диафиз переходит в эпифиз, называется метафезом. Трубчатые кости образуют скелет конечностей.

Губчатые кости-построены из губчатого вещества. Различают длинные губчатые кости (ребра и грудина) и короткие (позвонки, кости запястья, предплюсны). Функция-вспомогательное приспособление для работы мышц.

Плоские кости-участвуют в образовании полостей тела и выполняют защитную функцию. (кости мозгового отдела черепа, тазовые кости, лопатки).

Смешанные кости-состоят из частей, имеющих различное строение и форму(позвонок-тело позвонка относятся к губчатым костям, отросток позвонка-к плоским).

Воздухоносные кости-имеют в теле полость, которая выстлана слизистой оболочкой и заполнена воздухом. (лобная, клиновидная, верхняя челюсть).

6. Понятие о сочленении костей. Суставы, их виды, строение, функции.

Соединения (сочленение) костей делят на 2 группы:

Непрерывные

Прерывные

Непрерывные соединения или синартрозы характеризуются тем, что в местах соединений костей между ними нет перерыва, нет полости и щели. Кости соединяются сплошной связующей тканью. Такие соединения малоподвижны или неподвижны.

Делят на 3 группы в зависимости от вида ткани, при помощи которой соединяются кости. Если промежуток между соединяющимися костями заполнен соединительной тканью, то такое непрерывное соединение называют соединительнотканным (фиброзным). Например соединения швов между костями черепа. Если соединение при помощи хрящевой ткани-хрящевое соединение (между телами позвонков). Если при помощи косной ткани-то это костное соединение (соединение крестцовых позвонков у взрослого).

Прерывные соединения (диартрозы) предполагают наличие щели и полости в том месте, где кости соединяются между собой. В эту группу относят наиболее подвижные соединения-суставы.

Есть переходная форма соединений-полусуставы (гемиартрозы)-характеризуются наличием небольшой щели или полости между костями.

Классификация суставов:

Простые-имеют одну пару суставных поверхностей

Сложные-включают 2 или более пар суставных поверхностей

Комплексные-суставы, полость которых путем диска или мениска разделена на 2 части.

Сустав- подвижные соединения костей скелета, разделённых щелью, покрытые синовиальной оболочкой и суставной сумкой.

Строение:

Полость сустава;

Суставные хрящи;

Суставная капсула;

Синовиальная оболочка;

Синовиальная жидкость.

Суставной хрящ-покрывает суставные поверхности.

Суставные поверхности сочленяющихся костей покрыты гиалиновым (реже волокнистым) суставным хрящом. Постоянное трение поддерживает гладкость, облегчающую скольжение суставных поверхностей, а сам хрящ, благодаря эластичным свойствам смягчает толчки, выполняя роль буфер.

Суставная капсула или суставная сумка - Она прикрепляется к соединяющимся костям вблизи краев суставных поверхностей или отступая на некоторое расстояние от них герметично окружает суставную полость, предохраняет сустав от различных внешних повреждений (разрывов и механических повреждений). Покрыта наружной фиброзной и внутренней синовиальной мембраной.Наружный слой плотнее,толще и прочнее внутреннего,он образован из плотной волокнистой соединительной ткани. Внутренний слой представлен синовиальной мембраной,функция которой секретирование синовиальной жидкости. Функции синовиальной жидкости: 1)питает сустав 2)увлажняет его 3)устраняет трение суставных поверхностей.

Суставная полость - щелевидное герметически закрытое пространство, ограниченное синовиальной оболочкой и суставными поверхностями. В суставной полости коленного сустава находятся мениски.

Функции суставов:

Основная функция суставов заключается в обеспечении подвижности костей.

Опорную функцию суставов

7. Общая характеристика опорно-двигательного аппарата. Скелет, функции. Отделы скелета.

Опорно-двигательный аппарат-это скелет, состоящий из костей и их соединений, а также мышцы. Скелет-пассивная часть опорно-двигательного аппарат, мышцы-его активная часть. На скелете начинаются и прикрепляются мышцы. Скелет состоит из костей и хрящей. Скелет человека защищает от повреждений органы ЦНС (головной и спинной мозг) и жизненно важные внутренние органы (сердце, легкие, органы половой и мочеполовой системы и др), участвует в движениях тела и его частей. В губчатом веществе костей заложен красный костный мозг, который выполняет кроветворную функцию. Скелет является депо солей кальция, фосфора, магния и др, участвующих в обменных процессах.

Защитная

Двигательная

Кроветворная

Обменная

Отделы скелета:

Осевой скелет:

Скелет головы-череп

Скелет туловища-позвоночный столб, ребра и грудина.

Добавочный скелет:

Скелет верхних конечностей-лопатка, ключица, плечевая, локтевая, лучевая кости и кости кисти

Скелет нижних конечностей-тазовая, бедренная, большая и малая берцовые кости, коленная чашечка и кости стопы.

8. Кровь-определение, ее состав, физико-химические свойства, функции. Состав плазмы крови. Белки плазмы крови, их значение.

Кровь- это жидкая подвижная ткань внутренней среды организма, которая состоит из жидкой среды - плазмы и взвешенных в ней клеток - форменных элементов: клеток лейкоцитов, эритроцитов и тромбоцитов (белые кровяные пластинки).

Кровь состоит из двух основных компонентов: плазмы и взвешенных в ней форменных элементов.

Физико-химические свойства:

Вязкость крови – обусловлена наличием в ней белков и форменных элементов. Сгущению крови, т.е. повышению её вязкости способствует потеря жидкости, например, при неукротимой рвоте, диарее, обширных ожогах, усиленной физической работе (жидкость удаляется с потом), а также употребление мясной пищи (мясо – белковый продукт, а повышение содержания в крови белка ведёт к повышению вязкости крови).

Относительная плотность (удельный вес) крови – зависит от количества эритроцитов, содержания в них гемоглобина и белкового состава плазмы крови. Относительная плотность крови взрослого человека равна 1050 – 1060, а плазмы 1029 – 1034. Снижению удельного веса крови способствует белковое голодание (когда человек употребляет в основном жирную и углеводную пищу), а также анемия (снижение количества гемоглобина и эритроцитов).

Осмотическое давление – зависит в основном от растворённых в крови и тканях минеральных солей (NaClи др.)

a) Солевой раствор, имеющий равное с кровью осмотическое давление, называется изотоническим (физиологическим ). Примером такого раствора является 0,9 % раствор NaCl,

b) Солевой раствор с более высоким осмотическим давлением, чем в плазме крови называется гипертоническим. Например, 9 % раствор NaCl – его можно использовать только для наружного применения

c) Солевой раствор с более низким осмотическим давлением, чем в крови и тканях, называется гипотоническим, например 0,3 % раствор NaCl.

Онкотическое давление – обусловлено содержащимися в плазме крови белками-альбуминами, которые обладают гидрофильностью, т. е. способностью притягивать к себе воду. Благодаря этому жидкость удерживается в сосудистом русле.

Реакция крови – определяется концентрацией ионов водорода. В норме она слабощелочная. Водородный показатель рН для венозной крови равен 7,36; для артериальной – 7,4

Функции крови:

Транспортная - передвижение крови; в ней выделяют ряд подфункций:

Дыхательная - перенос кислорода от лёгких к тканям и углекислого газа от тканей к лёгким;

Питательная - доставляет питательные вещества к клеткам тканей;

Экскреторная (выделительная) - транспорт ненужных продуктов обмена веществ к легким и почкам для их экскреции (выведения) из организма;

Терморегулирующая - регулирует температуру тела.

Регуляторная - связывает между собой различные органы и системы, перенося сигнальные вещества (гормоны), которые в них образуются.

Защитная - обеспечение клеточной и гуморальной защиты от чужеродных агентов;

Гомеостатическая - поддержание гомеостаза (постоянства внутренней среды организма) - кислотно-основного равновесия, водно-электролитного баланса и т. д.

Механическая - придание тургорного напряжения органам за счет прилива к ним крови.

Состав плазмы крови:

Плазма крови- жидкая часть крови, которая содержит воду и взвешенные в ней вещества - белки и другие соединения.. Около 85 % плазмы составляет вода. в плазме крови содержатся газы (кислород, углекислый газ) и биологически активные вещества (гормоны, витамины, ферменты, медиаторы), глюкоза, жирные кислоты, холестерин, азотсодержащие (белки, аминокислоты, мочевина, креатинин, аммиак).

Белки плазмы крови:

Основными белками плазмы являются альбумины, глобулины и фибриноген.

Значение белков плазмы крови:

1. Белки обусловливают возникновение онкотического давления величина которого важна для регулирования водного обмена между кровью и тканями.

2. Белки, обладая буферными свойствами, поддерживают кислотно-щелочное равновесие крови.

3. Белки обеспечивают плазме крови определенную вязкость, имеющую значение в поддержании уровня артериального давления.

4. Белки плазмы способствуют стабилизации крови, создавая условия, препятствующие оседанию эритроцитов.

5. Белки плазмы играют важную роль в свертывании крови.

6. Белки плазмы крови являются важными факторами иммунитета, т. е. невосприимчивости к заразным заболеваниям.

9. Форменные элементы крови. Лейкоциты: количество, лейкоцитарная формула, виды, важнейшие свойства и функции.

Лейкоциты-белые кровяные тельца, имеющие ядра. Образуются в красном костном мозге, лимфоузлах, селезенке. Продолжительность их жизни 8-12 суток.

Делятся на 2 группы:

Незернистые лейкоциты, или агранулоциты (относятся

лимфоциты и моноциты)

Зернистые лейкоциты, или гранулоциты (относятся нейтрофилы, эозинофилы и базофилы)

Лейкоцитарная формула-это процентные взаимоотношения различных видов лейкоцитов в крови относительно постоянны (только у здоровых людей)

Свойства:

Вырабатывают специфические защитные вещества- антитела (иммуноглобулины)

Обладают способностью фагоцитировать (пожирать) бактерии и другие чужеродные частицы

Защитная-защита организма от чужеродных тел.

10. Форменные элементы крови. Эритроциты: количество, лейкоцитарная формула, виды, важнейшие свойства и функции.

Эритроциты-красные кровяные тельца имеют форму двояковогнутых дисков, зрелые эритроциты не имеют ядер. Они образуются в красном костном мозге, а разрушаются в селезенке и печени. Продолжительность их жизни 120-150 дней.

Количество:

У здорового человека в 1 мм 3 крови содержится от 4 млн до 5 млн эритроцитов; у здоровых мужчин 4 500 000-5 500 000 в 1 мм3, у женщин - 4 000 000-5 000 000 в 1 мм3.

Эритробласт- родоначальная клетка. Ядро его имеет почти геометрически круглую форму, окрашивается в красно-фиолетовый цвет, можно отметить более грубую структуру и более яркую окраску ядра, хотя хроматиновые нити довольно тонкие, переплетение их равномерное, нежносетчатое. В ядре находятся 2-4 ядрышка и более. Цитоплазма клетки с фиолетовым оттенком

Пронормоцит (пронормобласт) подобно эритробласту характеризуется четко очерченным круглым ядром и выраженной базофилией цитоплазмы. Отличить пронормоцит от эритробласта можно по более грубой структуре ядра и отсутствию в нем ядрышек.

Нормоцит (нормобласт) по величине приближается к зрелым безъядерным эритроцитам

Промегалобласт - наиболее молодая форма мегалобластического ряда. Обычно промегалобласт большего диаметра, структура его ядра отличается четкостью рисунка хроматиновой сети с границей хроматина и парахроматина. Цитоплазма обычно более широкая, чем у пронормоцита. Иногда обращает на себя внимание неравномерная (нитчатая) интенсивная окраска базофильной цитоплазмы.

Свойства:

В состав эритроцитов входит гемоглобин, состоящий из белка (глобина), содержащего железо (гем). Гемоглобин переносит кислород и углекислый газ. Вступает в реакцию с кислородом, образуя соединение- оксигемоглобин.

Отдав кислород в тканях, оксигемоглобин восстанавливается и соединяется с углекислом газом, образуя карбогемоглобин.

Перенос кислорода содержащимся в них гемоглобином от легких к тканям и углекислого газа от тканей к альвеолам легких.

11. Тромбоциты: количество, строение, функции.

Тромбоциты, или кровяные пластинки-бесцветные, лишенные ядер тельца. Продолжительность их жизни 5-7 дней. Они образуются в красном костном мозге, а разрушаются в селезенке.

Количество:

В 1 мм 3 крови их содержится от 200.000 до 400.000. количество тромбоцитов в крови меняется в течение суток. При выполнении физической работы количество тромбоцитов увеличивается.

Большая их часть депонируется (хранится) в селезенке, печени, легких и по мере потребности поступает в кровь.

Строение:

Не имеют ядра

В клетках есть митохондрии;

Микротрубочки;

Некоторые тромбоциты имеют даже рибосомы;

Есть специфические включения - гранулы - именно они содержат вещества, которые активно участвуют в свертывании крови;

Трехслойная мембрана

Англотрофическая (фактор роста эндотелия в альфа-гранулах)-«кормильцы» эндотелия

Адгезия (прилипание)- в зоне повреждения сосуда

Агрегация- склеивание тромбоцитов между собой

12. иммунная система. Центральные и периферические органы иммунной системы. Функции иммунной системы. Иммунокомпетентные клетки, виды, функции.

Иммунитет - способ защиты генетического постоянства внут­ренней среды организма от веществ или тел, несущих на себе от­печаток чужеродной генетической информации е. нем самом или попадающих в него извне.

Органы иммунитета:

Центральные органы иммунной системы:

Красный костный мозг;

Тимус (вилочковую железу);

Лимфоидный аппарат кишечника

Периферические органы иммунной системы:

Селезенка;

Лимфатические узлы;

Лимфатические фолликулы, расположенные под слизистыми оболочками желудочно-кишечного, дыхательного и мочеполо­вого тракта;

Лимфатические и кровеносные сосуды.

Надзор за макромолекулярным и клеточным постоянством организма

Защита организма от всего чужеродного.

Иммунная система вместе с нервной и эндокринной системами регулируют и контролируют все физиологические реакции организма, тем самым, обеспечивая жизнедеятельность и жизнеспособность организма.

Иммунокомпетентные клетки – клетки, способные специфически распознавать антиген и отвечать на него иммунной реакцией. Основные клетки иммунной системы - лимфоциты и макрофаги. Макрофаги фагоцитируют чужеродный агент и в процессе внутриклеточного переваривания переводят антигенную информацию на язык, понятный антигенраспознающим клеткам, снимают антигенную информацию с антигенраспознающих клеток, концентрируют ее и передают антигенвоспринимающим клеткам.

Лимфоциты-имеют способность к специфическому распознаванию чужеродных структур. Она связана с тем, что на поверхности лимфоцитов имеются антигенраспознающие рецепторы. По специфичности этих рецепторов популяция лимфоцитов клонирована, и каждому клону присущ свой специфический рецептор.

Т-лимфоциты происходят из стволовых костно-мозговых клеток, их дифференциация в Т-лимфоциты происходит в тимусе под влиянием тимозина и других БАВ. Заканчивается дифференциация появлением у них специфического рецепторного аппарата распознования антигенов. Затем они через лимфу и кровь попадают в лимфоузлы или фолликулы селезенки.

Различают:

Т-киллеры (клетки-убийцы)

Т-хелперы (клетки-помощники)

Т-супрессоры (клетки-регуляторы)

Т-хелперы необходимы для превращения В-лимфоцитов в антителообразующие клетки и клетки памяти. Т-киллеры разрушают клетки трансплантата, опухолевые клетки и клетки, инфицированные вирусными, бактериальными и другими антигенами. Т-супрессоры подавляют функции определенных эффекторных Т- и В-клеток и обеспечивают иммунологическую толерантность.

В-лимфоциты -происходят из стволовых клетках, созревают поэтапно-первоначально в костном мозге, а затем в селезенке. В-клетки появляются на 16 день внутриутробного развития плода к моменту рождения, когда происходит их полное созревание. на цитоплазматической мембране В-клеток находятся рецепторы для иммуноглобулинов.

13.виды кровеносных сосудов: артерии, вены, капилляры, особенности их строения и функции.

признаки

капилляры

Определение

Кровеносные сосуды, по которым кровь движется от сердца к органам и тканям.

Кровеносные сосуды, по которым кровь движется от тканей к сердцу

Кровеносные сосуды, по которым кровь движется по венулам и малым венам к сердцу.

Особенности строения

Разделяются на средние и мелкие артериолы, их стенка имеет мышечный слой. Разветвляются на сеть капилляров

Имеют клапаны, которые препятствуют возвращению крови к тканям; аленькая толщина стенки, содержит много венозных клапанов

Сливаясь, образуют вены, их сеть гуще в головного мозга человека (в белом веществе)

Транспортирование и распределение крови по организму; поддерживание давления крови

Возвращение крови от тканей к сердцу

Обмен между кровью и клетками тканей питательными веществами и газами.

14.движение крови в организме. Круги кровообращения.

Кровообращение – это непрерывное движение крови по замкнутой сердечно-сосудистой системе, обеспечивающее обмен газов в легких и тканях тела.

Сердце – главный орган системы кровообращения.

Система органов кровообращения состоит из сердца и кровеносных сосудов, пронизывающих все органы и ткани тела.

Кровообращение начинается в тканях, где совершается обмен веществ через стенки капилляров. Кровь, отдавшая кислород органам и тканям, поступает в правую половину сердца и направляется им в малый (легочной) круг кровообращения, где кровь насыщается кислородом, возвращается к сердцу, поступая в левую его половину, и вновь разносится по всему организму (большому кругу кровообращения).

Круги кровообращения:

Малый круг кровообращения-включает в себя легочный ствол и 2 пары легочных вен. Он начинается в правом желудочке легочным стволом, а затем разветвляется на легочные вены, выходящие из ворот легких, по 2 из каждого легкого. Выделяют правые и левые легочные вены, среди которых различают нижнюю полую вену и верхнюю легочную вену. Вены несут легочным альвеолам венозную кровь. Обогащаясь кислородом в легких, кровь возвращается по легочным венам в левое предсердие, а оттуда поступает в левый желудочек.

Большой круг кровообращения-начинается аортой, выходящей из левого желудочка. Оттуда кровь поступает в крупные сосуды, направляющиеся к голове, туловищу и конечностям. Крупные сосуды ветвятся на мелкие, которые переходят во внутренние артерии, а затем в артериолы, прекапиллярные артериолы и капилляры. Посредством капилляров осуществляется постоянный обмен веществ между кровью и тканями. Капилляры объединяются и сливаются в посткапиллярные венулы, которые,в свою очередь объединяясь, образуют мелкие внутриорганные вены, а на выходе из органов-внеорганные вены. Внеорганные вены сливаются в крупные венозные сосуды, образуя верхнюю и нижнюю полые вены, по которым кровь возвращается в правое предсердие.

15. строение сердца. Свойства сердечной мышцы. Основные показатели работы сердца. Сердечный цикл.

Сердце- полый мышечный орган, нагнетающий кровь в артерии и принимающий венозную кровь, располагается в грудной полости в составе органов среднего средостения, смещено влево.

Сердце находится в соединительнотканном мешке-околосердечной сумке-она ограничивает его от соседних органов. Перикард (т.е. сердечная сумка) состоит из 2-х листков-наружного-пристеночного (париетального) и внутреннего-висцерального (эпикарда). Между листками перикарда имеется щелевидное пространство-полость перикарда, которое содержит небольшое количество серозной жидкости.

Стенка сердца состоит из 3-х слоев:

Эндокарда-внутреннего

Миокарда-среднего

Эпикарда-наружного.

Стенка сердца в основном образована миокардом, который, в свою очередь, образован поперечно-полосатой мышечной тканью. Стенка левого желудочка в 3 раза толще правого.

Сердце человека 4-х-камерное. Продольной перегородкой оно разделено на 2 половины:

Правую-венозную

Левую-артериальную

Каждая половина состоит из предсердия и желудочка. Между предсердиями и желудочками расположены отверстия, на уровне которых располагаются створчатые предсердно-желудочковые клапаны. Правый предсердно-желудочковый клапан состоит из 3 створок, левый-из 2-х. клапаны открываются только в сторону желудочков, т.к. от их створок отходят сухожильные струны, прикрепляющиеся к сосочковым мышцам.

В правое предсердие впадают верхняя и нижняя полая вена.

Из левого желудочка начинается аорта, из правого-легочный ствол. Над отверстиями легочного ствола и аорты располагаются полулунные клапаны, которые препятствуют обратному току крови из сосудов в полость желудочков. Изменения строения клапанов сердца приводит к нарушению работы сердца (пороки сердца).

Свойства сердечной мышцы:

Сердечной мышце свойственны возбудимость, проводимость, сократимость и автоматия. Возбудимость это способность миокарда возбуждаться при действии раздражителя, проводимость – проводить возбуждение сократимость – укорачиваться при возбуждении. Особое свойстве – автоматия. Это способность сердца к самопроизвольным сокращениям.

Показатели работы сердца:

Показателями, характеризующими сократительную активность сердца, являются величина минутного объема кровотока, величина систолического объема и частота сердечных сокращений

Минутный объем сердца (или сердечный выброс) - это количество крови, выбрасываемое за 1 мин желудочками. У взрослого человека в покое он равен в среднем 4,5-5 л. Сердечный выброс правого и левого желудочков в среднем одинаковый, т.е. объем крови, проходящий через левое сердце, равен объему, проходящему через правое сердце. Если бы это было не так, то кровь из одного круга кровообращения постепенно уходила и накапливалась бы в другом круге кровообращения. При значительной физической нагрузке минутный объем сердца доходит до 30 л.

Систолический объем сердца - это количество крови, выбрасываемое желудочками сердца при одном сокращении. Его величину можно получить, разделив минутный объем сердца на число сердечных сокращений в минуту. Систолический объем сердца в покое у взрослого человека равен в среднем 40-70 мл.

Частота сердечных сокращений - это количество сокращений сердца в минуту. Его величина равна в среднем 70 ударов в мин. При мышечной работе частота сердечных сокращений увеличивается до 120 и более ударов в мин. К сходному увеличению этого параметра приводит эмоциональный стресс (волнение, страх и т.д.).

Сердечный цикл:

В сердечном цикле различают 3 фазы:

1 фаза-одновременное сокращение предсердий =0,1 сек. Кровь при этом переходит из предсердий в желудочки, которые в это время находятся в состояния=и расслабления.

2 фаза-одновременное сокращение обоих желудочков=0,3 сек. Кровь во время систолы желудочков выбрасывается в артерии.

3 фаза-общая пауза сердца, во время которой и предсердия и желудочки находятся в расслабленном состоянии=0,4 сек.

Частота и сила сокращений зависят от возраста и физического состояния. Учащение сердцебиения-тахикардия, замедление-брадикардия, нарушение правильного чередования сердечных сокращений-аритмия.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

1. Препарирование трупа (послойное расчленение тканей с целью их удаления и выделения из окружающих тканей мышц, сосудов, нервов и т.д. и их изучение).

2. Метод антропометрии (рост, взаимоотношение частей, масса тела, конституция, раса, индивидуальные особенности человека).

3. Макро - микроскопические методы (небольшое увеличение).

4. Метод инъекции (окрашенная масса).

5. Метод коррозии.

6. Метод рентгеноскопии и рентгенографии (прижизненное изучение костей, лёгких, кишечника и т.д.).

7. Метод эндоскопических исследований.

8. Метод ультразвукового сканирования.

9. Экспериментальный метод в анатомии, применяется для выяснения функциональных значений органа, ткани или системы. Он позволяет установить пластичность тканей, их восстановительные способности и т.д. С помощью эксперимента можно получать много новых данных по перестройке органов и организма в ответ на внешние воздействия.

Анатомию человека методически можно изучать различно: по отдельным системам (систематическая анатомия или описательная), описывать только внешнюю форму человека (пластическая или рельефная анатомия), исследовать строение органов и систем в зависимости от их функций (функциональная анатомия), изучать взаиморасположение систем и органов с учётом возрастных и индивидуальных особенностей (топографическая анатомия), изучать строение органов в различные возрастные периоды (возрастная анатомия), изучать состояние и форму органа при патологических процессах (патологическая анатомия), изучение и сравнение особенностей строения различных органов человека и животных (сравнительная анатомия).

Систематическая анатомия (описательная) - излагает форму, строение, топографию, возрастные особенности, индивидуальные различия, развитие и аномалии и т. д.

Пластическая анатомия - содержит сведения о внешних формах тела, которые определяются развитием костного скелета, контурами мышечных групп и тонусом мышц, эластичностью и цветом кожи, толщиной подкожной клетчатки. Состояние внутренних органов только в таком объёме, чтобы показать, как это отражается на внешнем строении.

Функциональная анатомия - дополняет данные описательной анатомии. Цель функциональной анатомии - изучение строения органов в связи с функцией, рассматривая тело человека в динамике, выявляя механизмы перестройки формы под влиянием внешних факторов.

Топографическая анатомия - изучает строение человека по отдельным областям, пространственное соотношение органов и систем с учётом индивидуальных и возрастных особенностей.

Возрастная анатомия изучает строение человека в различные возрастные периоды.

Сравнительная анатомия - анатомия животных. На основе данных сравнительной анатомии можно понять эволюцию и развитие живых существ.

Организм человека состоит из клеток, тканей, органов и систем, функционирующих под управлением нервной, эндокринной и сосудистой систем. Нервная система не только объединяет и согласовывает функции всех органов, но и устанавливает взаимоотношения организма с внешней средой.

Выделяют несколько уровней изучения организма:

1.Молекулярный;

2. Клеточный;

3. Тканевый;

4. Органный;

5. Системный;

Каждая наука имеет свои методы исследования, свои способы познания объекта изучения, постижения научной истины. Основными методами анатомического исследования являются наблюдение, осмотр тела, вскрытие (от греч. anatome - рассечение, расчленение), а также наблюдение, изучение отдельного органа или группы органов (макроскопическая анатомия), их внутреннего строения (микроскопическая анатомия).

Макроскопическая анатомия (от греч. makros - ольшой) изучает строение тела, отдельных органов и их частей на уровнях, доступных невооруженному глазу, или при помощи приборов, дающих небольшое увеличение (лупа). Микроскопическая анатомия (от греч. mikros - малый) изучает строение органов при помощи микроскопа. С появлением микроскопов из анатомии выделилась гистология (от греч. histos -ткань) - учение о тканях и цитология (от греч. kytos - клетка) -наука о строении и функциях клетки.

Анатомия широко пользуется современными техническими средствами исследования. Строение скелета, внутренних органов, расположение и вид кровеносных и лимфатических сосудов познают, используя рентгеновское излучение. Внутренние покровы многих полых органов исследуют (в клинике) методами эндоскопии. Для изучения внешних форм и пропорций тела человека пользуются антропометрическими методами.

Анатомия изучает строение тела человека - высокоорганизованного представителя животного мира, занимающего высшую ступень на эволюционной лестнице. Жизнь животных исследует зоология. Анатомия и зоология входят в систему биологических наук.

Познание строения тела человека по системам (костная, мышечная, пищеварительная и т. д.) получило название систематической анатомии.

Систематическая анатомия изучает строение «нормального», т. е. здорового, человека, у которого ткани и органы не изменены в результате болезни или нарушения развития. В связи с этим нормальным (от лат. normalis - нормальный, правильный) можно считать такое строение человека, при котором обеспечиваются функции здорового организма. В то же время показатели нормы для большего или меньшего числа людей (масса, рост, форма тела, особенности строения и др.) всегда будут находиться в диапазоне максимальных и минимальных величин вследствие индивидуальных черт строения. Последние определяются как наследственными факторами, так и факторами воздействия внешней среды. Взаимоотношения организма здорового человека с внешней средой в нормальных (физиологических) условиях находятся в состоянии равновесия. По определению Г.И. Царегородцева, «норма - это особая форма приспособления к условиям внешней среды, при которой обеспечивается...организму оптимальная жизнедеятельность». В последнее время часто употребляется термин «условная норма» чем признается относительность этого понятия.

Наличие индивидуальной изменчивости формы и строения тела человека позволяет говорить о вариантах (вариациях) строения организма (от лат. variatio - изменение, varians - вариант), которые выражаются в виде отклонений от наиболее часто встречающихся случаев, принимаемых за норму.

Наиболее резко выраженные стойкие врожденные отклонения от нормы называют аномалиями (от греч. anomalia - неправильность). Одни аномалии не изменяют внешнего вида человека (правостороннее положение сердца, всех или части внутренних органов), другие резко выражены и имеют внешние проявления. Такие аномалии развития называют уродствами (недоразвитие черепа, конечностей и др.). Уродства изучает наука тератология (от греч. teras, род. падеж teratos - урод). Строение тела человека по областям с учетом положения органов и их взаимоотношений друг с другом, со скелетом- предмет изучения топографической (хирургической) анатомии.

Внешние формы тела человека, пропорции изучает пластическая анатомия. Она исследует также топографию органов в связи с необходимостью объяснения особенностей телосложения.

Современную анатомию называют функциональной, поскольку она рассматривает строение тела человека в связи с его функциями. Нельзя понять механизм перестройки кости без учета функций действующих на нее мышц, анатомию кровеносных сосудов без знания гемодинамики.

Строение и функции органов анатомия рассматривает с учетом происхождения человека. Строение тела человека - результат длительной эволюции животного мира. Для понимания развития человека в филогенезе (развитие рода, от греч. phylon- род, genesis - исхождение) анатомия использует данные палеонтологии, ископаемые остатки костей предков человека. Изучению тела человека помогают материалы сравнительной анатомии, которая исследует и сопоставляет строение тела животных, стоящих на разных этапах эволюции.

Не менее важно понимать развитие конкретного человека в онтогенезе (от греч. on, род. падеж. ontos - сущее, существующее), в котором выделяют ряд периодов. Рост и развитие человека до рождения (пренатальный период) рассматривает эмбриология (от греч. embryon - зародыш, росток).после рождения (постнатальный период, от лат. natus - рожденный) изучает возрастная анатомия. В связи с увеличением продолжительности жизни человека и особым вниманием к пожилому и старческому возрасту в возрастной анатомии выделен период, который изучает наука о закономерностях старения -геронтология (от греч. geron -старик).

Систематическую анатомию называют нормальной анатомией в отличие от патологической анатомии, изучающей пораженные той или иной болезнью органы и ткани.

Каждому человеку присущи свои, индивидуальные особенности строения. Поэтому систематическая (нормальная) анатомия прослеживает индивидуальную изменчивость, варианты строения тела здорового человека, крайние формы и типичные, наиболее часто встречающиеся. Так, в соответствии с длиной тела и другими антропометрическими признаками в анатомии выделяют следующие типы телосложения человека: долихоморфный (от греч. dolichos-длинный), для которого характерны узкое и длинное туловище, длинные конечности (астеник); брахиморфный (от греч. brachys - короткий) -короткое, широкое туловище, короткие конечности (гиперстеник); промежуточный тип -мезоморфный (от греч. mesos -- средний), наиболее близкий к «идеальному» (нормальному) человеку (нормостеник).

Особенности строения тела человека, характерные для каждого индивидуума, передающиеся от родителей, определяются наследственными факторами, а также влиянием на данного человека факторов внешней среды (питание, климатические и географические условия, физическая нагрузка). Поскольку человек живет не только в условиях биологической среды, но и в обществе, в условиях человеческих взаимоотношений, он испытывает воздействие коллектива, социальных факторов. Поэтому анатомия изучает человека не только как биологический объект, но учитывает при этом влияние на него социальной среды, условий труда и быта.

Таким образом, задача анатомии - изучение строения тела человека с помощью описательного метода по системам (систематический подход) и его формы с учетом функций органов (функциональный подход). При этом во внимание принимаются признаки, характерные для каждого конкретного человека - индивидуума (индивидуальный подход). Одновременно анатомия стремится выяснить причины и факторы, влияющие на человеческий организм, определяющие его строение (причинный, каузальный подход). Анализируя особенности строения тела человека, исследуя каждый орган (аналитический подход), анатомия изучает целостный организм, подходя к нему синтетически. Поэтому анатомия - не только наука аналитическая, но и синтетическая.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта