Главная » Съедобные грибы » Белый карлик сжимается и остывает. Как все происходит? Темы не исчерпаны

Белый карлик сжимается и остывает. Как все происходит? Темы не исчерпаны

Белые карлики – звезды, имеющие большую массу (порядка солнечной) и малый радиус (радиус Земли), что менее предела Чандрасекара для выбранной массы, являющиеся продуктом эволюции красных гигантов. Процесс производства термоядерной энергии в них прекращен, что приводит к особым свойствам этих звезд. Согласно различным оценкам, в нашей Галактике их количество составляет от 3 до 10 % всего звездного населения.

В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.

Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.

Механизм образования

Белые карлики представляют собой конечную стадию эволюции небольшой звезды с массой, сравнимой с массой Солнца. В каком случае они появляются? Когда в центре звезды, например, как наше Солнце, выгорает весь водород, ее ядро сжимается до больших плотностей, тогда как внешние слои сильно расширяются, и, сопровождаясь общим потускнением светимости, звезда превращается в красного гиганта. Пульсирующий красный гигант затем сбрасывает свою оболочку, поскольку внешние слои звезды слабо связаны с центральным горячим и очень плотным ядром. Впоследствии эта оболочка становится расширяющейся планетарной туманностью. Как видите красные гиганты и белые карлики очень тесно взаимосвязаны.

Сжатие ядра происходит до крайне малых размеров, но, тем не менее, не превышает предела Чандрасекара, то есть верхний предел массы звезды, при котором она может существовать в виде белого карлика.

Виды белых карликов

Спектрально их разделяют по двум группам. Излучение белого карлика делят на наиболее распространенный «водородный» спектральный класс DA (до 80 % от общего количества), в котором отсутствуют спектральные линии гелия, и более редкий «гелиевый белый карлик» тип DB, в спектрах звезд которого отсутствуют водородные линии.

Американский астроном Ико Ибен предложил различные сценарии их происхождения: в виду того, что горение гелия в красных гигантах неустойчиво, периодически развивается слоевая гелиевая вспышка. Он удачно предположил механизм сброса оболочки в разные стадии развития гелиевой вспышки – на ее пике и в период между двумя вспышками. Образование его зависит от механизма сброса оболочки соответственно.

Вырожденный газ

До того как Ральф Фаулер в 1922 году в своей работе «Плотная материя» дал объяснение характеристикам плотности и давления внутри белых карликов, высокая плотность и физические особенности такого строения казались парадоксальными. Фаулер предположил, что в отличие от звезд главной последовательности, для которых уравнение состояния описывается свойствами идеального газа, в белых карликах оно определяется свойствами вырожденного газа.

График зависимости радиуса белого карлика от его массы. Обратите внимание: ультрарелятивистский предел ферми-газа совпадает с пределом Чандрасекара

Вырожденный газ образуется, когда расстояние между его частицами становится меньше волны де-Бройля, а значит, что на его свойствах начинают сказываться квантово-механические эффекты, вызванные тождественностью частиц газа.

В белых карликах, из-за огромных плотностей, оболочки атомов разрушаются под силой внутреннего давления, и вещество становится электронно-ядерной плазмой, причем электронная часть описывается свойствами вырожденного электронного газа, аналогичными поведению электронов в металлах.

Среди них наиболее распространены углеродно-кислородные с оболочкой, состоящей из гелия и водорода.

Статистически радиус белого карлика сравним с радиусом Земли, а масса варьируется от 0,6 до 1,44 солнечных масс. Поверхностная температура находится в пределах – до 200 000 К, что также объясняет их цвет.

Ядро

Основной характеристикой внутреннего строения является очень высокая плотность ядра, в котором гравитационное равновесие обуславливается вырожденным электронным газом. Температура в недрах белого карлика и гравитационное сжатие уравновешивается давлением вырожденного газа, что обеспечивает относительную устойчивость диаметра, а его светимость, в основном, происходит за счет остывания и сжатия внешних слоев. Состав зависит насколько успела проэволюционировать материнская звезда, в основном это углерод с кислородом и небольшие примеси водорода и гелия, которые превращаются в вырожденный газ.

Эволюция

Гелиевая вспышка и сброс внешних оболочек красным гигантом продвигает звезду по диаграмме Герцшпрунга-Рассела, обуславливая его превалирующий химический состав. Жизненный цикл белого карлика, после этого, остается стабилен до самого своего остывания, когда звезда теряет свою светимость и становится невидимой, входя в стадию так называемого «черного карлика», — конечный результат эволюции, хотя в современной литературе этот термин используется все реже.

Перетекание вещества со звезды на белый карлик, который из за низкой светимости не виден

Присутствие рядом звездных компаньонов продляет их жизнь из-за падения вещества на поверхность через формирование аккреционного диска. Особенности аккреции вещества в парных системах могут приводить к накоплению вещества на поверхности белых карликов, что в результате приводит к взрыву новой или сверхновой звезды (в случае особо массивных) типа Ia.

Взрыв сверхновой в представлении художника

В случае если в системе «белый карлик – красный карлик» аккреция нестационарна, результатом может быть своеобразный взрыв белого карлика (например U Gem (UG)) или же новоподобных переменных звезд, взрыв которых носит катастрофический характер.

Остаток сверхновой SN 1006 — представляет собой взорвавшейся белый карлик, который находился в двойной системе. Он постепенно захватывал вещество звезды-компаньона и возрастающая масса спровоцировала термоядерный взрыв, который разорвал карлика

Положение на диаграмме Герцшпрунга-Рассела

На диаграмме они занимают левую нижнюю часть, принадлежа ветви звезд, покинувших главную последовательность из состояния красных гигантов.

Здесь находится область горячих звезд с низкой светимостью, которая является второй по численности среди звезд наблюдаемой Вселенной.

Спектральная классификация

Множество Белых карликов в шаровом скоплении М4, снимок Хаббла

Они выделены в особый спектральный класс D (от английского Dwarfs – карлики, гномы). Но в 1983 году Эдвард Сион предложил более точную классификацию, которая учитывает различия их спектров, а именно: D (подкласс) (спектральная особенность) (температурный индекс).

Существуют следующие подклассы спектров DA, DB, DC, DO, DZ и DQ, которые уточняют наличие или отсутствие линий водорода, гелия, углерода и металлов. А спектральные особенности P, H, V и X уточняют наличие или отсутствие поляризации, магнитного поля при отсутствии поляризации, переменность, пекулярность или неклассифицируемость белых карликов.

  1. Какой ближайший белый карлик к Солнцу? Ближайший это звезда ван Маанена, которая представляет собой тусклый объект находящийся всего в 14,4 световых лет от Солнца. Она расположена в центре созвездия Рыб.

    Звезда ван Маанена — самый близкий, одиночный белый карлик

    Звезда ван Маанена является слишком слабой, чтобы мы смогли ее увидеть невооруженным глазом, ее звездная величина 12,2. Однако если рассматривать белый карлик в системе со звездой, то ближайшим является Сириус Б, удаленный от нас на расстояние 8.5 световых лет. Кстати, самый известный белый карлик это Сириус Б.

    Сравнение размеров Сириуса В и Земли

  2. Самый большой белый карлик располагается в центре планетарной туманности М27 (NGC 6853), которая больше известна как туманность Гантель. Она находится в созвездии Лисички, на расстоянии около 1360 световых лет от нас. Ее центральная звезда больше, чем любой другой известный белый карлик, на данный момент.

  3. Самый маленький белый карлик имеет неблагозвучное название GRW +70 8247 и находится примерно в 43 световых лет от Земли в созвездии Дракона. Его звездная величина около 13 и виден он только через большой телескоп.
  4. Срок жизни белого карлика зависит от того, как медленно он будет остывать. Иногда на его поверхности накапливается достаточно газа и он превращается в сверхновую типа Ia. Продолжительность жизни весьма велика – миллиарды лет, а точнее 10 в 19 степени и даже больше. Большая продолжительность жизни связана с тем, что они очень медленно остывают и у них есть все шансы дожить до конца Вселенной. А время остывания пропорционально четвертой степени температуры.

  5. Среднестатистический белый карлик размеры имеет в 100 раз меньше чем наше Солнце, а при плотности 29000 кг/кубический сантиметр, вес 1 кубического см равняется 29 тоннам. Но стоит учитывать, плотность может варьировать в зависимости от размеров, от 10*5 до 10*9 г/см3.
  6. Наше Солнце в конечной стадии превратится в белый карлик. Как бы грустно это не звучало, но масса нашей звезды не позволяет ей превратиться в нейтронную звезду или черную дыру. Солнце превратится в белого карлика и будет в таком виде существовать еще миллиарды лет.
  7. Как превращается звезда в белый карлик? В основном все зависит от массы, давайте рассмотрим на примере нашего Солнца. Пройдет еще несколько миллиардов лет и Солнце начнет увеличиваться в размерах, превращаясь в красного гиганта, связанно это с тем, что весь водород выгорит в его ядре. После того, как водород выгорит начнется реакция синтеза гелия и углерода.

    В результате этих процессов звезда становится нестабильной и возможно образование звездных ветров. Так как реакции горения более тяжелых элементов чем гелий, приводят к большему выделению тепла. При синтезе гелия, некоторым участкам, расширившейся внешней оболочки Солнца, удастся оторваться и вокруг нашей звезды сформируется планетарная туманность. В результате от нашей звезды в конечном итоге останется одно ядро и когда Солнце превратится в белый карлик в нем уже прекратятся реакции ядерного синтеза.

  8. Планетарная туманность, которая образуется в результате расширения и сброса своих внешних оболочек часто очень ярко светится. Причина заключается в том, что оставшееся от звезды ядро (считай белый карлик) остывает очень медленно, а высокая температура поверхности в сотни тысяч и миллионы градусов по Кельвину, излучает, в основном, в далеком ультрафиолете. Газы туманности поглощая эти УФ кванты, переизлучают их в видимой части света, попутно поглотив часть энергии кванта и светят очень ярко, в отличии от остатка, который в видимом диапазоне очень тусклый.

Ответы на вопросы

  1. Чем отличается белый карлик от ? Вся эволюция звезды основывается на первоначальной ее массе, от этого параметра и будет зависть ее светимость, продолжительность жизни и во что она превратится в конце. Для звезды массой 0,5-1,44 солнечной, жизнь закончится тем, что звезда расширится и превратится в красного гиганта, который сбросив свои внешние оболочки образует планетарную туманность оставит после себя лишь одно ядро, состоящее из вырожденного газа.


































    Это упрощенный механизм того, как образуется белый карлик. Если масса звезды больше 1,44 массы Солнца (так называемый предел Чандрасекара, при котором звезда может существовать как белый карлик. Если масса будет превышать его, то она станет нейтронной звездой.), то звезда израсходовав весь водород в ядре начинает синтез более тяжелых элементов, вплоть до железа. Дальнейший синтез элементов, которые тяжелее железа, невозможен т.к. требует больше энергии чем выделяется в процессе синтеза и ядро звезды коллапсирует в нейтронную звезду. Электроны срываются с орбит и падают в ядро, там сливаются с протонами и в итоге образуются нейтроны. Нейтронное вещество весит в сотни и миллионы раз больше чем любое другое.

  2. Отличие белого карлика и пульсара. Все те же самые отличия что и в случае с нейтронной звездой, только стоит учитывать, что пульсар (а это и есть нейтронная звезда) еще и очень быстро вращается, десятки раз в секунду, а период вращения белого карлика составляет, на примере звезды 40 Eri B, 5 часов 17 минут. Разница ощутима!

    Пульсар PSR J0348 +0432 — нейтронная звезда и белый карлик

  3. Из-за чего светятся белые карлики? Так термоядерные реакции уже не происходят все имеющееся излучение это тепловая энергия, так почему они светятся? По сути он медленно остывает, как раскаленное железо, которое сперва ярко белое, а затем краснеет. Вырожденный газ очень хорошо проводит тепло из центра и он остывает на 1% за сотни миллионов лет. Со временем остывание замедляется и он может просуществовать триллионы лет.
  4. Во что превращаются белые карлики? Возраст Вселенной слишком мал, для того чтобы могли образоваться, так называемые, черные карлики, конечной стадия эволюции. Так что видимых подтверждений у нас пока нет. На основе расчетов его остывания мы знаем лишь одно, что их продолжительность жизни, имеет поистине огромную, превышающую возраст Вселенной (13,7 млрд. лет) и теоретически составляющую триллионы лет.
  5. Существует ли белый карлик с сильным магнитным полем как у нейтронной звезды? Некоторые из них обладают мощными магнитными полями, гораздо сильнее, чем любые созданные нами на Земле. Например, сила магнитного поля на поверхности Земли составляет всего от 30 до 60 миллионных долей тесла, в то время как напряженность магнитного поля белого карлика может достигать 100 000 тесла.

    Но нейтронная звезда, обладает поистине сильным магнитным полем – 10*11 Тл и называется магнетаром! На поверхности некоторых магнетаров могут образовываться толчки, которые формируют колебания в звезде. Эти колебания часто приводят к огромным выбросам гамма-излучения магнетаром. Так, например, магнетар SGR 1900+14, который находится на расстоянии на 20 000 световых лет, в созвездии Орла, взорвался 27 августа 1998 г. Мощная вспышка гамма излучения была настолько сильной, что заставила выключить аппаратуру космического аппарата NEAR Shoemaker в целях ее сохранения.

Научно-популярный фильм о героях нашей статьи

У каждой звезды своя судьба и своя продолжительность жизни. Наступает момент, когда она начинает угасать.

Белые карлики – это необычные звезды. Они состоят из вещества, плотность которого чрезвычайно высока. В теории звездной эволюции они рассматриваются как заключительный этап эволюции звезд малой и средней массы, сравнимыми с массой Солнца. По разным оценкам в нашей Галактике насчитывается 3-4 % таких звезд.

Как же образуются белые карлики?


После того как в стареющей звезде выгорит весь водород, ее ядро сжимается и разогревается, - это способствует расширению ее внешних слоев. Эффективная температура звезды падает, и она превращается в красного гиганта. Разреженная оболочка звезды, очень слабо связанная с ядром, со временем рассеивается в пространстве, перетекая на соседние планеты, а на месте красного гиганта остается очень компактная звезда, называемая белым карликом.


Долгое время оставалось загадкой, почему белые карлики, имеющие температуру, превосходящую температуру Солнца, по сравнению с размерами Солнца невелики, пока не выяснилось, что плотность вещества внутри них предельно высока (в пределах 10 5 – 10 9 г/см 3). Стандартной зависимости - масса-светимость - для белых карликов не существует, что отличает их от других звезд. В чрезвычайно малом объеме «упаковано» огромное количество вещества, из-за чего плотность белого карлика почти в 100 раз больше плотности воды.

(На картинке сравнение размеров двух белых карликов с планетой Земля )

Температура белых карликов остается практически постоянной, несмотря на отсутствие внутри них термоядерных реакций. Чем же это объясняется? По причине сильного сжатия электронные оболочки атомов начинают проникать друг в друга. Это продолжается до тех пор, пока между ядрами расстояние не становится минимальным, равным радиусу наименьшей электронной оболочки. В результате ионизации электроны начинают свободно двигаться относительно ядер, а вещество внутри белого карлика приобретает физические свойства, которые характерны для металлов. В подобном веществе энергия к поверхности звезды переносится электронами, скорость которых по мере сжатия все больше увеличивается: некоторые из них двигаются со скоростью, соответствующей температуре в миллион градусов. Температура на поверхности и внутри белого карлика может резко отличаться, что не приводит к изменению диаметра звезды. Здесь можно привести сравнение с пушечным ядром – остывая, оно не уменьшается в объеме.


(На картинке звезда ван Маанена - тусклый белый карлик, находящийся в созвездии Рыб )

Угасает белый карлик крайне медленно: за сотни миллионов лет интенсивность излучения падает всего на 1%. Но в итоге он должен будет исчезнуть, превратившись в черного карлика, для чего могут потребоваться триллионы лет. Белые карлики вполне можно назвать уникальными объектами Вселенной. Воспроизвести в земных лабораториях условия, в которых они существуют, еще никому не удалось.



Добавить свою цену в базу

Комментарий

Виды звезд в наблюдаемой Вселенной

Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.

  1. Жёлтый карлик . Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
  2. Красный гигант . Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
  3. Белый карлик . Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
  4. Красный карлик . Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
  5. Коричневый карлик . Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  6. Субкоричневые карлики . Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
  7. Черный карлик . Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
  8. Двойная звезда . Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
  9. Новая звезда . Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
  10. Сверхновая звезда . Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
  11. Нейтронная звезда . Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
  12. Пульсары . Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
  13. Цефеиды . Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

Жёлтый карлик

Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты. Нормальные звезды, это и есть звезды главной последовательности. К таким, например, относится наше Солнце. Иногда такие нормальные звезды называются желтыми карликами .

Характеристика

Сегодня мы кратко расскажем о желтых карликах, которых еще называют желтыми звездами. Желтые карлики – это, как правило, звезды средней массы, светимости и температуры поверхности. Они являются звездами основной последовательности, располагаясь примерно в середине на диаграмме Герцшпрунга – Рассела и следуя за более холодными и менее массивными красными карликами.

По спектральной классификации Моргана-Кинана желтые карлики соответствуют в основном классу светимости G, однако в переходных вариациях соответствуют иногда классу К (оранжевые карлики) или классу F в случае с желто-белыми карликами.

Масса желтых карликов лежит зачастую в пределах от 0,8 до 1,2 массы Солнца. При этом температура их поверхности составляет в своем большинстве от 5 до 6 тысяч градусов по Кельвину.

Наиболее ярким и известным нам представителем из числа желтых карликов является наше Солнце.

Кроме Солнца, среди ближайших к Земле желтых карликов стоит отметить:

  1. Две компоненты в тройной системе Альфа Центавра, среди которых Альфа Центавра А по спектру светимости аналогично Солнцу, а Альфа Центавра В – типичный оранжевый карлик класса К. Расстояние до обеих компонент составляет чуть более 4-х световых лет.
  2. Оранжевый карлик – звезда Ран, она же Эпсилон Эридана, с классом светимости К. Расстояние до Рана астрономы оценили примерно в 10 с половиной световых лет.
  3. Двойная звезда 61 Лебедя, удаленная от Земли на чуть более 11 световых лет. Обе компоненты 61 Лебедя типичные оранжевые карлики класса светимости К.
  4. Солнцеподобная звезда Тау Кита, удаленная от Земли примерно на 12 световых лет, со спектром светимости G и интересной планетной системой, состоящей минимум из 5 экзопланет.

Образование

Эволюция желтых карликов весьма интересна. Продолжительность жизни желтого карлика составляет примерно 10 миллиардов лет.

Как и большинства звезд в их недрах протекают интенсивные термоядерные реакции, в которых в основном водород перегорает в гелий. После начала реакций с участием гелия в ядре звезды водородные реакции перемещаются все больше к поверхности. Это и становится отправной точкой в преобразовании желтого карлика в красный гигант. Результатом подобного преобразования может служить красный гигант Альдебаран.

С течением времени поверхность звезды будет постепенно остывать, а внешние слои начнут расширяться. На конечных стадиях эволюции красный гигант сбрасывает свою оболочку, которая образует планетарную туманность, а его ядро превратится в белый карлик, который далее будет сжиматься и остывать.

Подобное будущее ждет и наше Солнце, которое сейчас находится на средней стадии своего развития. Примерно через 4 миллиарда лет оно начнет свое превращение в красный гигант, фотосфера которого при расширении может поглотить не только Землю и Марс, но даже и Юпитер.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет. После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Белые карлики

Белые карлики – звезды, имеющие большую массу (порядка солнечной) и малый радиус (радиус Земли), что менее предела Чандрасекара для выбранной массы, являющиеся продуктом эволюции красных гигантов. Процесс производства термоядерной энергии в них прекращен, что приводит к особым свойствам этих звезд. Согласно различным оценкам, в нашей Галактике их количество составляет от 3 до 10 % всего звездного населения.

История открытия

В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении Сириуса обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.

Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.

Как же образуются белые карлики?

После того как в стареющей звезде выгорит весь водород, ее ядро сжимается и разогревается, – это способствует расширению ее внешних слоев. Эффективная температура звезды падает, и она превращается в красного гиганта. Разреженная оболочка звезды, очень слабо связанная с ядром, со временем рассеивается в пространстве, перетекая на соседние планеты, а на месте красного гиганта остается очень компактная звезда, называемая белым карликом.

Долгое время оставалось загадкой, почему белые карлики, имеющие температуру, превосходящую температуру Солнца, по сравнению с размерами Солнца невелики, пока не выяснилось, что плотность вещества внутри них предельно высока (в пределах 10 5 – 10 9 г/см 3). Стандартной зависимости – масса-светимость – для белых карликов не существует, что отличает их от других звезд. В чрезвычайно малом объеме «упаковано» огромное количество вещества, из-за чего плотность белого карлика почти в 100 раз больше плотности воды.

Температура белых карликов остается практически постоянной, несмотря на отсутствие внутри них термоядерных реакций. Чем же это объясняется? По причине сильного сжатия электронные оболочки атомов начинают проникать друг в друга. Это продолжается до тех пор, пока между ядрами расстояние не становится минимальным, равным радиусу наименьшей электронной оболочки.

В результате ионизации электроны начинают свободно двигаться относительно ядер, а вещество внутри белого карлика приобретает физические свойства, которые характерны для металлов. В подобном веществе энергия к поверхности звезды переносится электронами, скорость которых по мере сжатия все больше увеличивается: некоторые из них двигаются со скоростью, соответствующей температуре в миллион градусов. Температура на поверхности и внутри белого карлика может резко отличаться, что не приводит к изменению диаметра звезды. Здесь можно привести сравнение с пушечным ядром – остывая, оно не уменьшается в объеме.

Угасает белый карлик крайне медленно: за сотни миллионов лет интенсивность излучения падает всего на 1%. Но в итоге он должен будет исчезнуть, превратившись в черного карлика, для чего могут потребоваться триллионы лет. Белые карлики вполне можно назвать уникальными объектами Вселенной. Воспроизвести в земных лабораториях условия, в которых они существуют, еще никому не удалось.

Рентгеновское излучение белых карликов

Температура поверхности молодых белых карликов, изотропных ядер звёзд после сброса оболочек, очень высока – более 2·10 5 К, однако достаточно быстро падает за счёт излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT). В рентгеновском диапазоне светимость белых карликов превышает светимость звёзд главной последовательности: иллюстрацией могут служить снимки Сириуса, сделанные рентгеновским телескопом «Чандра» – на них белый карлик Сириус Б выглядит ярче, чем Сириус А спектрального класса A1, который в оптическом диапазоне в ~10 000 раз ярче Сириуса Б.

Температура поверхности наиболее горячих белых карликов – 7·10 4 К, наиболее холодных – меньше 4·10 3 К.

Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низка для испускания рентгеновского излучения.

В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х годов профессор Самуил Каплан.

Белый карлик - звезда, в нашем космосе довольно распространенная. Ученые называют ее результатом эволюции звезд, финальным этапом развития. Всего есть два сценария видоизменения звездного тела, в одном случае завершающий этап - нейтронная звезда, в другом - черная дыра. Карлики - это окончательный эволюционный шаг. Вокруг них есть планетарные системы. Ученые смогли определить это, изучив обогащенные металлами экземпляры.

История вопроса

Белые карлики - звезды, привлекшие внимание астрономов в 1919. Впервые удалось открыть такое небесное тело ученому из Нидерландов Маанену. Для своего времени специалист сделал довольно нетипичное и неожиданное открытие. Увиденный им карлик был похож на звезду, но имел нестандартные маленькие размеры. Спектр, однако, был таков, словно бы это массивное и большое небесное тело.

Причины такого странного явления привлекали ученых довольно долгое время, поэтому было приложено немало усилий для изучения строения белых карликов. Прорыв совершился, когда высказали и доказали предположение обилия в атмосфере небесного тела разнообразных металлических структур.

Необходимо уточнить, что металлы в астрофизике - это всевозможные элементы, молекулы которых тяжелее водородных, гелиевых, а химический состав их более прогрессивен, нежели эти два соединения. Гелий, водород, как удалось установить ученым, в нашей вселенной распространены шире, нежели любые другие вещества. Отталкиваясь от этого, было решено все прочее обозначать металлами.

Развитие темы

Хотя впервые сильно отличающиеся размерами от Солнца белые карлики были замечены в двадцатых годах, только через половину века люди выявили, что наличие металлических структур в звездной атмосфере не является типичным явлением. Как выяснилось, при включении в атмосферу помимо двух самых распространенных веществ более тяжелых происходит их смещение в глубокие слои. Тяжелые вещества, оказавшись среди молекул гелия, водорода, со временем должны переместиться в ядро звезды.

Причин такого процесса удалось обнаружить несколько. Радиус белого карлика мал, такие звездные тела очень компактные - не зря они получили свое название. В среднем радиус сравним с земным, в то время как вес сходен с весом звезды, освещающей нашу планетарную систему. Такое соотношение габаритов и веса становится причиной исключительно большого гравитационного поверхностного ускорения. Следовательно, оседание тяжелых металлов в водородной и гелиевой атмосфере происходит всего лишь за несколько земных дней после попадания молекулы в общую газовую массу.

Возможности и продолжительность

Иногда характеристики белых карликов таковы, что процесс оседания молекул тяжелых веществ может затянуться надолго. Наиболее благоприятные варианты, с точки зрения наблюдателя с Земли, - это процессы, на которые уходят миллионы, десятки миллионов лет. И все же такие временные промежутки исключительно малы в сравнении с продолжительностью существования самого звездного тела.

Эволюция белого карлика такова, что большая часть наблюдаемых человеком в настоящий момент формирований уже насчитывает несколько сотен миллионов земных лет. Если сравнить это с самым медленным процессом поглощения металлов ядром, разница получается более чем существенная. Следовательно, выявление металла в атмосфере определенной наблюдаемой звезды позволяет с уверенностью заключить, что изначально тело не имело такого состава атмосферы, иначе все металлические включения давно пропали бы.

Теория и практика

Описанные выше наблюдения, а также собранная за долгие десятилетия информация о белых карликах, нейтронных звездах, черных дырах позволила предположить, что атмосфера получает металлические включения из внешних источников. Ученые сперва решили, что таковой является среда между звездами. Небесное тело перемещается сквозь такое вещество, аккрецирует среду на свою поверхность, тем самым обогащая атмосферу тяжелыми элементами. Но дальнейшие наблюдения показали, что такая теория несостоятельна. Как уточнили специалисты, если бы изменение атмосферы происходило именно таким путем, преимущественно карлик извне получал бы водород, так как среда между звездами сформирована в своей основной массе именно водородными и гелиевыми молекулами. Лишь малый процент среды приходится на долю тяжелых соединений.

Если бы сформированная из первичных наблюдений за белыми карликами, нейтронными звездами, черными дырами теория оправдала бы себя, карлики состояли бы из водорода как самого легкого элемента. Это не допускало бы существования даже гелиевых небесных тел, ведь гелий тяжелее, а значит, водородная аккреция полностью скрыла бы его от глаза внешнего наблюдателя. Исходя из наличия гелиевых карликов, ученые пришли к выводу, что межзвездная среда не может служить единственным и даже основным источником металлов в атмосфере звездных тел.

Как объяснить?

Ученые, занимавшиеся в 70-х годах прошлого столетия черными дырами, белыми карликами, предположили, что металлические включения могут объясняться падением комет на поверхность небесного тела. Правда, в свое время такие идеи были признаны слишком экзотичными и поддержки не получили. Во многом это объяснялось тем, что люди еще не знали о наличии иных планетных систем - известна была только наша «домашняя» Солнечная.

Существенный шаг вперед в исследовании черных дыр, белых карликов был сделан в конце следующего, восьмого десятилетия прошлого века. Ученые получили в свое распоряжение особенно мощные инфракрасные приборы для наблюдения за глубинами космоса, что позволило вокруг одного из известных астрономам белого карлика обнаружить инфракрасное излучение. Таковое было выявлено именно вокруг карлика, атмосфера которого содержала металлические включения.

Инфракрасное излучение, позволившее оценить температуру белого карлика, также сообщило ученым, что звездное тело окружено некоторым веществом, способным поглощать звездное излучение. Это вещество нагрето до конкретного температурного уровня, меньшего присущего звезде. Это позволяет постепенно перенаправлять поглощенную энергию. Излучение происходит в инфракрасном диапазоне.

Наука движется вперед

Спектры белого карлика стали объектом изучения передовых умов мира астрономов. Как оказалось, из них можно получить довольно объемную информацию об особенностях небесных тел. Особенно интересными были наблюдения за звездными телами с избыточным инфракрасным излучением. В настоящее время удалось выявить около трех десятков систем такого типа. Основной их процент изучался посредством мощнейшего телескопа «Спитцер».

Ученые, наблюдая за небесными телами, установили, что плотность белых карликов существенно меньше этого параметра, свойственного гигантам. Также было выявлено, что избыточное инфракрасное излучение объясняется наличием дисков, сформированных специфическим веществом, способным поглощать энергетическое излучение. Именно оно затем излучает энергию, но уже в ином диапазоне волн.

Диски расположены исключительно близко и в некоторой степени влияют на массу белых карликов (которая не может превышать предела Чандрасекара). Внешний радиус получил название обломочного диска. Было высказано предположение, что таковой сформировался при разрушении некоторого тела. В среднем радиус по размеру сравним с Солнцем.

Если обратить внимание на нашу планетарную систему, станет ясно, что относительно недалеко от «дома» мы может наблюдать сходный пример - это окружающие Сатурн кольца, размер которых также сравним с радиусом нашего светила. Со временем ученые установили, что эта особенность - не единственная из тех, что роднит карлики и Сатурн. К примеру, и планета, и звезды обладают очень тонкими дисками, которым несвойственна прозрачность при попытке просвечивания светом.

Выводы и развитие теории

Поскольку кольца белых карликов сравнимы с теми, что окружают Сатурн, стало возможным сформулировать новые теории, объясняющие наличие металлов в атмосфере этих звезд. Астрономам известно, что вокруг Сатурна кольца сформированы приливным разрушением некоторых тел, оказавшихся достаточно близко от планеты, чтобы на них повлияло ее гравитационное поле. В такой ситуации внешнее тело не может сохранять собственную гравитацию, что приводит к нарушению целостности.

Около пятнадцати лет назад была представлена новая теория, объяснившая образование колец белых карликов сходным образом. Предположили, что первоначально карлик представлял собой звезду в центре системы планет. Небесное тело с течением времени эволюционирует, на что уходят миллиарды лет, разбухает, теряет оболочку, и это становится причиной формирования карлика, постепенно остывающего. Кстати говоря, цвет белых карликов объясняется именно их температурой. У некоторых она оценивается в 200 000 К.

Система планет в ходе такой эволюции может выжить, что приводит к расширению внешней части системы одновременно с уменьшением массы звезды. В результате формируется крупная система астероиды и многие другие элементы выживают при эволюции.

Что дальше?

Прогресс системы может привести к ее нестабильности. Это приводит к бомбардировке камнями окружающего планеты пространства, и астероиды частично вылетают из системы. Некоторые из них, однако, перемещаются на орбиты, рано или поздно оказываясь в пределах солнечного радиуса карлика. Столкновения не происходит, но приливные силы приводят к нарушению целостности тела. Скопление таких астероидов приобретает форму, сходную с окружающими Сатурн кольцами. Тем самым вокруг звезды формируется диск обломков. Существенно отличается плотность белого карлика (порядка 10^7 г/см3) и его обломочного диска.

Описанная теория стала достаточно полным и логичным объяснением ряда астрономических явлений. Посредством нее можно понять, почему диски компактны, ведь звезда не может все время своего существования окружаться диском, радиус которого сравним с солнечным, иначе первое время такие диски были бы внутри ее тела.

Объяснив формирование дисков и их размер, можно понять, откуда берется своеобразный запас металлов. Он может оказаться на звездной поверхности, загрязнив карлик металлическими молекулами. Описанная теория, не противореча выявленным показателям средней плотности белых карликов (порядка 10^7 г/см3), доказывает, по какой причине металлы наблюдаются в атмосфере звезд, почему измерение химического состава возможно доступными человеку средствами и по какой причине распределение элементов сходно с тем, что свойственно нашей планете и другим изученным объектам.

Теории: а есть ли польза?

Описанная идея получила широкое распространение как база для объяснения, по какой причине оболочки звезд загрязнены металлами, почему появились обломочные диски. Кроме того, из нее вытекает, что вокруг карлика существует планетная система. Удивительного в таком выводе мало, ведь человечество установило, что большая часть звезд имеет собственные системы планет. Это свойственно как тем, что сходны с Солнцем, так и тем, что значительно больше его габаритами - а именно из них и формируются белые карлики.

Темы не исчерпаны

Даже если считать описанную выше теорию общепринятой и доказанной, некоторые вопросы для астрономов и по сей день остаются открытыми. Особенный интерес вызывает специфика переноса вещества между дисками и поверхностью небесного тела. Как предполагают некоторые, это объясняется радиационным излучением. Теории, призывающие таким образом описать перенос вещества, основаны на эффекте Пойнтинга-Робертсона. Это явление, под влиянием которого частицы медленно перемещаются по орбите вокруг молодой звезды, постепенно спирально смещаясь к центру и пропадая в небесном теле. Предположительно, этот эффект должен проявляться на обломочных дисках, окружающих звезды, то есть молекулы, которые присутствуют в дисках, рано или поздно оказываются в исключительной близости от карлика. Твердые вещества подвержены испарению, формируется газ - таковой в виде дисков был зафиксирован вокруг нескольких наблюдаемых карликов. Рано или поздно газ доходит до поверхности карлика, перенося сюда металлы.

Выявленные факты оцениваются астрономами как существенный вклад в науку, поскольку позволяют предположить, как сформированы планеты. Это важно, так как объекты для исследований, привлекающие специалистов, зачастую недоступны. К примеру, планеты, вращающиеся вокруг превышающих Солнце габаритами звезд, крайне редко можно изучить - это слишком сложно на том техническом уровне, который доступен нашей цивилизацией. Вместо этого, люди получили возможность изучения систем планет после превращения звезд в карлики. Если удастся развиваться в этом направлении, наверняка можно будет выявить новые данные о наличии систем планет и их отличительных характеристиках.

Белые карлики, в атмосфере которых выявлены металлы, позволяют составить представление о химическом составе комет и иных космических тел. Фактически иного способа для оценки состава у ученых просто нет. К примеру, изучая планеты-гиганты, можно составить представление только о внешнем слое, но нет никакой достоверной информации о внутреннем содержании. Это касается и нашей «домашней» системы, поскольку химический состав можно изучить лишь у того небесного тела, которое упало на поверхность Земли либо того, куда удалось приземлить аппарат для исследований.

Как все происходит?

Рано или поздно наша планетарная система также станет «домом» белого карлика. Как говорят ученые, звездное ядро располагает ограниченным объемом вещества для получения энергии, и рано или поздно термоядерные реакции исчерпываются. Газ уменьшается в объемах, плотность повышается до тонны на кубический сантиметр, в то время как во внешних слоях реакция по-прежнему протекает. Звезда расширяется, становится красным гигантом, радиус которого сравним с сотнями звезд, равных Солнцу. Когда внешняя оболочка прекращает «горение», в течение 100 000 лет происходит рассеивание вещества в пространстве, что сопровождается формированием туманности.

Ядро звезды, освободившись от оболочки, понижает температуру, что и приводит к формированию белого карлика. Фактически такая звезда - это высокоплотный газ. В науке карлики нередко именуют вырожденными небесными телами. Если бы наше светило сжалось и его радиус насчитывал бы лишь несколько тысяч километров, но вес бы полностью сохранился, то здесь также имел бы место белый карлик.

Особенности и технические моменты

Рассматриваемый тип космического тела способен светиться, но этот процесс объясняется иными механизмами, отличными от термоядерных реакций. Свечение называют остаточным, оно объясняется понижением температуры. Карлик сформирован веществом, ионы которого иногда холоднее 15000 К. Элементам характерны колебательные движения. Постепенно небесное тело становится кристаллическим, его свечение ослабевает, и карлик эволюционирует в коричневый.

Ученые выявили предел массы для такого небесного тела - до 1,4 веса Солнца, но не больше этой границы. Если масса превышает этот предел, звезда существовать не может. Это объясняется давлением вещества, находящегося в сжатом состоянии - оно меньше гравитационного притяжения, сжимающего вещество. Происходит очень сильное сжатие, которое приводит к появлению нейтронов, вещество нейтронизируется.

Процесс сжатия может привести к вырождению. В этом случае формируется нейтронная звезда. Второй вариант - продолжение сжатия, рано или поздно приводящее к взрыву.

Общие параметры и особенности

Болометрическая светимость рассматриваемой категории небесных тел относительно свойственной Солнцу меньше приблизительно в десять тысяч раз. Радиус карлика меньше солнечного в сто раз, в то время как вес сравним со свойственным основной звезде нашей системы планет. Для определения границы массы для карлика был рассчитан предел Чандрасекара. При его превышении карлик эволюционирует в другую форму небесного тела. Фотосфера звезды в среднем состоит из плотного вещества, оцененного в 105-109 г/см3. В сравнении с главной звездной последовательностью это плотнее приблизительно в миллион раз.

Некоторые астрономы считают, что лишь 3% всех звезд в галактике - это белые карлики, а некоторые убеждены, что к такому классу принадлежит каждая десятая. Оценки столь сильно разнятся о причине сложности наблюдения за небесными телами - они удалены от нашей планеты и слишком слабо светятся.

Истории и имена

В 1785 в списке двойных звезд появилось тело, наблюдениями за которым занимался Гершель. Звезду назвали 40 Эридана B. Именно она считается первой увиденной человеком из категории белых карликов. В 1910 Расселл заметил, что этому небесному телу свойственен крайне низкий уровень свечения, хотя цветовая температура довольно высокая. Со временем было решено, что небесные тела такого класса необходимо выделять в отдельную категорию.

В 1844 Бессель, исследуя информацию, полученную при слежении за Проционом В, Сириусом В, решил, что обе они время от времени смещаются с прямой линии, а значит, там есть близкие спутники. Такое предположение научному сообществу показалось маловероятным, так как не удалось увидеть никакого спутника, в то время как отклонения могли бы объясниться только небесным телом, масса которого исключительно велика (аналогична Сириусу, Проциону).

В 1962 Кларк, работая с наиболее крупным телескопом из существовавших в тот момент, выявил вблизи Сириуса очень тусклое небесное тело. Именно его и назвали Сириусом В, тем самым спутником, который задолго до этого предположил Бессель. В 1896 исследования показали, что Процион также имеет спутника - он получил название Процион В. Следовательно, идеи Бесселя полностью подтвердились.

Белые карлики — проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара, лишённые собственных источников термоядерной энергии. Это компактные звёзды с массами, сравнимыми с массой Солнца, но с радиусами в ~100 и, соответственно, светимостями в ~10 000 раз меньшими солнечной. Плотность белых карликов составляет порядка 10 6 г/см³, что почти в миллион раз выше плотности обычных звёзд главной последовательности. По численности белые карлики составляют по разным оценкам 3—10 % звёздного населения нашей Галактики.
На рисунке сравнительные размеры Солнце (справа) и двойной системы IK Пегаса компонент B - белый карлик с температурой поверхности 35,500 K (по центру) и компонент А - звезда спектрального типа A8 (слева).

Открытие В 1844г директор Кёнигсбергской обсерватории Фридрих Бессель обнаружил, что Сириус, ярчайшая звезда северного неба, периодически, хотя и весьма слабо, отклоняется от прямолинейной траектории движения по небесной сфере. Бессель пришёл к выводу, что у Сириуса должен быть невидимый «тёмный» спутник, причём период обращения обеих звёзд вокруг общего центра масс должен быть порядка 50 лет. Сообщение было встречено скептически, поскольку тёмный спутник оставался ненаблюдаемым, а его масса должна была быть достаточно велика — сравнимой с массой Сириуса.
В январе 1862г А.Г. Кларк, юстируя 18-ти дюймовый рефрактор, самый большой на то время телескоп в мире (Dearborn Telescope), поставленный семейной фирмой Кларков в Чикагскую обсерваторию, обнаружил в непосредственной близости от Сириуса тусклую звёздочку. Это был тёмный спутник Сириуса, Сириус B, предсказанный Бесселем. Температура поверхности Сириуса B составляет 25 000 К, что, с учётом его аномально низкой светимости, указывает на очень малый радиус и, соответственно, крайне высокую плотность — 10 6 г/см³ (плотность Сириуса ~0,25 г/см³, плотность Солнца ~1,4 г/см³).
В 1917г Адриан Ван Маанен открыл следующий белый карлик — звезду Ван Маанена в созвездии Рыб.

Парадокс плотности В начале XX века Герцшпрунгом и Расселом была открыта закономерность в отношении спектрального класса (температуры) и светимости звёзд — Диаграмма Герцшпрунга — Рассела (Г—Р диаграмма). Казалось, что всё разнообразие звёзд укладывается в две ветви Г—Р диаграммы — главную последовательность и ветвь красных гигантов. В ходе работ по накоплению статистики распределения звёзд по спектральному классу и светимости Рассел обратился в 1910г к профессору Э. Пикерингу. Дальнейшие события Рассел описывает так:

«Я был у своего друга … профессора Э. Пиккеринга с деловым визитом. С характерной для него добротой он предложил получить спектры всех звёзд, которые Хинкс и я наблюдали … с целью определения их параллаксов. Эта часть казавшейся рутинной работы оказалась весьма плодотворной — она привела к открытию того, что все звёзды очень малой абсолютной величины (т. е. низкой светимости) имеют спектральный класс M (т. е. очень низкую поверхностную температуру). Как мне помнится, обсуждая этот вопрос, я спросил у Пиккеринга о некоторых других слабых звёздах…, упомянув в частности 40 Эридана B. Ведя себя характерным для него образом, он тут же отправил запрос в офис (Гарвардской) обсерватории, и вскоре был получен ответ (я думаю, от миссис Флеминг), что спектр этой звезды — A (т. е. высокая поверхностная температура). Даже в те палеозойские времена я знал об этих вещах достаточно, чтобы сразу же осознать, что здесь имеется крайнее несоответствие между тем, что мы тогда назвали бы «возможными» значениями поверхностной яркости и плотности. Я, видимо, не скрыл, что не просто удивлён, а буквально сражён этим исключением из того, что казалось вполне нормальным правилом для характеристик звёзд. Пиккеринг же улыбнулся мне и сказал: «Именно такие исключения и ведут к расширению наших знаний» — и белые карлики вошли в мир исследуемого»

Удивление Рассела вполне понятно: 40 Эридана B относится к относительно близким звёздам, и по наблюдаемому параллаксу можно достаточно точно определить расстояние до неё и, соответственно, светимость. Светимость 40 Эридана B оказалась аномально низкой для её спектрального класса — белые карлики образовали новую область на Г—Р диаграмме. Такое сочетание светимости, массы и температуры было непонятно и не находило объяснения в рамках стандартной модели строения звёзд главной последовательности, разработанной в 1920-х годах.
Высокая плотность белых карликов нашла объяснение лишь в рамках квантовой механики после появления статистики Ферми-Дирака. В 1926г Фаулер в статье «Плотная материя» («Dense matter», Monthly Notices R. Astron. Soc. 87, 114—122) показал, что, в отличие от звёзд главной последовательности, для которых уравнение состояния основывается на модели идеального газа (стандартная модель Эддингтона), для белых карликов плотность и давление вещества определяются свойствами вырожденного электронного газа (Ферми-газа).
Следующим этапом в объяснении природы белых карликов стали работы Я. И. Френкеля и Чандрасекара. В 1928г Френкель указал, что для белых карликов должен существовать верхний предел массы, и в 1930г Чандрасекар в работе «Максимальная масса идеального белого карлика» («The maximum mass of ideal white dwarfs», Astroph. J. 74, 81—82) показал, что белые карлики с массой выше 1,4 солнечных неустойчивы (предел Чандрасекара) и должны коллапсировать.

Происхождение белых карликов
Решение Фаулера объяснило внутреннее строение белых карликов, но не прояснило механизм их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи: мысль Э. Эпика, что красные гиганты образуются из звёзд главной последовательности в результате выгорания ядерного горючего и предположение В.Г. Фесенкова, сделанное вскоре после Второй мировой войны, что звёзды главной последовательности должны терять массу, и такая потеря массы должна оказывать существенное влияние на эволюцию звёзд. Эти предположения полностью подтвердились.
В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода с образованием гелия (цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатию и, соответственно, к повышению температуры и плотности в её ядре, что ведет к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия при температурах порядка 10 8 K (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов:
He 4 + He 4 = Be 8 - два ядра гелия (альфа-частицы) сливаются и образуется нестабильный изотоп бериллия;
Be 8 + He 4 = C 12 + 7,3 МэВ - большая часть Be 8 снова распадается на две альфа-частицы, но при столкновении Be 8 с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C 12 .
Следует, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода . По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются все более высокие температуры и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступающих в реакцию.
Дополнительным фактором, по видимому влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции и реакций синтеза более тяжёлых ядер с механизмом нейтринного охлаждения : при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро .
В случае красных гигантов с относительно небольшой массой (порядка солнечной) изотермические ядра состоят, в основном, из гелия, в случае более массивных звёзд — из углерода и более тяжёлых элементов. Однако, в любом случае плотность такого изотермического ядра настолько высока, что расстояния между электронами образующей ядро плазмы становятся соизмеримыми с их длиной волны Де Бройля λ = h / m v , то есть выполняются условия вырождения электронного газа. Расчёты показывают, что плотность изотермических ядер соответствует плотности белых карликов, т. е. ядрами красных гигантов являются белые карлики .

Потеря массы красными гигантами
Ядерные реакции в красных гигантах происходят не только в ядре: по мере выгорания водорода в ядре, нуклеосинтез гелия распространяется на ещё богатые водородом области звезды, образуя сферический слой на границе бедных и богатых водородом областей. Аналогичная ситуация возникает и с тройной гелиевой реакцией: по мере выгорания гелия в ядре она также сосредотачивается в сферическом слое на границе между бедными и богатыми гелием областями. Светимость звёзд с такими «двухслойными» областями нуклеосинтеза значительно возрастает, достигая порядка нескольких тысяч светимостей Солнца, звезда при этом «раздувается», увеличивая свой диаметр до размеров земной орбиты. Зона нуклеосинтеза гелия поднимается к поверхности звезды: доля массы внутри этой зоны составляет ~70 % массы звезды. «Раздувание» сопровождается достаточно интенсивным истечением вещества с поверхности звезды, такие объекты наблюдаются как протопланетарные туманности, например Nebula HD44179 (рисунок ).
Такие звезды явно являются нестабильными и в 1956г И.С. Шкловский предложил механизм образования планетарных туманностей через сброс оболочек красных гигантов, при этом обнажение изотермических вырожденных ядер таких звёзд приводит к рождению белых карликов (данный сценарий конца эволюции красных гигантов является общепринятым и подкреплён многочисленными наблюдательными данными). Точные механизмы потери массы и дальнейшего сброса оболочки для таких звёзд пока до конца неясен, но можно предположить следующие факторы, могущие внести свой вклад в потерю оболочки:

  • В протяжённых звёздных оболочках могут развиваться неустойчивости, приводящие к сильным колебательным процессам, сопровождающимися изменением теплового режима звезды. На рисунке чётко заметны волны плотности выброшенной звездой материи, которые могут быть следствиями таких колебаний.
  • Вследствие ионизации водорода в областях, лежащих ниже фотосферы может развиться сильная конвективная неустойчивость. Аналогичную природу имеет солнечная активность, в случае же красных гигантов мощность конвективных потоков должна значительно превосходить солнечную.
  • Из-за крайне высокой светимости существенным становится световое давление потока излучения звезды на её внешние слои, что, по расчётным данным, может привести к потере оболочки за несколько тысяч лет.

Так или иначе, но достаточно длительный период относительно спокойного истечение вещества с поверхности красных гигантов заканчивается сбросом его оболочки и обнажением его ядра. Такая сброшенная оболочка наблюдается как планетарная туманность. Скорости расширения протопланетарных туманностей составляют десятки км/с, т. е. близки к значению параболических скоростей на поверхности красных гигантов, что служит дополнительным подтверждением их образования сбросом «излишка массы» красных гигантов.

Особенности спектров
Спектры белых карликов сильно отличаются от спектров звёзд главной последовательности и гигантов. Главная их особенность — небольшое число сильно уширенных линий поглощения, а некоторые белые карлики (спектральный класс DC) вообще не содержат заметных линий поглощения. Малое число линий поглощения в спектрах звёзд этого класса объясняется очень сильным уширением линий: только самые сильные линии поглощения, уширяясь, имеют достаточную глубину, чтобы остаться заметными, а слабые, из-за малой глубины, практически сливаются с непрерывным спектром.
Особенности спектров белых карликов объясняются несколькими факторами. Во-первых, из-за высокой плотности белых карликов ускорение свободного падения на их поверхности составляет ~10 8 см/с² (или ~1000 Км/с²), что, в свою очередь, приводит к малым протяжённостям их фотосфер, огромным плотностям и давлениям в них и уширению линий поглощения. Другим следствием сильного гравитационного поля на поверхности является гравитационное красное смещение линий в их спектрах, эквивалентное скоростям в несколько десятков км/с. Во-вторых, у некоторых белых карликов, обладающих сильными магнитными полями, наблюдаются сильная поляризация излучения и расщепление спектральных линий вследствие эффекта Зеемана.

Рентгеновское излучение белых карликов
Температура поверхности молодых белых карликов — изотропных ядер звёзд после сброса оболочек, очень высока — более 2·10 5 K, однако достаточно быстро падает за счёт нейтринного охлаждения и излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне. Температура поверхности наиболее горячих белых карликов — 7·10 4 K, наиболее холодных — ~5·10³ K.
Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низка для испускания рентгеновского излучения.
В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х гг С.А. Каплан.

Аккреция на белые карлики в двойных системах

  • Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к возникновению карликовых новых (звёзд типа U Gem (UG)) и новоподобных катастрофических переменных звёзд.
  • Аккреция на белые карлики, обладающие сильным магнитным полем, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения аккрецирующей плазмы в околополярных областях поля вызывает сильную поляризацию излучения в видимой области (поляры и промежуточные поляры).
  • Аккреция на белые карлики богатого водородом вещества приводит к его накоплению на поверхности (состоящей преимущественно из гелия) и разогреву до температур реакции синтеза гелия, что, в случае развития тепловой неустойчивости, приводит к взрыву, наблюдаемому как вспышка новой звезды.


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта