Главная » Несъедобные грибы » Решить рекуррентное соотношение. Решение линейных рекуррентных уравнений

Решить рекуррентное соотношение. Решение линейных рекуррентных уравнений

Назначение сервиса . Онлайн-калькулятор предназначен для решения задач линейного программирования симплексным методом путем перехода к КЗЛП и СЗЛП . При этом задача на минимум целевой функции сводятся к задаче на поиск максимума через преобразование целевой функции F*(X) = -F(X) . Также имеется возможность составить двойственную задачу .

Решение происходит в три этапа:

  1. Переход к КЗЛП. Любая ЗЛП вида ax ≤ b , ax ≥ b , ax = b (F(X) → extr) сводится к виду ax = b , F(X) → max ;
  2. Переход к СЗЛП. КЗЛП вида ax = b сводится к виду ax ≤ b , F(X) → max ;
  3. Решение симплексным методом;

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 1 2 3 4 5 6 7 8 9 10

Переход от задачи минимизации целевой функции к задаче максимизации

Задача минимизации целевой функции F(X) легко может быть сведена к задаче максимизации функции F*(X) при тех же ограничениях путем введения функции: F*(X) = -F(X) . Обе задачи имеют одно и то же решение X*, и при этом min(F(X)) = -max(F*(X)) .
Проиллюстрируем этот факт графически:
F(x) → min
F(x) → max
Для оптимизации функции цели используем следующие понятия и методы.
Опорный план – план с определёнными через свободные базисными переменными.
Базисный план – опорный план с нулевыми базисными переменными.
Оптимальный план – базисный план, удовлетворяющий оптимальной функции цели (ФЦ).

Ведущий (разрешающий) элемент – коэффициент свободной неизвестной, которая становится базисной, а сам коэффициент преобразуется в единицу.
Направляющая строка – строка ведущего элемента, в которой расположена с единичным коэффициентом базисная неизвестная, исключаемая при преобразовании (строка с минимальным предельным коэффициентом, см. далее).
Направляющий столбец – столбец ведущего элемента, свободная неизвестная которого переводится в базисную (столбец с максимальной выгодой, см. далее).

Переменные x 1 , …, x m , входящие с единичными коэффициентами только в одно уравнение системы, с нулевыми - в остальные, называются базисными или зависимыми . В канонической системе каждому уравнению соответствует ровно одна базисная переменная. Переход осуществляется с помощью метода Гаусса-Жордана . Основная идея этого метода состоит в сведении системы m уравнений с n неизвестными к каноническому виду при помощи элементарных операций над строками.
Остальные n-m переменных (x m +1 ,…, x n) называются небазисными или независимыми переменными .

Базисное решение называется допустимым базисным решением , если значения входящих в него базисных переменных x j ≥0, что эквивалентно условию неотрицательности b j ≥0.
Допустимое базисное решение является угловой точкой допустимого множества S задачи линейного программирования и называется иногда опорным планом .
Если среди неотрицательных чисел b j есть равные нулю, то допустимое базисное решение называется вырожденным (вырожденной угловой точкой) и соответствующая задача линейного программирования называется вырожденной .

Пример №1 . Свести задачу линейного программирования к стандартной ЗЛП.
F(X) = x 1 + 2x 2 - 2x 3 → min при ограничениях:
4x 1 + 3x 2 - x 3 ≤10
- 2x 2 + 5x 3 ≥3
x 1 + 2x 3 =9
Для приведения ЗЛП к канонической форме необходимо:
1. Поменять знак у целевой функции. Сведем задачу F(X) → min к задаче F(X) → max. Для этого умножаем F(X) на (-1). В первом неравенстве смысла (≤) вводим базисную переменную x 4 ; во втором неравенстве смысла (≥) вводим базисную переменную x 5 со знаком минус.
4x 1 + 3x 2 -1x 3 + 1x 4 + 0x 5 = 10
0x 1 -2x 2 + 5x 3 + 0x 4 -1x 5 = 3
1x 1 + 0x 2 + 2x 3 + 0x 4 + 0x 5 = 9
F(X) = - x 1 - 2x 2 + 2x 3
Переход к СЗЛП .
Расширенная матрица системы ограничений-равенств данной задачи:

4 3 -1 1 0 10
0 -2 5 0 -1 3
1 0 2 0 0 9

Приведем систему к единичной матрице методом жордановских преобразований.
1. В качестве базовой переменной можно выбрать x 4 .
2. В качестве базовой переменной выбираем x 2 .
Разрешающий элемент РЭ=-2. Строка, соответствующая переменной x 2 , получена в результате деления всех элементов строки x 2 на разрешающий элемент РЭ=-2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 2 записываем нули. Все остальные элементы определяются по правилу прямоугольника. Представим расчет каждого элемента в виде таблицы:
4-(0 3):-2 3-(-2 3):-2 -1-(5 3):-2 1-(0 3):-2 0-(-1 3):-2 10-(3 3):-2
0: -2 -2: -2 5: -2 0: -2 -1: -2 3: -2
1-(0 0):-2 0-(-2 0):-2 2-(5 0):-2 0-(0 0):-2 0-(-1 0):-2 9-(3 0):-2

Получаем новую матрицу:
4 0 6 1 / 2 1 -1 1 / 2 14 1 / 2
0 1 -2 1 / 2 0 1 / 2 -1 1 / 2
1 0 2 0 0 9

3. В качестве базовой переменной выбираем x 3 .
Разрешающий элемент РЭ=2. Строка, соответствующая переменной x 3 , получена в результате деления всех элементов строки x 3 на разрешающий элемент РЭ=2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x 3 записываем нули. Все остальные элементы определяются по правилу прямоугольника. Представим расчет каждого элемента в виде таблицы:
4-(1 6 1 / 2):2 0-(0 6 1 / 2):2 6 1 / 2 -(2 6 1 / 2):2 1-(0 6 1 / 2):2 -1 1 / 2 -(0 6 1 / 2):2 14 1 / 2 -(9 6 1 / 2):2
0-(1 -2 1 / 2):2 1-(0 -2 1 / 2):2 -2 1 / 2 -(2 -2 1 / 2):2 0-(0 -2 1 / 2):2 1 / 2 -(0 -2 1 / 2):2 -1 1 / 2 -(9 -2 1 / 2):2
1: 2 0: 2 2: 2 0: 2 0: 2 9: 2

Получаем новую матрицу:
3 / 4 0 0 1 -1 1 / 2 -14 3 / 4
1 1 / 4 1 0 0 1 / 2 9 3 / 4
1 / 2 0 1 0 0 4 1 / 2

Поскольку в системе имеется единичная матрица, то в качестве базисных переменных принимаем X = (4,2,3).
Соответствующие уравнения имеют вид:
3 / 4 x 1 + x 4 - 1 1 / 2 x 5 = -14 3 / 4
1 1 / 4 x 1 + x 2 + 1 / 2 x 5 = 9 3 / 4
1 / 2 x 1 + x 3 = 4 1 / 2
Выразим базисные переменные через остальные:
x 4 = - 3 / 4 x 1 + 1 1 / 2 x 5 -14 3 / 4
x 2 = - 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4
x 3 = - 1 / 2 x 1 +4 1 / 2
Подставим их в целевую функцию:
F(X) = - x 1 - 2(- 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4) + 2(- 1 / 2 x 1 +4 1 / 2)
или

Система неравенств:
- 3 / 4 x 1 + 1 1 / 2 x 5 -14 3 / 4 ≥ 0
- 1 1 / 4 x 1 - 1 / 2 x 5 +9 3 / 4 ≥ 0
- 1 / 2 x 1 +4 1 / 2 ≥ 0
Приводим систему неравенств к следующему виду:
3 / 4 x 1 - 1 1 / 2 x 5 ≤ -14 3 / 4
1 1 / 4 x 1 + 1 / 2 x 5 ≤ 9 3 / 4
1 / 2 x 1 ≤ 4 1 / 2
F(X) = 1 / 2 x 1 + x 5 -10 1 / 2 → max
Упростим систему.
3 / 4 x 1 - 1 1 / 2 x 2 ≤ -14 3 / 4
1 1 / 4 x 1 + 1 / 2 x 2 ≤ 9 3 / 4
1 / 2 x 1 ≤ 4 1 / 2
F(X) = 1 / 2 x 1 + x 2 -10 1 / 2 → max

Пример №2 . Найдите сначала графическим методом, а затем симплекс-методом решение задачи
F(X) = x 1 + x 2 - x 3 + x 5 +15 → max (min) при ограничениях:
-3x 1 + x 2 + x 3 =3
4x 1 + 2x 2 - x 4 =12
2x 1 - x 2 + x 5 =2
x 1 ≥ 0, x 2 ≥ 0, x 3 ≥ 0, x 4 ≥ 0, x 5 ≥ 0

Числа Фибоначчи.

При решении многих комбинаторных задач применяют метод сведения данной задачи к задаче касающегося меньшего числа элементов. К примеру, можно вывести формулу для числа перестановок:

Отсюда видно, что всœегда может быть сведён к факториалу от меньшего числа.

Хорошей иллюстрацией к построению рекуррентных соотношений является задача Фибоначчи. В своей книге в 1202 ᴦ. итальянский математик Фибоначчи привел следующую задачу. Пара кроликов приносит приплод раз в месяц двух крольчат (самку и самца), причём новорождённые крольчата через два месяца после рождения сами приносят приплод. Сколько кроликов появится через год, если в начале была одна пара кроликов.

Из условия задачи следует, что через месяц будет две пары кроликов, через два месяца приплод даст только первая пара кроликов, появившихся два месяца назад, в связи с этим всœего будет 3 пары кроликов. Ещё через месяц будет уже 5 пар. И так далее.

Обозначим через количество пар кроликов по истечении месяцев с начала года. Тогда через месяц количество пар кроликов можно найти по формуле:

Эта зависимость принято называть рекуррентным соотношением . Слово «рекурсия» означает возврат назад (в нашем случае – возврат к предыдущим результатам).

По условию, и , тогда по соотношению имеем: , , и т.д., .

Определœение 1: Числа называются числами Фибоначчи . Это – известная в математике последовательность чисел:

1, 1, 2, 3, 5, 8, 13, 21, ...

В этой последовательности каждое последующее число является суммой двух предыдущих чисел. И в рекуррентном соотношении также последующий член находится как сумма двух предыдущих членов.

Установим связь между числами Фибоначчи и комбинаторной задачей. Пусть требуется найти число - последовательностей, состоящих из нулей и единиц, в которых никакие две единицы не стоят подряд.

Возьмем любую такую последовательность и сопоставим ей пару кроликов по следующему правилу: единицам соответствуют месяцы появления на свет одной из пар «предков» данной пары (включая и исходную), а нулями – всœе остальные месяцы. К примеру, последовательность устанавливает такую «генеалогию» – сама пара появилась в конце 11-го месяца, ее родители в конце 7-го месяца, «дед» – в конце 5-го месяца, и «прадед» в конце 2-го месяца. Первоначальная пара шифруется последовательностью . Ни в одной последовательности две единицы не могут стоять подряд – только что появившаяся пара не может принœести приплод через месяц. Очевидно, различным последовательностям отвечают различные пары и обратно.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, число последовательностей с указанными свойствами, равно .

Теорема 1: Число находится как сумма биномиальных коэффициентов:. В случае если – нечетно, то . В случае если – четно, то . Иначе: – целая часть числа .

Доказательство: В самом делœе, - число всœех последовательностей из 0 и 1, в которых никакие две единицы не стоят рядом. Число таких последовательностей, содержащих ровно единиц и нулей, равно , при этом , тогда изменяется от 0 до . Применяя правило суммы, получаем данную сумму.

Это равенство можно доказать иначе. Обозначим:

Из равенства , следует, что . Кроме этого, ясно, что и . Так как обе последовательности и удовлетворяют рекуррентному соотношению , то , и .

Определœение 2: Рекуррентное соотношение имеет порядок , если оно позволяет вычислять через предыдущих членов последовательности: .

К примеру, – рекуррентное соотношение второго порядка, а рекуррентное соотношение 3-го порядка. Соотношение Фибоначчи является соотношением второго порядка.

Определœение 3:Решением рекуррентного соотношения является последовательность, удовлетворяющая этому соотношению.

В случае если задано рекуррентное соотношение ‑ го порядка, то ему удовлетворяют бесконечно много последовательностей, т.к. первые элементов можно задать произвольно. Но если первые элементов заданы, то остальные члены определяются однозначно.

К примеру, соотношению Фибоначчи кроме рассмотренной выше последовательности 1, 1, 2, 3, 5, 8, 13, 21, ..., могут удовлетворять также и другие последовательности. К примеру, последовательность 2, 2, 4, 8, 12,... строится по тому же принципу. Но если задать начальные члены (их в последовательности Фибоначчи - 2), то решение определяется однозначно. Начальных членов берут столько, каков порядок соотношения.

По известным рекуррентным соотношениям и начальным членам можно выписывать члены последовательности один за другим и таким путем мы можем получить любой её член. Но во многих случаях, нам не нужны всœе предыдущие члены, а необходим один определœенный член. В этом случае удобнее иметь формулу ‑ го члена последовательности.

Мы будем говорить, что некоторая последовательность является решением данного рекуррентного соотношения, если при подстановке этой последовательности соотношение тождественно выполняется.

К примеру, последовательность является одним из решений соотношения: . Это легко проверить обычной подстановкой.

Определœение 4: Решение рекуррентного соотношения ‑ го порядка принято называть общим , если оно зависит от произвольных постоянных , меняя которые, можно получить любое решение данного соотношения.

К примеру, для соотношения общим решение будет .

В самом делœе, легко проверяется, что оно будет решением нашего соотношения. Покажем, что любое решение можно получить в таком виде. Пусть и – произвольны.

Тогда найдутся такие и , что

Очевидно, для любых , система уравнений имеет единственное решение.

Определœение 5: Рекуррентное соотношение принято называть линœейным , если оно записывается в виде:

где - числовые коэффициенты.

Для решения произвольных рекуррентных соотношений общих правил, вообще говоря, нет. При этом для решения линœейных рекуррентных соотношений есть общие правила решения.

Рассмотрим сначала соотношение 2-го порядка .

Решение этого соотношения основано на следующих утверждениях.

Теорема 2: В случае если и - являются решением данного рекуррентного соотношения 2-го порядка, то для любых чисел и последовательность также является решением этого соотношения.

Теорема 3: В случае если число является корнем квадратного уравнения , то последовательность является решением рекуррентного соотношения .

Из теорем 2, 3 вытекает следующее правило решения линœейных рекуррентных соотношений 2-го порядка.

Пусть дано рекуррентное соотношение .

1) Составим квадратное уравнение , ĸᴏᴛᴏᴩᴏᴇ принято называть характеристическим для данного соотношения. Найдём всœе корни этого уравнения (даже кратные и комплексные).

2) Составим общее решение рекуррентного соотношения. Его структура зависит от вида корней (одинаковые они или различные).

а) В случае если это соотношение имеет два различных корня и , то общее решение соотношения имеет вид .

Действительно, из теорем 2, 3 следует, что - решение и система уравнений

Имеет единое решение, т.к. при условии .

К примеру, для чисел Фибоначчи, имеем . Характеристическое уравнение имеет вид: . Решая последнее уравнение, получим корни.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта