Главная » Галлюциногенные » Что может явиться причиной денатурации белка. Денатурация, причины и признаки, использование в медицине

Что может явиться причиной денатурации белка. Денатурация, причины и признаки, использование в медицине

Денатурация – потеря белком своей активности, нативности, рабочей структуры.

В термодинамическом плане денатурация сопровождается увеличением энтропии и уменьшением свободной энергии белка. Существует два механизма денатурации для малых и крупных белковых молекул.

В первом случае процесс денатурации представляет собой ФП 1 рода, что обеспечивается наличием большого числа слабых связей с глобуле.

Во втором случае на первом этапе плавления глобулы происходит нарушение упорядоченности боковых групп, но сохраняется общая пространственная структура. Этот переход происходит как ФП 1 рода. Дальнейшие этапы денатурации зависят от доменной и вторичной структуры и могут происходить как ФП любого рода.

Расплавленная глобула является устойчивым интермедиатом разворачивания белка и характеризуется минимумом свободной энергии.

Самые распространенные способы денатурации : температурная, химическая, лучевая (механизмы – это то, что лежит в основе каждого способа денатурации).

Температурная – 2 типа:

1.Тепловая – при увеличении температуры. В основе лежит увеличение скорости молекулярных движений, приводящих к разрыву связей (ковалентных, дисульфидных, координационных, реже пептидных).

2.Холодовая – при понижении температуры. Причина денатурации – снижении гидрофобности.

Химическая – оттягивается часть водородных связей при погружении в раствор, следовательно белок становится менее стабилен (т.к. вода тоже является конкурентной).

Лучевая – обусловлена поглощением атомами белка энергии, следствие – разрыв связей.

Установлено, что денатурация (Д.) малых белков представляет собой S-образную кривую.

Характеристики молекулы меняются от тех, что характерны для нативного белка до тех, что характерны для белка денатурированного.

Узость этих S-образных кривых свидетельствует о кооперативности перехода (о том, что он охватывает много аминокислотных остатков).

Переход «все или ничего»:

Калориметрическое исследование тепловой денатурации лизоцима при разных рН. Положение пика удельной теплоемкости (Ср) определяет температуру T0, его ширина - ширину перехода дельта T, площадь под пиком - поглощенное при плавлении тепло дельта Н в расчете на грамм белка. (Т.е. Энтальпия и температура денатурации белка зависят от рН среды, следовательно, существенна роль электростатических эффектов).

Например, миоглобин

при рН 12,2 - Т плавл. =50°С и ΔН =300 кДж/моль;

при рН 10,7 - Т плавл. = 78°С и ΔН=710 кДж/моль.



Сочетание факторов существенно влияет на механизм денатурации.

Денатурация кислотой или щелочью определяется:

1.Свободная энергия полиэлектролита обратно пропорциональна квадрату суммы заряда поверхности. Стабильность глобулы уменьшается в обе сторон от изоэлектрической точки (ИЭТ – это когда число разноименных зарядов в молекуле одинаково, суммарный заряд = 0).

2.Изменение pH может приводить к ионизации групп, погребенных в неполярном ядре глобулы (гидрофобном ядре). Эти группы притягивают гидратные оболочки, а следовательно происходит сдвиг равновесия к расплавленной форме.

Увеличенная теплоемкость денатурированного белка – следствие увеличения поверхности контакта его гидрофобных боковых групп с водой при частичном или полном разворачивании белка.

Принцип «все или ничего» - микроскопический аналог ФП 1-ого рода (ФП 1-ого рода в чистом виде наблюдается в маленьком белке или отдельных доменах крупного белка). Денатурация крупного белка – есть сумма денатурации доменов.

Как плавится белок: целиком или по частям?

Калориметрическая теплота – это кол-во тепла, поглощаемо одной молекулой белка в процессе плавления.

Эффективная теплота перехода – это кол-во тепла, поглощенного одной независимой «единицей плавления».

Если эффективная теплота перехода МЕНЬШЕ калориметрической теплоты перехода, значит единица плавления МЕНЬШЕ, чем сама молекула белка. Такая молекула плавится по частям.

Если эффективная теплота перехода БОЛЬШЕ калориметрической теплоты перехода, единица плавления БОЛЬШЕ этой молекулы. Плавится агрегат молекул.

Если эти 2 теплоты перехода равны, значит молекула плавится как единое целое, единица плавления = этой молекуле. (критерий Вант-Гоффа – для перехода «все или ничего»).

Детьта Т определяется шириной зоны резкого изменения любого экспериментального параметра, определяющего вероятность расплавленного состояния.



ΔE = ΔH/N «все или ничего», где ΔH – кол-во тепла, поглощаемое всеми имеющимися молекулами, N – кол-во всех молекул белка, ΔH/N – калориметрическая теплота.

ΔE < ΔH/N единица плавления меньше, чем весь белок

ΔE > ΔH/N единица плавления больше белка (сразу несколько молекул плавится).

В процессах денатурации и ренатурации белка разные стадии представляют собой фазовые переходы разного рода. Для малых белков процесс можно считать одностадийным. Этот процесс происходит как ФП 1 рода.

Для крупных белков этот процесс многостадийный, и разные его стадии происходят как ФП разного рода.

Денатурация может быть:

Обратимой, если возможно восстановление свойственной белку структуры. Такой денатурации подвергаются, например, рецепторные белки мембраны.

Необратимой, если восстановление пространственной конфигурации белка невозможно. Обычно это происходит при разрыве большого количества связей, например, при варке яиц.

Если белок подвергся обратимой денатурации, то при восстановлении нормальных условий среды он способен полностью восстановить свою структуру и, соответственно, свои свойства и функции. Процесс восстановления структуры белка после денатурации называется ренатурацией.

Денатурация белка - это процесс, который связан с нарушением вторичной, третичной, четвертичной структур молекулы под воздействием разных факторов.

Особенности процесса

Он сопровождается разворачиванием полипептидной связи, которая в растворе изначально представлена в виде беспорядочного клубка.

Процесс денатурации белка сопровождается утрачиванием гидратной оболочки, выпадением белка в осадок, утрачиванием им нативных свойств.

Среди основных факторов, которые провоцируют процесс денатурации, выделим физические параметры: давление, температуру, механическое действие, ионизирующее и ультразвуковое излучение.

Денатурация белка происходит под воздействием органических растворителей, минеральных кислот, щелочей, солей тяжелых металлов, алкалоидов.

Виды

В биологии выделяют два варианта денатурации:

  • Обратимая денатурация белка (ренатурация) предполагает процесс, в котором денатурированный белок после устранения всех денатурирующих веществ восстанавливается в исходную структуру. В этом случае в полном объеме возвращается биологическая активность.
  • Необратимая денатурация предполагает полное разрушение молекулы, даже после удаления из раствора денатурирующих реагентов физиологичная активность не возвращается.

Особенности денатурированных белков

После того как произошла денатурация белка, он получает определенные свойства:

  1. В сравнении с нативной белковой молекулой увеличивается количество функциональных либо реактивных групп в молекуле.
  2. Уменьшается растворимость и процесс осаждения белков, чему способствует потеря водной оболочки. Происходит разворачивание структуры, появляются гидрофобные радикалы, наблюдается нейтрализация зарядов полярных фрагментов.
  3. Меняется конфигурация белковой молекулы.
  4. Утрачивается биологическая активность, причиной этого будет нарушение нативной структуры.

Последствия

После денатурации происходит переход нативной компактной структуры в рыхлую развернутую форму, упрощается проникновение к пептидным связям ферментов, необходимых для разрушения.

Конформация белковых молекул определяется возникновением достаточного количества связей между разными участками определенной полипептидной цепочки.

Белки, состоящие из достаточного количества атомов, которые находятся в непрерывном хаотичном движении, способствует определенным перемещениям частей полипептидной цепи, что вызывает нарушение общей структуры белков, снижение его физиологических функций.

Белки имеют конформационную лабильность, то есть предрасположенность к незначительным изменениям конформации, происходящим в результате обрыва одних и образования других связей.

Денатурация белка приводит к изменениям его химических свойств, способности вступать во взаимодействие с другими веществами. Наблюдается изменение пространственной структуры и участка, непосредственно контактирующего с иной молекулой, и всей конформацией в целом. Наблюдаемые конформационные изменения имеют значение для функционирования белков в живой клетке.

Механизм разрушения

Процесс денатурации белка предполагает разрушение химических (водородных, дисульфидных, электростатических) связей, стабилизирующих высшие уровни организации молекулы белка. В результате этого меняется пространственная структура белка. Во многих ситуациях не наблюдается разрушения его первичной структуры. Это дает возможность после раскручивания полипептидной цепи стихийно скручиваться протеину, создавая «случайный клубок». В подобной ситуации наблюдается переход к беспорядочному состоянию, имеющему существенные отличия от нативной конформации.

Заключение

Температура денатурации белков превышает 56 градусов Цельсия. Типичными признаками прохождения необратимой денатурации белковых молекул считаются снижение растворимости и гидрофильности молекул, повышение оптической активности, понижение стойкости белковых растворов, увеличение вязкости.

Денатурация вызывает агрегацию частиц, они могут выпадать в осадок. Если на белок действует денатурирующий агент на протяжении незначительного временного промежутка, высока вероятность восстановления нативной белковой структуры. Данные процессы широко используют при переработке продуктов питания, консервировании, изготовлении обуви, одежды, во время сушки фруктов и овощей. Денатурацию используют в ветеринарии, медицине, клинике, фармации, при проведении биохимических исследований, связанных с осаждением в биологическом материале протеина. Далее проводится идентификация в исследуемом растворе небелковых и низкомолекулярных инстанций, в результате чего можно установить количественное содержание веществ. В настоящее время ищут способы защиты белковых молекул от разрушения.

Вопрос 1. Какие химические соединения назы­вают углеводами?

Углеводы — это обширная группа природ­ных органических соединений. Углеводы под­разделяют на три основных класса: моносаха­риды, дисахариды и полисахариды. Дисахарид представляет собой соединение двух моносаха­ридов; полисахариды являются полимерами моносахаридов. Углеводы выполняют в живых организмах энергетическую, запасающую и строительную функции. Последняя особенно важна для растений, клеточная стенка которых в основном состоит из полисахарида целлюло­зы. Именно углеводы древних живых существ (прокариотов и растений) стали основой для об­разования ископаемого топлива — нефти, газа, угля.

Вопрос 2. Что такое моно- и дисахариды? При­ведите примеры.

Моносахариды — это углеводы, количест­во атомов углерода (n) в которых относительно невелико (от 3 до 6-10). Моносахариды обыч­но существуют в циклической форме; наибо­лее важны среди них гексозы (n = 6) и пентозы (n = 5). К гексозам относится глюкоза, кото­рая является важнейшим продуктом фотосин­теза растений и одним из основных источни­ков энергии для животных; широко распрост­ранена также фруктоза — фруктовый сахар, придающий сладкий вкус плодам и меду. Пен­тозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Если в одной молекуле объединяются два моносахарида, такое соеди­нение называют дисахаридом. Составные части (мономеры) дисахарида могут быть оди­наковыми либо разными. Так, две глюкозы об­разуют мальтозу, а глюкоза и фруктоза — са­харозу. Мальтоза является промежуточным продуктом переваривания крахмала; сахаро­за — тем самым сахаром, который можно ку­пить в магазине.

Вопрос 3. Какой простой углевод служит моно­мером крахмала, гликогена, целлюлозы?

Моносахариды, соединяясь друг с другом, могут образовывать полисахариды. Наиболее распространенные полисахариды (крахмал, гликоген, целлюлоза) представляют собой длинные цепи особым образом соединенных молекул глюкозы. Глюкоза является гексозой (химическая формула С 6 Н 12 0 6) и обладает не­сколькими ОН-группами. За счет установле­ния связей между ними отдельные молекулы глюкозы способны формировать линейные (целлюлоза) либо ветвящиеся (крахмал, гли­коген) полимеры. Средний размер такого по­лимера — несколько тысяч молекул глюкозы.

Вопрос 4. Из каких органических соединений состоят белки?

Белки — это гетерополимеры, состоящие из 20 типов аминокислот, соединенных между собой особыми, так называемыми, пептидны­ми связями. Аминокислоты — органические молекулы, имеющие общий план строения: атом углерода, соединенный с водородом, кис­лотной группой (-СООН), аминогруппой (-NH 2) и радикалом. Разные аминокислоты (каждая имеет свое название) различаются лишь строением радикала. Образование пеп­тидной связи происходит за счет соединения кислотной группы и аминогруппы двух ами­нокислот, расположенных рядом в молекуле белка.

Вопрос 5. Как образуются вторичная и третич­ная структуры белка?

Цепь аминокислот, составляющая основу молекулы белка, является его первичной структурой. Между положительно заряжен­ными аминогруппами и отрицательно заря­женными кислотными группами аминокис­лот возникают водородные связи. Образование этих связей вызывает сворачивание белковой молекулы в спираль.

Белковая спираль — вторичная структура белка. На следующем этапе за счет взаимодей­ствий между радикалами аминокислот белок сворачивается в клубок (глобулу) или нить (фибриллу). Такую структуру молекулы назы­вают третичной; именно она является биоло­гически активной формой белка, обладающей индивидуальной специфичностью и опреде­ленной функцией.

Вопрос 6. Назовите известные вам функции белков.

Белки выполняют в живых организмах чрезвычайно разнообразные функции.

Одна из самых многочисленных групп бел­ков — ферменты. Они выполняют функцию катализаторов химических реакций и уча­ствуют во всех биологических процессах.

Многие белки выполняют структурную функцию, участвуя в образовании мембран и органоидов клетки. Белок коллаген входит в состав межклеточного вещества костной и со­единительной ткани, а кератин является ос­новным компонентом волос, ногтей, перьев.

Сократительная функция белков обес­печивает организму возможность двигаться посредством сокращения мышц. Эта функция присуща таким белкам, как актин и миозин.

Транспортные белки связывают и пере­носят различные вещества как внутри клетки, так и по всему организму. К ним относится, например, гемоглобин, который транспорти­рует молекулы кислорода и углекислого газа.

Белки-гормоны обеспечивают регулятор­ную функцию. Белковую природу имеет гор­мон роста (его избыток у ребенка приводит к гигантизму), инсулин, гормоны, регулирую­щие работу почек, и др.

Чрезвычайно важны белки, выполняющие защитную функцию. Иммуноглобулины (антитела) — основные участники иммунных реакций; они защищают организм от бактерий и вирусов. Фибриноген и ряд других белков плазмы крови обеспечивают свертывание кро­ви, останавливая кровопотерю.

Энергетическую функцию белки начи­нают выполнять при их избытке в пище либо, напротив, при сильном истощении клеток. Ча­ще мы наблюдаем, как пищевой белок, перева­риваясь, расщепляется до аминокислот, из ко­торых затем создаются белки, необходимые организму.

Вопрос 7. Что такое денатурация белка? Что может явиться причиной денатурации?

Денатурация — это утрата белковой мо­лекулой своего нормального («природного») строения: третичной, вторичной и даже пер­вичной структуры. При денатурации белко­вый клубок и спираль раскручиваются; водо­родные, а затем и пептидные связи разруша­ются. Денатурированный белок не способен выполнять свои функции. Причинами денату­рации являются высокая температура, ультра­фиолетовое излучение, действие сильных кис­лот и щелочей, тяжелых металлов, органиче­ских растворителей. Примером денатурации служит варка куриного яйца. Содержимое сы­рого яйца жидкое и легко растекается. Но уже через несколько минут нахождения в кипятке оно меняет свою консистенцию, уплотняется. Причина — денатурация яичного белка альбу­мина: его клубковидные, растворимые в воде молекулы-глобулы раскручиваются, а затем соединяются друг с другом, образуя жесткую сеть.

Денатурация, причины и признаки, использование в медицине.

Белки чувствительны к внешним воздействиям. Нарушение пространственной структуры белков называют денатурацией. При этом белок теряет все свои биологические и физико-химические свойства. Денатурация сопровождается разрывом связей, стабилизирующих "нативную" структуру белка. Как уже отмечалось выше, в основе стабилизации структуры белков основную роль играет слабое взаимодействие, поэтому денатурацию могут вызывать различные факторы: нагревание, облучение, механическое встряхивание, охлаждение, химическое воздействие. При денатурации, как правило, нарушается и растворимость белков, так как нарушение структуры приводит к появлению на поверхности большого числа гидрофобных групп, обычно упрятанных в центре белковой молекулы.

Первичная структура белка при денатурации не изменяется, что позволило показать возможность восстановления функций и структуры денатурированного белка, хотя в большинстве случаев денатурация является необратимым процессом . В лабораторной практике денатурация используется для депротеинизации биологических жидкостей. Факторы, вызывающие денатурацию, называют денатурирующими агентами. К ним можно отнести:

1. Нагревание и действие облучения высоких энергий (ультрафиолетовое, рентгеновское, нейтронное и т.д). В основе лежит возбуждение колебаний атомов, сопровождающееся разрывом связей.

2. Действие кислот и щелочей; изменяют диссоциацию групп, уменьшают число ионных связей.

3. Ионы тяжелых металлов. Образуют комплексные соединения с группами белка, что сопровождается разрывом слабого взаимодействия.

4. Восстановители - вызывают разрыв дисульфидных мостиков.

5. Мочевина, гуанидиний хлористый - формируют новые водородные связи и разрывают старые. Явление денатурации можно использовать и для качественного анализа присутствия белков в растворах. Для этого пользуются пробой с кипячением исследуемой жидкости после ее подкисления. Образующееся при этом помутнение связано с денатурацией белка. Часто используют и осаждение органическими кислотами: сульфосалициловой или трихлоруксусной.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта