itthon » Előkészítés és tárolás » A sinx x függvény grafikonja. Az y=sinx függvény, főbb tulajdonságai és grafikonja

A sinx x függvény grafikonja. Az y=sinx függvény, főbb tulajdonságai és grafikonja

Ebben a leckében részletesen megvizsgáljuk az y = sin x függvényt, alapvető tulajdonságait és grafikonját. Az óra elején megadjuk az y = sin t trigonometrikus függvény definícióját a koordinátakörön, és figyelembe vesszük a függvény grafikonját a körön és az egyenesen. Mutassuk meg ennek a függvénynek a periodicitását a grafikonon, és vegyük figyelembe a függvény főbb tulajdonságait. Az óra végén néhány egyszerű feladatot oldunk meg egy függvény grafikonjának és tulajdonságainak segítségével.

Téma: Trigonometrikus függvények

Lecke: y=sinx függvény, alapvető tulajdonságai és grafikonja

Egy függvény mérlegelésekor fontos, hogy minden argumentumértéket egyetlen függvényértékhez társítsunk. Ez levelezés törvényeés függvénynek nevezzük.

Határozzuk meg a megfelelési törvényt.

Bármely valós szám megfelel az egységkör egyetlen pontjának. Egy pontnak egyetlen ordinátája van, amelyet a szám szinuszának nevezünk (1. ábra).

Minden argumentumérték egyetlen függvényértékhez van társítva.

A szinusz definíciójából nyilvánvaló tulajdonságok következnek.

Az ábra azt mutatja mert az egységkör egy pontjának ordinátája.

Tekintsük a függvény grafikonját. Emlékezzünk vissza az érv geometriai értelmezésére. Az argumentum a központi szög, radiánban mérve. A tengely mentén valós számokat vagy szögeket ábrázolunk radiánban, a tengely mentén pedig a függvény megfelelő értékeit.

Például az egységkörön lévő szög megfelel a grafikon egy pontjának (2. ábra).

Megkaptuk a függvény grafikonját a területen, de a szinusz periódusának ismeretében a függvény grafikonját a teljes definíciós tartományban ábrázolhatjuk (3. ábra).

A függvény fő periódusa Ez azt jelenti, hogy a grafikon egy szegmensen megkapható, majd az egész definíciós tartományon keresztül folytatható.

Tekintsük a függvény tulajdonságait:

1) A meghatározás hatálya:

2) Értéktartomány:

3) Páratlan függvény:

4) A legkisebb pozitív időszak:

5) A gráf és az abszcissza tengely metszéspontjainak koordinátái:

6) A gráf ordinátatengellyel való metszéspontjának koordinátái:

7) Azok az időközök, amelyeknél a függvény pozitív értékeket vesz fel:

8) Azok az időközök, amelyeknél a függvény negatív értékeket vesz fel:

9) Növekvő időközök:

10) Csökkenő intervallumok:

11) Minimum pont:

12) Minimális funkciók:

13) Maximális pont:

14) Maximális funkciók:

Megnéztük a függvény tulajdonságait és grafikonját. A tulajdonságok többször is felhasználásra kerülnek a problémák megoldása során.

Bibliográfia

1. Algebra és az elemzés kezdete, 10. évfolyam (két részben). Tankönyv általános oktatási intézmények számára (profilszint), szerk. A. G. Mordkovich. -M.: Mnemosyne, 2009.

2. Algebra és az elemzés kezdete, 10. évfolyam (két részben). Problémakönyv oktatási intézmények számára (profilszint), szerk. A. G. Mordkovich. -M.: Mnemosyne, 2007.

3. Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I. Algebra és matematikai elemzés a 10. osztály számára (tankönyv iskolák és osztályok tanulói számára a matematika elmélyült tanulmányozásával - M.: Prosveshchenie, 1996).

4. Galitsky M.L., Moshkovich M.M., Shvartsburd S.I. Az algebra és a matematikai elemzés elmélyült tanulmányozása.-M.: Oktatás, 1997.

5. Matematikai feladatgyűjtemény felsőoktatási intézményekbe jelentkezők számára (szerkesztette: M.I. Skanavi - M.: Higher School, 1992).

6. Merzlyak A.G., Polonsky V.B., Yakir M.S. Algebrai szimulátor.-K.: A.S.K., 1997.

7. Sahakyan S.M., Goldman A.M., Denisov D.V. Algebrai problémák és elemzési elvek (kézikönyv az általános oktatási intézmények 10-11. osztályos tanulói számára - M.: Prosveshchenie, 2003).

8. Karp A.P. Algebrai feladatgyűjtemény és elemzési elvek: tankönyv. pótlék 10-11 évfolyamon. mélységgel tanult Matematika.-M.: Oktatás, 2006.

Házi feladat

Algebra és az elemzés kezdete, 10. évfolyam (két részben). Problémakönyv oktatási intézmények számára (profilszint), szerk.

A. G. Mordkovich. -M.: Mnemosyne, 2007.

№№ 16.4, 16.5, 16.8.

További webes források

3. Oktatási portál a vizsgákra való felkészüléshez ().

Ebben a leckében részletesen megvizsgáljuk az y = sin x függvényt, alapvető tulajdonságait és grafikonját. Az óra elején megadjuk az y = sin t trigonometrikus függvény definícióját a koordinátakörön, és figyelembe vesszük a függvény grafikonját a körön és az egyenesen. Mutassuk meg ennek a függvénynek a periodicitását a grafikonon, és vegyük figyelembe a függvény főbb tulajdonságait. Az óra végén néhány egyszerű feladatot oldunk meg egy függvény grafikonjának és tulajdonságainak segítségével.

Téma: Trigonometrikus függvények

Lecke: y=sinx függvény, alapvető tulajdonságai és grafikonja

Egy függvény mérlegelésekor fontos, hogy minden argumentumértéket egyetlen függvényértékhez társítsunk. Ez levelezés törvényeés függvénynek nevezzük.

Határozzuk meg a megfelelési törvényt.

Bármely valós szám megfelel az egységkör egyetlen pontjának. Egy pontnak egyetlen ordinátája van, amelyet a szám szinuszának nevezünk (1. ábra).

Minden argumentumérték egyetlen függvényértékhez van társítva.

A szinusz definíciójából nyilvánvaló tulajdonságok következnek.

Az ábra azt mutatja mert az egységkör egy pontjának ordinátája.

Tekintsük a függvény grafikonját. Emlékezzünk vissza az érv geometriai értelmezésére. Az argumentum a központi szög, radiánban mérve. A tengely mentén valós számokat vagy szögeket ábrázolunk radiánban, a tengely mentén pedig a függvény megfelelő értékeit.

Például az egységkörön lévő szög megfelel a grafikon egy pontjának (2. ábra).

Megkaptuk a függvény grafikonját a területen, de a szinusz periódusának ismeretében a függvény grafikonját a teljes definíciós tartományban ábrázolhatjuk (3. ábra).

A függvény fő periódusa Ez azt jelenti, hogy a grafikon egy szegmensen megkapható, majd az egész definíciós tartományon keresztül folytatható.

Tekintsük a függvény tulajdonságait:

1) A meghatározás hatálya:

2) Értéktartomány:

3) Páratlan függvény:

4) A legkisebb pozitív időszak:

5) A gráf és az abszcissza tengely metszéspontjainak koordinátái:

6) A gráf ordinátatengellyel való metszéspontjának koordinátái:

7) Azok az időközök, amelyeknél a függvény pozitív értékeket vesz fel:

8) Azok az időközök, amelyeknél a függvény negatív értékeket vesz fel:

9) Növekvő időközök:

10) Csökkenő intervallumok:

11) Minimum pont:

12) Minimális funkciók:

13) Maximális pont:

14) Maximális funkciók:

Megnéztük a függvény tulajdonságait és grafikonját. A tulajdonságok többször is felhasználásra kerülnek a problémák megoldása során.

Bibliográfia

1. Algebra és az elemzés kezdete, 10. évfolyam (két részben). Tankönyv általános oktatási intézmények számára (profilszint), szerk. A. G. Mordkovich. -M.: Mnemosyne, 2009.

2. Algebra és az elemzés kezdete, 10. évfolyam (két részben). Problémakönyv oktatási intézmények számára (profilszint), szerk. A. G. Mordkovich. -M.: Mnemosyne, 2007.

3. Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I. Algebra és matematikai elemzés a 10. osztály számára (tankönyv iskolák és osztályok tanulói számára a matematika elmélyült tanulmányozásával - M.: Prosveshchenie, 1996).

4. Galitsky M.L., Moshkovich M.M., Shvartsburd S.I. Az algebra és a matematikai elemzés elmélyült tanulmányozása.-M.: Oktatás, 1997.

5. Matematikai feladatgyűjtemény felsőoktatási intézményekbe jelentkezők számára (szerkesztette: M.I. Skanavi - M.: Higher School, 1992).

6. Merzlyak A.G., Polonsky V.B., Yakir M.S. Algebrai szimulátor.-K.: A.S.K., 1997.

7. Sahakyan S.M., Goldman A.M., Denisov D.V. Algebrai problémák és elemzési elvek (kézikönyv az általános oktatási intézmények 10-11. osztályos tanulói számára - M.: Prosveshchenie, 2003).

8. Karp A.P. Algebrai feladatgyűjtemény és elemzési elvek: tankönyv. pótlék 10-11 évfolyamon. mélységgel tanult Matematika.-M.: Oktatás, 2006.

Házi feladat

Algebra és az elemzés kezdete, 10. évfolyam (két részben). Problémakönyv oktatási intézmények számára (profilszint), szerk.

A. G. Mordkovich. -M.: Mnemosyne, 2007.

№№ 16.4, 16.5, 16.8.

További webes források

3. Oktatási portál a vizsgákra való felkészüléshez ().

Megállapítottuk, hogy a trigonometrikus függvények viselkedése, és a függvények y = sin x különösen, a teljes számegyenesen (vagy az argumentum összes értékére x) teljes mértékben meghatározza az intervallumban való viselkedése 0 < x < π / 2 .

Ezért először ábrázoljuk a függvényt y = sin x pontosan ebben az intervallumban.

Készítsük el a függvényünk alábbi értéktáblázatát;

A koordinátasíkon a megfelelő pontokat megjelölve és sima vonallal összekötve az ábrán látható görbét kapjuk

A kapott görbe geometriailag is megszerkeszthető anélkül, hogy függvényértékeket tartalmazó táblázatot kellene összeállítani y = sin x .

1. Oszd fel az 1 sugarú kör első negyedét 8 egyenlő részre A kör osztópontjainak ordinátái a megfelelő szögek szinuszai.

2.A kör első negyede 0-tól ig terjedő szögeknek felel meg π / 2 . Ezért a tengelyen x Vegyünk egy szakaszt, és osszuk fel 8 egyenlő részre.

3. Rajzoljunk a tengellyel párhuzamos egyeneseket! x, és az osztási pontokból merőlegeseket építünk, amíg nem metszik egymást vízszintes vonalakkal.

4. Kösse össze a metszéspontokat egy sima vonallal.

Most nézzük az intervallumot π / 2 < x < π .
Minden argumentum értéke x ebből az intervallumból úgy ábrázolható

x = π / 2 + φ

Ahol 0 < φ < π / 2 . A redukciós képletek szerint

bűn( π / 2 + φ ) = cos φ = sin( π / 2 - φ ).

Tengelypontok x abszcisszákkal π / 2 + φ És π / 2 - φ szimmetrikusan egymásra a tengelypont körül x abszcisszával π / 2 , és ezekben a pontokban a szinuszok megegyeznek. Ez lehetővé teszi, hogy megkapjuk a függvény grafikonját y = sin x intervallumban [ π / 2 , π ] egyszerűen szimmetrikusan megjelenítve ennek a függvénynek a grafikonját az egyeneshez viszonyított intervallumban x = π / 2 .

Most használja az ingatlant páratlan paritásfüggvény y = sin x,

bűn(- x) = - bűn x,

ezt a függvényt könnyű ábrázolni a [- π , 0].

Az y = sin x függvény 2π periódusú periodikus ;. Ezért ennek a függvénynek a teljes grafikonjának elkészítéséhez elegendő az ábrán látható görbét periodikusan egy ponttal balra és jobbra folytatni. .

Az így kapott görbét ún szinuszos . A függvény grafikonját ábrázolja y = sin x.

Az ábra jól szemlélteti a függvény összes tulajdonságát y = sin x , amit korábban már bebizonyítottunk. Emlékezzünk vissza ezekre a tulajdonságokra.

1) Funkció y = sin x minden értékre meghatározva x , tehát a tartománya az összes valós szám halmaza.

2) Funkció y = sin x korlátozott. Az általa elfogadott összes érték -1 és 1 között van, beleértve ezt a két számot is. Következésképpen ennek a függvénynek a változási tartományát a -1 egyenlőtlenség határozza meg < nál nél < 1. Mikor x = π / 2 + 2k π a függvény a legnagyobb 1-gyel egyenlő értékeket veszi fel, és x = - esetén π / 2 + 2k π - a legkisebb értékek egyenlőek -1-gyel.

3) Funkció y = sin x páratlan (a szinusz szimmetrikus az origóra).

4) Funkció y = sin x periodikus a 2. periódussal π .

5) 2n időközönként π < x < π + 2n π (n bármely egész szám) pozitív, és intervallumokban π + 2k π < x < 2π + 2k π (k bármely egész szám) negatív. x = k-nél π a függvény nullára megy. Ezért az x argumentum ezen értékei (0; ± π ; ±2 π ; ...) függvényeket nulláknak nevezzük y = sin x

6) Időközönként - π / 2 + 2n π < x < π / 2 + 2n π funkció y = bűn x monoton és időközönként növekszik π / 2 + 2k π < x < 3π / 2 + 2k π monoton csökken.

Különös figyelmet kell fordítani a függvény viselkedésére y = sin x a pont közelében x = 0 .

Például sin 0,012 0,012; sin(-0,05) -0,05;

sin 2° = sin π 2 / 180 = bűn π / 90 0,03 0,03.

Ugyanakkor meg kell jegyezni, hogy az x bármely értékéhez

| bűn x| < | x | . (1)

Valóban, legyen az ábrán látható kör sugara 1,
a / AOB = x.

Aztán bűn x= AC. De AC< АВ, а АВ, в свою очередь, меньше длины дуги АВ, на которую опирается угол x. Ennek az ívnek a hossza nyilvánvalóan egyenlő x, mivel a kör sugara 1. Tehát 0-nál< x < π / 2

bűn x< х.

Ezért a függvény páratlansága miatt y = sin x könnyű megmutatni, hogy amikor - π / 2 < x < 0

| bűn x| < | x | .

Végül, mikor x = 0

| sin x | = | x |.

Így a | x | < π / 2 az (1) egyenlőtlenség bebizonyosodott. Valójában ez az egyenlőtlenség a |-re is igaz x | > π / 2 amiatt, hogy | bűn x | < 1, a π / 2 > 1

Feladatok

1.A függvény grafikonja szerint y = sin x határozzuk meg: a) sin 2; b) sin 4; c) bűn (-3).

2.A függvény grafikonja szerint y = sin x határozza meg, melyik szám az intervallumból
[ - π / 2 , π / 2 ] szinusza egyenlő: a) 0,6; b) -0,8.

3. A függvény grafikonja szerint y = sin x határozza meg, hogy mely számoknak van szinusza,
egyenlő 1/2.

4. Határozza meg megközelítőleg (táblázatok nélkül): a) sin 1°; b) sin 0,03;
c) sin (-0,015); d) sin (-2°30").

Funkcióy = bűnx

A függvény grafikonja szinuszos.

A szinuszhullám teljes nem ismétlődő részét szinuszhullámnak nevezzük.

A fél szinuszhullámot fél szinuszhullámnak (vagy ívnek) nevezzük.


Funkció tulajdonságai
y = bűnx:

3) Ez egy páratlan függvény.

4) Ez egy folyamatos függvény.


- abszcissza tengellyel: (πn; 0),
- ordináta tengellyel: (0; 0).

6) A szakaszon [-π/2; π/2] függvény növekszik a [π/2; 3π/2] – csökken.

7) Időközönként a függvény pozitív értékeket vesz fel.
Az intervallumokon [-π + 2πn; 2πn] függvény negatív értékeket vesz fel.

8) A növekvő függvény intervallumai: [-π/2 + 2πn; π/2 + 2πn].
A függvény csökkenő intervallumai: [π/2 + 2πn; 3π/2 + 2πn].

9) A függvény minimális pontjai: -π/2 + 2πn.
A függvény maximális pontjai: π/2 + 2πn


a legmagasabb érték 1.

Függvény ábrázolása y= bűn x Kényelmes a következő mérlegek használata:

Egy négyzetes papírlapon két négyzet hosszát vesszük szegmens egységnek.

A tengelyen x Mérjük meg a π hosszt. Ugyanakkor a kényelem kedvéért a 3.14-et 3 formájában mutatjuk be - vagyis törtszám nélkül. Ekkor egy papírlapon egy cellában π 6 cella lesz (háromszor 2 cella). És minden cella megkapja a saját természetes nevét (az elsőtől a hatodikig): π/6, π/3, π/2, 2π/3, 5π/6, π. Ezek a jelentések x.

Az y tengelyen 1-et jelölünk, amely két cellát foglal magában.

Készítsünk egy táblázatot a függvényértékekről az értékeink felhasználásával x:

√3
-
2

√3
-
2

Ezután hozzunk létre egy ütemtervet. Az eredmény egy félhullám, amelynek legmagasabb pontja (π/2; 1). Ez a függvény grafikonja y= bűn x a szegmensen. Adjunk hozzá egy szimmetrikus félhullámot a megszerkesztett gráfhoz (az origóhoz képest szimmetrikusan, vagyis a -π szakaszon). Ennek a félhullámnak a csúcsa az x tengely alatt van, koordinátákkal (-1; -1). Az eredmény egy hullám lesz. Ez a függvény grafikonja y= bűn x szakaszon [-π; π].

A hullámot a [π; 3π], [π; 5π], [π; 7π] stb. Ezeken a szegmenseken a függvény grafikonja ugyanúgy fog kinézni, mint a [-π; π]. Folyamatos hullámvonalat kapsz azonos hullámokkal.

Funkcióy = kötözősalátax.

Egy függvény grafikonja egy szinuszhullám (néha koszinuszhullámnak is nevezik).



Funkció tulajdonságaiy = kötözősalátax:

1) Egy függvény definíciós tartománya a valós számok halmaza.

2) A függvényértékek tartománya a [–1; 1]

3) Ez egy páros függvény.

4) Ez egy folyamatos függvény.

5) A grafikon metszéspontjainak koordinátái:
- az abszcissza tengellyel: (π/2 + πn; 0),
- az ordináta tengellyel: (0;1).

6) A szakaszon a függvény csökken, a szakaszon [π; 2π] – növekszik.

7) intervallumokon [-π/2 + 2πn; π/2 + 2πn] függvény pozitív értékeket vesz fel.
Az intervallumokon [π/2 + 2πn; 3π/2 + 2πn] függvény negatív értékeket vesz fel.

8) Növekvő intervallumok: [-π + 2πn; 2πn].
Csökkenő intervallumok: ;

9) A függvény minimális pontjai: π + 2πn.
A függvény maximális pontjai: 2πn.

10) A funkció felülről és alulról korlátozott. A függvény legkisebb értéke –1,
a legmagasabb érték 1.

11) Ez egy 2π periódusú periodikus függvény (T = 2π)

Funkcióy = mf(x).

Vegyük az előző függvényt y=cos x. Mint már tudja, a grafikonja egy szinuszhullám. Ha ennek a függvénynek a koszinuszát megszorozzuk egy bizonyos m számmal, akkor a hullám kitágul a tengely felől x(vagy zsugorodni fog, m értékétől függően).
Ez az új hullám lesz az y = mf(x) függvény grafikonja, ahol m bármely valós szám.

Így az y = mf(x) függvény az ismerős y = f(x) függvény szorozva m-rel.

Ham< 1, то синусоида сжимается к оси x együtthatóvalm. Ham > 1, akkor a szinuszot a tengelytől kifeszítjükx együtthatóvalm.

Nyújtás vagy tömörítés végrehajtásakor először csak egy szinuszhullám egy félhullámát ábrázolhatja, majd befejezheti a teljes grafikont.

Funkcióy= f(kx).

Ha a funkció y=mf(x) a szinusz tengelytől való megnyúlásához vezet x vagy a tengely felé történő összenyomás x, akkor az y = f(kx) függvény a tengely felőli nyújtáshoz vezet y vagy a tengely felé történő összenyomás y.

Ráadásul k bármely valós szám.

0-nál< k< 1 синусоида растягивается от оси y együtthatóvalk. Hak > 1, akkor a szinusz a tengely felé összenyomódiky együtthatóvalk.

Ennek a függvénynek a grafikonjának elkészítésekor először fel lehet építeni egy szinuszhullám egy félhullámát, majd felhasználhatja a teljes grafikont.

Funkcióy = tgx.

Függvénygrafikon y= tg x egy érintő.

Elegendő a gráf egy részét a 0-tól π/2-ig terjedő intervallumban megszerkeszteni, majd szimmetrikusan folytatni a 0-tól 3π/2-ig terjedő intervallumban.


Funkció tulajdonságaiy = tgx:

Funkcióy = ctgx

Függvénygrafikon y=ctg x tangentoid is (néha kotangentoidnak is nevezik).



Funkció tulajdonságaiy = ctgx:

Óra és előadás a témában: "Y=sin(x) függvény. Definíciók és tulajdonságok"

Kiegészítő anyagok
Kedves felhasználók, ne felejtsék el megírni észrevételeiket, véleményeiket, kívánságaikat! Az összes anyagot egy vírusirtó program ellenőrizte.

Kézikönyvek és szimulátorok az Integral online áruházban 10. osztályhoz az 1C-től
Geometriai feladatok megoldása. Interaktív építési feladatok 7-10
Szoftverkörnyezet "1C: Mathematical Constructor 6.1"

Amit tanulmányozni fogunk:

  • Az Y=sin(X) függvény tulajdonságai.
  • Függvénygrafikon.
  • Hogyan készítsünk grafikont és léptékét.
  • Példák.

A szinusz tulajdonságai. Y=sin(X)

Srácok, már megismerkedtünk egy numerikus argumentum trigonometrikus függvényeivel. Emlékszel rájuk?

Nézzük meg közelebbről az Y=sin(X) függvényt

Írjuk fel ennek a függvénynek néhány tulajdonságát:
1) A definíciós tartomány a valós számok halmaza.
2) A függvény páratlan. Emlékezzünk a páratlan függvény definíciójára. Egy függvényt páratlannak nevezünk, ha az egyenlőség teljesül: y(-x)=-y(x). Ahogy a szellemképletekből emlékszünk: sin(-x)=-sin(x). A definíció teljesül, ami azt jelenti, hogy Y=sin(X) páratlan függvény.
3) Az Y=sin(X) függvény növekszik a szakaszon, és csökken a [π/2; π]. Amikor az első negyedben haladunk (az óramutató járásával ellentétes irányban), az ordináta növekszik, és amikor áthaladunk a második negyeden, akkor csökken.

4) Az Y=sin(X) függvény alulról és felülről korlátozott. Ez a tulajdonság abból következik, hogy
-1 ≤ sin(X) ≤ 1
5) A függvény legkisebb értéke -1 (x = - π/2+ πk-nél). A függvény legnagyobb értéke 1 (x = π/2+ πk-nál).

Használjuk az 1-5 tulajdonságokat az Y=sin(X) függvény ábrázolására. A gráfunkat szekvenciálisan készítjük, tulajdonságainkat alkalmazva. Kezdjük a grafikon felépítését a szegmensen.

Különös figyelmet kell fordítani a skálára. Az ordináta tengelyen célszerűbb egy 2 cellával egyenlő egységszegmenst venni, az abszcissza tengelyen pedig egy π/3-mal egyenlő egységszegmenst (két cellát) (lásd az ábrát).


A szinusz x függvény ábrázolása, y=sin(x)

Számítsuk ki a függvény értékeit a szegmensünkön:



Készítsünk grafikont pontjaink felhasználásával, figyelembe véve a harmadik tulajdonságot.

Átalakító táblázat szellemképletekhez

Használjuk a második tulajdonságot, amely szerint a függvényünk páratlan, ami azt jelenti, hogy szimmetrikusan tükrözhető az origóhoz képest:


Tudjuk, hogy sin(x+ 2π) = sin(x). Ez azt jelenti, hogy a [- π; π] a grafikon ugyanúgy néz ki, mint a [π; 3π] vagy vagy [-3π; - π] és így tovább. Nincs más dolgunk, mint gondosan átrajzolni az előző ábrán látható grafikont a teljes x tengely mentén.



Az Y=sin(X) függvény grafikonját szinuszosnak nevezzük.


Írjunk még néhány tulajdonságot a felépített gráf szerint:
6) Az Y=sin(X) függvény bármely alakú szegmensén növekszik: [- π/2+ 2πk; π/2+ 2πk], k egész szám, és a következő alak bármely szegmensén csökken: [π/2+ 2πk; 3π/2+ 2πk], k – egész szám.
7) Az Y=sin(X) függvény folytonos függvény. Nézzük meg a függvény grafikonját, és győződjünk meg arról, hogy a függvényünkben nincs törés, ez folytonosságot jelent.
8) Értéktartomány: szegmens [- 1; 1]. Ez jól látható a függvény grafikonján is.
9) Y=sin(X) függvény – periodikus függvény. Nézzük meg újra a grafikont, és nézzük meg, hogy a függvény bizonyos időközönként ugyanazokat az értékeket veszi fel.

Példák a szinuszos problémákra

1. Oldja meg a sin(x)= x-π egyenletet!

Megoldás: Készítsünk 2 grafikont a függvényből: y=sin(x) és y=x-π (lásd az ábrát).
Grafikonjaink egy A(π;0) pontban metszik egymást, ez a válasz: x = π




2. Ábrázolja az y=sin(π/6+x)-1 függvényt

Megoldás: A kívánt grafikont úgy kapjuk meg, hogy az y=sin(x) függvény grafikonját π/6 egységgel balra és 1 egységgel lefelé mozgatjuk.




Megoldás: Készítsük el a függvény grafikonját, és vegyük figyelembe a [π/2; 5π/4].
A függvény grafikonja azt mutatja, hogy a legnagyobb és a legkisebb értékeket a szakasz végén, a π/2 és 5π/4 pontokban érjük el.
Válasz: sin(π/2) = 1 – a legnagyobb érték, sin(5π/4) = a legkisebb érték.



Szinuszfeladatok a független megoldáshoz


  • Oldja meg az egyenletet: sin(x)= x+3π, sin(x)= x-5π
  • Ábrázolja az y=sin(π/3+x)-2 függvényt
  • Ábrázolja az y=sin(-2π/3+x)+1 függvényt
  • Keresse meg az y=sin(x) függvény legnagyobb és legkisebb értékét a szakaszon!
  • Határozzuk meg az y=sin(x) függvény legnagyobb és legkisebb értékét a [- π/3 intervallumon; 5π/6]


Előző cikk: Következő cikk:

© 2015 .
Az oldalról | Kapcsolatok
| Oldaltérkép