Главная » Маринование грибов » Каковы функции эпс. Строение и функции ЭПС

Каковы функции эпс. Строение и функции ЭПС

Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС) , или эндоплазматический ретикулум (ЭПР) , — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты («отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Или комплекс Гольджи , — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х-6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом .

Различают: 1) первичные лизосомы , 2) вторичные лизосомы . Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль . Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком . В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки , отдельные элементы которой могут переходить друг в друга.

Митохондрии

1 — наружная мембрана;
2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар , где происходит накопление Н + .

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.

Пластиды характерны только для растительных клеток. Различают три основных типа пластид : лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40-60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н + . Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

1 — большая субъединица; 2 — малая субъединица.

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50-63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы) . В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5-7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

    Перейти к лекции №6 «Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран»

Животных и человека. Функции этой составляющей части клетки разнообразны и связаны в основном с синтезом, модификацией и транспортом

Впервые эндоплазматическая сеть была обнаружена в 1945 году. Американский ученый К. Портер разглядел ее с помощью одного из первых электрических микроскопов. С этого времени началось ее активное исследование.

В клетке есть две разновидности этой органеллы:

  • Гранулярная, или шероховатая эндоплазматическая сеть (покрыта множеством рибосом).
  • Агранулярная, или гладкая эндоплазматическая сеть.

Каждый тип ретикулума имеет некоторые особенности и выполняет совершенно разные функции. Давайте рассмотрим их более подробно.

Гранулярная эндоплазматическая сеть: строение . Данная органелла представляет собой системы цистерн, пузырьков и канальцев. Стенки ее состоят из билипидной мембраны. Ширина полости может колебаться от 20 нм до нескольких микрометров — здесь все зависит от секреторной активности клетки.

У мало специализированных клеток, которые характеризируются низким уровнем метаболизма, ЭПС представлена всего лишь несколькими разрозненными цистернами. Внутри клетки, которая активно синтезирует белок, эндоплазматическая сеть состоит из множества цистерн и разветвленной системы канальцев.

Как правило, гранулярная ЭПС посредством канальцев связана с мембранами ядерной оболочки — именно таким образом происходят сложные процессы синтеза и транспорта белковых молекул.

Гранулярная эндоплазматическая сеть: функции . Как уже упоминалось, вся поверхность ЭПС со стороны цитоплазмы покрыта рибосомами, которые, как известно, участвуют в ЭПС — это место синтеза и транспорта протеиновых соединений.

Эта органелла отвечает за синтез цитоплазматической мембраны. Но в большинстве случаев созданные белковые молекулы далее с помощью мембранных пузырьков транспортируются в где происходит их дальнейшая модификация и распределение соответственно потребностям клетки и тканей.

Кроме того, в полостях цистерн ЭПС происходят и некоторые изменения белка — например, присоединение к нему углеводного компонента. Здесь же, путем агрегации образуются большие секреторные гранулы.

Агранулярная эндоплазматическая сеть: строение и функции . Строение гладкой ЭПС имеет некоторые отличия. Например, такая органелла состоит только из цистерн и не имеет системы канальцев. Комплексы такой ЭПС, как правило, имеют меньшие размеры, а вот ширина цистерны, наоборот, больше.

Гладкая эндоплазматическая сеть не имеет отношения к синтезу белковых компонентов, но исполняет ряд не менее важных функций. Например, именно здесь происходит синтез стероидных гормонов у человека и всех позвоночных животных. Именно поэтому объем гладкой ЭПС в клетках надпочечников довольно большой.

В клетках печени ЭПС вырабатывает необходимые ферменты, которые участвуют в углеводном обмене, а именно в распаде гликогена. Известно также, что печеночные клетки отвечают за обезвреживание токсинов. В цистернах этой органеллы происходит синтез гидрофильного компонента, который затем присоединяется к токсической молекуле, увеличивает ее растворимость в крови и моче. Интересно, что в гепатоцитах, которые постоянно поддаются влиянию токсинов (ядов, алкоголя), практически вся клетка занята плотно расположенными цистернами гладкой ЭПС.

В мышечных клетках имеется особая разновидность гладкой ЭПС — саркоплазматический ретикулум. Он выступает как депо кальция, регулируя, таким образом, процессы активности и покоя клетки.

Как видно, функции ЭПС разнообразны и очень важны для нормального функционирования здоровой клетки.

Немного истории

Клетка считается наименьшей структурной единицей любого организма, однако и она также из чего-то состоит. Одним из её компонентов и является эндоплазматическая сеть. Более того, ЭПС является обязательной составляющей любой клетки в принципе (кроме некоторых вирусов и бактерий). Открыта она американским учёным К. Портером ещё в 1945 году. Именно он заметил системы канальцев и вакуолей, которые как бы скопились вокруг ядра. Также Портером было замечено, что размеры ЭПС в клетках разных существ и даже органов и тканей одного организма не аналогичны друг другу. Он пришёл к выводу о том, что это связано с функциями той или иной клетки, степенью её развития, а также стадией дифференцировки. Например, у человека очень хорошо развита ЭПС в клетках кишечника, слизистых и надпочечников.

Понятие

ЭПС - система канальцев, трубочек, пузырьков и мембран, которые расположены в цитоплазме клетки.

Эндоплазматическая сеть: строение и функции

Строение

Во-первых, это транспортная функция. Как и цитоплазма, эндоплазматическая сеть обеспечивает обмен веществ между органоидами. Во-вторых, ЭПС совершает структурирование и группировку содержимого клетки, разбивая его на определённые секции. В-третьих, важнейшей функцией является синтез белка, который осуществляется в рибосомах шероховатой эндоплазматической сети, а также синтез углеводов и липидов, который происходит на мембранах гладкой ЭПС.

Строение ЭПС

Всего существует 2 типа эндоплазматической сети: зернистая (шероховатая) и гладкая. Функции, выполняемые данной составляющей, зависят именно от типа самой клетки. На мембранах гладкой сети находятся отделы, вырабатывающие ферменты, которые затем участвуют в обмене веществ. Шероховатая эндоплазматическая сеть содержит на своих мембранах рибосомы.

Краткая информация о других наиболее важных составляющих клетки

Цитоплазма: строение и функции

Изображение Строение Функции

Является жидкостью в клетке. Именно в ней находятся все органоиды (в том числе и аппарат Гольджи, и эндоплазматическая сеть, и многие другие) и ядро с его содержимым. Относится к обязательным компонентам и не является органоидом как таковым. Основной функцией является транспортная. Именно благодаря цитоплазме происходит взаимодействие всех органоидов, их упорядочение (складываются в единую систему) и протекание всех химических процессов.

Клеточная мембрана: строение и функции

Изображение Строение Функции

Молекулы фосфолипидов и белков, образуя два слоя, составляют мембрану. Она представляет собой тончайшую плёнку, окутывающую всю клетку. Неотъемлемым ее компонентом также являются полисахариды. А у растений снаружи она ещё покрыта тонким слоем клетчатки.

Основной функцией клеточной мембраны является ограничение внутреннего содержимого клетки (цитоплазмы и всех органоидов). Поскольку в ней содержатся мельчайшие поры, она обеспечивает транспорт и обмен веществ. Может также являться катализатором при осуществлении каких-то химических процессов и рецептором при возникновении внешней опасности.

Ядро: строение и функции

Изображение Строение Функции

Имеет либо овальную, либо шаровидную форму. Содержит в себе особые молекулы ДНК, которые в свою очередь несут наследственную информацию всего организма. Само ядро снаружи покрыто особой оболочкой, в которой есть поры. Содержит также ядрышки (небольшие тельца) и жидкость (сок). Вокруг этого центра и располагается эндоплазматическая сеть.

Именно ядром регулируются абсолютно все процессы, происходящие в клетке (обмен веществ, синтез и т.д.). И именно этот компонент является основным носителем наследственной информации всего организма.

В ядрышках происходит синтез белка и молекул РНК.

Рибосомы

Являются органоидами, обеспечивающими основной синтез белка. Могут находиться как в свободном пространстве цитоплазмы клетки, так и в комплексе с другими органоидами (эндоплазматическая сеть, например). Если рибосомы расположены на мембранах шероховатой ЭПС (находясь на наружных стенках мембран, рибосомы создают шероховатости), эффективность синтеза белка возрастает в несколько раз. Это было доказано многочисленными научными экспериментами.

Комплекс Гольджи

Органоид, состоящий из некоторых полостей, постоянно выделяющих различных размеров пузырьки. Накопленные вещества также использует для нужд клетки и организма. Комплекс Гольджи и эндоплазматическая сеть нередко расположены рядом.

Лизосомы

Органоиды, окружённые специальной мембраной и выполняющие пищеварительную функцию клетки, называются лизосомами.

Митохондрии

Органоиды, окружённые несколькими мембранами и выполняющие энергетическую функцию, то есть обеспечивающие синтез молекул АТФ и распределяющие полученную энергию по клетке.

Пластиды. Виды пластидов

Хлоропласты (функция фотосинтеза);

Хромопласты (накапливание и сохранение каротиноидов);

Лейкопласты (накапливание и хранение крахмала).

Органоиды, предназначенные для передвижения

Они также совершают какие-то движения (жгутики, реснички, длинные отростки и т.п.).

Клеточный центр: строение и функции

Важной функцией ПАК является функция индивидуализации . Она проявляется в различии клеток по химическому строению компонентов гликокаликса. Эти различия могут касаться структуры надмембранных доменов нескольких интегральных и полуинтегральных белков. Большое значение в реализации функции индивидуализации имеют различия по углеводным компонентам гликокаликса (олигосахариды гликолипидов и гликопротеинов ПАК). Эти различия могут касаться гликокаликса одинаковых клеток разных организмов. Различный состав гликокаликса характерен и для различных клеток одного многоклеточного организма. Молекулы, ответственные за функцию индивидуализации, получили название антигенов . Структура антигенов контролируется определенными генами. Каждый ген может определять несколько вариантов одного антигена. Организм имеет большое количество разных систем антигенов. В результате он имеет уникальный набор вариантов различных антигенов. В этом проявляется функция индивидуализации ПАК.

Для ПАК характерна локомоторная функция. Она реализуется в виде передвижения отдельных участков ПАК или всей клетки. Эта функция осуществляется на основе субмембранного опорно-сократительный аппарата. С помощью взаимного скольжения и полимеризации – деполяризации микрофибрилл и микротрубочек в определенных районах ПАК образуются выпячивания участков плазмолеммы. На этой основе происходит эндоцитоз. Согласованное перемещение многих участков ПАК приводит к движению всей клетки. Высокой подвижностью обладают клетки иммунной системы макрофаги. Они способны к фагоцитозу чужеродных веществ и даже целых клеток и передвигаются практически по всему организму. Нарушение локомоторной функции макрофагов вызывает повышенную чувствительность организма к возбудителям инфекционных заболеваний. Это обусловлено участием макрофагов в иммунных реакциях.

Кроме рассмотренных универсальных функций ПАК эта субсистема клетки может выполнять и другие, специализированные функции.

6. Строение и функции эпс.

Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему плоских мембранных цистерн и мембранных трубочек. Мембранные цистерны и трубочки соединяются между собой и образуют мембранную структуру с общим содержимым. Это позволяет изолировать определенные участки цитоплазмы от основной ниалоплазмы и реализовать в них некоторые специфические клеточные функции. В результате происходит функциональная дифференцировка различных зон цитоплазмы. Строение мембран ЭПС соответствует жидкостно-мозаичной модели. Морфологически различают 2 вида ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Гладкая ЭПС представлена системой мембранных трубочек. Шероховатая ЭПС является системой мембранных цистерн. На наружной стороне мембран шероховатой ЭПС находятся рибосомы . Оба вида ЭПС находятся в структурной зависимости – мембраны одного вида ЭПС могут переходить в мембраны другого вида.

Функции эндоплазматической сети:

    Гранулярная ЭПС участвует в синтезе белков, в каналах образуются сложные молекулы белков.

    Гладкая ЭПС участвует в синтезе липидов, углеводов.

    Транспорт органических веществ в клетку (по каналам ЭПС).

    Делит клетку на секции, – в которых могут одновременно идти разные химические реакции и физиологические процессы.

Гладкая ЭПС является полифункциональной. В ее мембране имеются белки-0ферменты, которые катализируют реакции синтеза мембранных липидов. В гладкой ЭПС синтезируются и некоторые не мембранные липиды (стероидные гормоны). В состав мембраны этого типа ЭПС включены переносчики Са 2+ . Они транспортируют кальций по градиенту концентрации (пассивный транспорт). При пассивном транспорте происходит синтез АТФ. С их помощью в гладкой ЭПС регулируется концентрация Са 2+ в гиалоплазме. Этот параметр важен для регуляции работы микротрубочек и микрофибрилл. В мышечных клетках гладкая ЭПС регулирует сокращение мускулатуры. В ЭПС происходит детоксикация многих вредных для клетке веществ (лекарственные препараты). Гладкая ЭПС может образовывать мембранные пузырьки, или микротельца. Такие пузырьки осуществляют специфические окислительные реакции изолированно от ЭПС.

Главной функцией шероховатой ЭПС является синтез белков. Это определяется наличием на мембранах рибосом. В мембране шероховатой ЭПС имеются специальные белки рибофорины . Рибосомы взаимодействуют с рибофоринами и фиксируются на мембране в определенной ориентации. Все белки синтезирующиеся в ЭПС имеют концевой сигнальный фрагмент. На рибосомах шероховатой ЭПС идет синтез белков.

В цистернах шероховатой ЭПС происходит посттрансляционная модификация белков.

7. Комплекс Гольджи и лизосомы. Строение и функции .

Комплекс Гольджи является универсальным мембранным органоидом эукариотических клеток. Структурная часть комплекса Гольджи представлена системой мембранных цистерн , образуя стопку цистерн. Эту стопку называют диктиосомой. От них отходят мембранные трубочки и мембранные пузырьки.

Строение мембран комплекса Гольджи соответствует жидкостно-мозаичной структуре. Мембраны различных полюсов разделяются по количеству гликолипидов и гликопротеинов. На проксимальном полюсе происходит образование новых цистерн диктиосомы. От участков гладкой ЭПС отрываются мелкие мембранные пузырьки и передвигаются в зону проксимального полюса. Здесь они сливаются и образуют более крупную цистерну. В результате этого процесса в цистерны комплекса Гольджи могут транспортироваться вещества, которые синтезируются в ЭПС. От боковых поверхностей дистального полюса отрываются пузырьки, которые участвуют в энджоцитозе.

Комплекс Гольджи выполняет 3 общих клеточных функции:

    Накопительную

    Секреторную

    Агрегационную

В цистернах комплекса Гольджи протекают определенные биохимические процессы. В результате осуществляется химическая модификация компонентов мембраны цистерн комплекса Гольджи и молекул внутри этих цистерн. В мембранах цистерн проксимального полюса имеются ферменты, которые осуществляют синтез углеводов (полисахаридов) и их присоединение к липидам и белкам, т.е. происходит гликозилирование. Наличие этого, или другого углеводного компонента у гликозилированных белков определяет их судьбу. В зависимости от этого белки попадают в разные районы клетки и секретируются. Гликозилирование является одним из этапов созревания секрета. Кроме того, белки в цистернах комплекса Гольджи могут фосфорилироваться и ацетилироваться. В комплексе Гольджи могут синтезироваться свободные полисахариды. Часть их подвергается сульфатированию с образованием мукополисахаридов (гликозаминогликанов). Еще одним вариантом созревания секрета является конденсация белков. Этот процесс заключается в удалении молекул воды из секреторных гранул, что приводит к уплотнению секрета.

Так же универсальность комплекса Гольджи в эукариотичсеких клетках является его участие в формировании лизосом.

Лизосомы являются мембранными органоидами клетки. Внутри лизосом находится лизосомальный матрикс из мукополисахаридов и белки ферменты.

Мембрана лизосом производной мембраны ЭПС, но имеет свои особенности. Это касается структуры билипидного слоя. В мембране лизосом он не сплошной (не непрерывный), а включает липидные мицеллы. Эти мицеллы составляют до 25% поверхности лизосомальной мембраны. Такое строение называется пластинчато-мицеллярное. В мембране лизосом локализуются разнообразные белки. К ним относятся ферменты: гидролазы, фосфолипазы; и низкомолекулярные белки. Гидролазы являются специфическими для лизосом ферментами. Они катализируют реакции гидролиза (расщепления) высокомолекулярных веществ.

Функции лизосом:

    Переваривание частиц при фагоцитозе и пиноцитозе.

    Защитная при фагоцитозе

    Аутофагия

    Аутолиз в онтогенезе.

Основной функцией лизосом является участие в гетерофаготических циклах (гетерофагия) и в аутофаготических циклах (аутофагия). При гетерофагии расщепляются чужеродные для клетки вещества. Аутофагия связана с расщеплением собственных веществ клетки. Обычный вариант гетерофагии начинается с эндоцитоза и образования эндоцитарного пузырька. В этом случае пузырек называют гетерофагосомой. В другом варианте гетерофагии отсутствует этап эндоцитоза чужеродных веществ. В этом случае первичная лизосома сразу включается в экзоцитоз. В результате гидролазы матрикса оказываются в гликокаликсе клетки и способны расщеплять внеклеточные чужеродные вещества.

Эндоплазматическая сеть (ЭПС) , или эндоплазматический ретикулум(ЭР), представляет собой систему, состоящую из мембранных цистерн, каналов и пузырьков. Около половины всех клеточных мембран приходится на ЭР.

Морфофункционально ЭПС дифференцирована на 3 отдела: шероховатая (гранулярная), гладкая (агранулярная) и промежуточная. На гранулярной ЭПС находятся рибосомы (PC), гладкая и промежуточная лишены их. Гранулярный ЭР в основном представлен цистернами, а гладкий и промежуточный - в основном каналами. Мембраны цистерн, каналов и пузырьков могут переходить друг в друга. ЭР содержит полужидкий матрикс, характеризующийся особым химическим составом.

Функции ЭР:

  • компартментализации;
  • синтетическая;
  • транспортная;
  • детоксикации;
  • регуляция концентрации ионов кальция.

Функция компартментализации связана с делением клетки на отсеки (компартменты) с помощью мембран ЭР. Подобное деление позволяет изолировать часть содержимого цитоплазмы от гиалоплазмы и дает возможность клетке разобщить и локализовать определенные процессы, а также заставить протекать их более эффективно и направленно.

Синтетическая функция. На гладкой ЭР синтезируются практически все липиды, за исключением двух митохондриальных липидов, синтез которых происходит в самих митохондриях. На мембранах гладкого ЭР синтезируется холестерол (у человека в сутки до 1 г, в основном в печени; при поражении печени количество холестерола в крови падает, изменяется форма и функции эритроцитов и развивается анемия).
На шероховатом ЭР происходит синтез белков:

  • внутренней фазы ЭР, комплекса Гольджи, лизосом, митохондрий;
  • секреторных белков, например гормонов, иммуноглобулинов;
  • мембранных белков.

Синтез белков начинается на свободных рибосомах в цитозоле. После химических преобразований белки упаковываются в мембранные пузырьки, которые отщепляется от ЭР и транспортируются в другие районы клетки, например, в комплекс Гольджи.
Синтезированные на ЭР белки условно можно подразделить на два потока:

  • интернальные, которые остаются в ЭР;
  • экстернальные, которые не остаются в ЭР.

Интернальные белки, в свою очередь, также можно разделить на два потока:

  • резидентные, не уходящие из ЭР;
  • транзитные, покидающие ЭР.

В ЭР происходит детоксикация вредных веществ , попавших в клетку или образовавшихся в самой клетке. Большинство вредных веществ являются
гидрофобными веществами, которые поэтому не могут выводиться из организма с мочой. В мембранах ЭР есть белок цитохром-Р450, который превращает гидрофобные вещества в гидрофильные, и после этого они удаляются с мочой из организма.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта