Главная » Засолка грибов » Алфёров жорес иванович биография. Как все начиналось

Алфёров жорес иванович биография. Как все начиналось

В марте этого года академику Жоресу Ивановичу Алфёрову, нобелевскому лауреату и члену редколлегии журнала «Экология и жизнь», исполнилось 80 лет. А в апреле пришло известие о том, что Жореса Ивановича назначают научным руководителем инновационного проекта «Сколково». Этот важный проект должен, по сути, создать прорыв в будущее, вдохнув новую жизнь в отечественную электронику, у истоков развития которой и стоял Ж. И. Алфёров.

В пользу того, что прорыв возможен, говорит история: когда в 1957 г. в СССР был запущен первый спутник, США оказались в положении аутсайдера. Однако американское правительство проявило бойцовский характер, были брошены такие ассигнования в технологию, что число исследователей быстро достигло миллиона! Буквально на следующий год (1958) один из них, Джон Килби, изобрел интегральную схему, заменившую печатную плату в обычных ЭВМ - и родилась микроэлектроника современных компьютеров. Эта история впоследствии получила название «эффект спутника».

Жорес Иванович очень внимательно относится к воспитанию будущих исследователей, недаром он основал НОЦ - учебный центр, где подготовка ведется со школьной скамьи. Поздравляя Жореса Ивановича с юбилеем, заглянем в прошлое и будущее электроники, где эффект спутника должен не раз проявиться вновь. Хочется надеяться, что и в будущем нашей страны, как когда-то в США, будет накоплена «критическая масса» подготовленных исследователей - для возникновения эффекта спутника.

«Технический» свет

Первым шагом к созданию микроэлектроники был транзистор. Пионерами транзисторной эры стали Уильям Шокли, Джон Бардин и Уолтер Браттейн, которые в 1947 г. в «Bell Labs » впервые создали действующий биполярный транзистор. А второй компонентой полупроводниковой электроники стал прибор для прямого преобразования электричества в свет - это полупроводниковый оптоэлектронный преобразователь, к созданию которого Ж. И. Алфёров имел непосредственное отношение.

Задача прямого преобразования электричества в «технический» свет - когерентное квантовое излучение - оформилась как направление квантовой электроники, родившейся в 1953–1955 гг. По сути, ученые поставили и решили задачу получения совершенного нового вида света, которого раньше не было в природе. Это не тот свет, который льется непрерывным потоком при прохождении тока по вольфрамовой нити или приходит в течение дня от Солнца и состоит из случайной смеси волн разной длины, не согласованных по фазе. Другими словами, был создан свет строго «дозированный», полученный как набор из определенного числа квантов с заданной длиной волны и строго «построенный» - когерентный, т. е. упорядоченный, что означает одновременность (синфазость) излучения квантов.

Приоритет США по транзистору был определен огромной ношей Отечественной войны, навалившейся на нашу страну. На этой войне погиб старший брат Жореса Ивановича, Маркс Иванович.

Маркс Алфёров окончил школу 21 июня 1941 г. в Сясьстрое. Поступил в Уральский индустриальный институт на энергетический факультет, но проучился лишь несколько недель, а потом решил, что его долг - защищать Родину. Сталинград, Харьков, Курская дуга, тяжелое ранение в голову. В октябре 1943 г. он провел три дня с семьей в Свердловске, когда после госпиталя возвращался на фронт.

Три дня, проведенные с братом, его фронтовые рассказы и страстную юношескую веру в силу науки и инженерной мысли 13-летний Жорес запомнил на всю жизнь. Гвардии младший лейтенант Маркс Иванович Алфёров погиб в бою во «втором Сталинграде» - так называли тогда Корсунь-Шевченковскую операцию.

В 1956 г. Жорес Алфёров приехал на Украину, чтобы найти могилу брата. В Киеве, на улице, он неожиданно встретил своего сослуживца Б. П. Захарченю, ставшего впоследствии одним из ближайших его друзей. Договорились поехать вместе. Купили билеты на пароход и уже на следующий день плыли вниз по Днепру к Каневу в двухместной каюте. Нашли деревню Хильки, около которой советские солдаты, в числе которых был и Маркс Алфёров, отражали яростную попытку отборных немецких дивизий выйти из корсунь-шевченковского «котла». Нашли братскую могилу с белым гипсовым солдатом на постаменте, высящемся над буйно разросшейся травой, в которую были вкраплены простые цветы, какие обычно сажают на русских могилах: ноготки, анютины глазки, незабудки.

К 1956 г. Жорес Алфёров уже работал в Ленинградском физико-техническом институте, куда он мечтал попасть еще во время учебы. Большую роль в этом сыграла книга «Основные представления современной физики», написанная Абрамом Федоровичем Иоффе - патриархом отечественной физики, из школы которого вышли практически все физики, составившие впоследствии гордость отечественной физической школы: П. Л. Капица, Л. Д. Ландау, И. В. Курчатов, А. П. Александров, Ю. Б. Харитон и многие другие. Жорес Иванович много позже писал, что его счастливая жизнь в науке была предопределена его распределением в Физтех, впоследствии получивший имя Иоффе.

Систематические исследования полупроводников в Физико-техническом институте были начаты еще в 30-е годы прошлого века. В 1932 г. В. П. Жузе и Б. В. Курчатов исследовали собственную и примесную проводимость полупроводников. В том же году А. Ф. Иоффе и Я. И. Френкель создали теорию выпрямления тока на контакте металл-полупроводник, основанную на явлении туннелирования. В 1931 и 1936 г. Я. И. Френкель опубликовал свои знаменитые работы, в которых предсказал существование экситонов в полупроводниках, введя этот термин и разработав теорию экситонов. Теория выпрямляющего р–n-перехода, легшая в основу р–n-перехода В. Шокли, создавшего первый транзистор, была опубликована Б. И. Давыдовым, сотрудником Физтеха, в 1939 г. Нина Горюнова, аспирантка Иоффе, защитившая в 1950 г. диссертацию по интерметаллическим соединениям, открыла полупроводниковые свойства соединений 3-й и 5-й групп периодической системы (далее А 3 В 5). Именно она создала фундамент, на котором начались исследования гетероструктур этих элементов. (На Западе отцом полупроводников А 3 В 5 считается Г. Велькер.)

Самому Алфёрову поработать под руководством Иоффе не довелось - в декабре 1950 г., во время кампании по «борьбе с космополитизмом», Иоффе был снят с поста директора и выведен из состава Ученого совета института. В 1952 г. он возглавил лабораторию полупроводников, на базе которой в 1954 г. был организован Институт полупроводников АН СССР.

Заявку на изобретение полупроводникового лазера Алфёров подал совместно с теоретиком Р. И. Казариновым в разгар поисков полупроводникового лазера. Эти поиски шли с 1961 г., когда Н. Г. Басов, О. Н. Крохин и Ю. М. Попов сформулировали теоретические предпосылки его создания. В июле 1962 г. американцы определились с полупроводником для генерации - это был арсенид галлия, а в сентябре-октябре лазерный эффект получили сразу в трех лабораториях, первой оказалась группа Роберта Холла (24 сентября 1962 г.). И через пять месяцев после публикации Холла была подана заявка на изобретение Алфёрова и Казаринова, от которой ведется отсчет занятиям гетероструктурной микроэлектроникой в Физтехе.

Группа Алфёрова (Дмитрий Третьяков, Дмитрий Гарбузов, Ефим Портной, Владимир Корольков и Вячеслав Андреев) несколько лет билась над поиском подходящего для реализации материала, пытаясь изготовить его самостоятельно, но нашла подходящий сложный трехкомпонентный полупроводник почти случайно: в соседней лаборатории Н. А. Горюновой. Однако это была «неслучайная» случайность - поиск перспективных полупроводниковых соединений Нина Александровна Горюнова вела направленно, а в вышедшей в 1968 г. монографии сформулировала идею «периодической системы полупроводниковых соединений». Полупроводниковое соединение, созданное в ее лаборатории, обладало необходимой для генерации стабильностью, что определило успех «предприятия». Гетеролазер на этом материале был создан в канун 1969 г., а приоритетной датой на уровне обнаружения лазерного эффекта является 13 сентября 1967 г.

Новые материалы

На фоне развернувшейся с начала 60-х годов лазерной гонки почти незаметно возникли светодиоды, которые тоже производили свет заданного спектра, но не обладающий строгой когерентностью лазера. В результате сегодняшняя микроэлектроника включает такие основные функциональные приборы, как транзисторы и их конгломераты - интегральные микросхемы (тысячи транзисторов) и микропроцессоры (от десятков тысяч до десятков миллионов транзисторов), тогда как по сути отдельную ветвь микроэлектроники - оптоэлектронику - составили приборы, построенные на основе гетероструктур по созданию «технического» света - полупроводниковые лазеры и светодиоды. С использованием полупроводниковых лазеров связана новейшая история цифровой записи - от обычных CD-дисков до знаменитой сегодня технологии Blue Ray на нитриде галлия (GaN).

Светодиод, или светоизлучающий диод (СД, СИД, LED - англ. Light-emitting diode ), - полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Считается, что первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 г. в Университете Иллинойса группой, которой руководил Ник Холоньяк. Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Поэтому в ход пошли такие материалы, как GaAs, InP, InAs, InSb, являющиеся прямозонными полупроводниками. В то же время многие полупроводниковые материалы типа А 3 В Е образуют между собой непрерывный ряд твердых растворов - тройных и более сложных (AI x Ga 1- x N и In x Ga 1- x N, GaAs x P 1- x , Ga x In 1- x P, Ga x In 1- x As y P 1- y и т. п.), на основе которых и сформировалось направление гетероструктурной микроэлектроники.

Наиболее известное применение светодиодов сегодня - замена ламп накаливания и дисплеев мобильных телефонов и навигаторов.

Общая идея дальнейшего развития «технического света» - создание новых материалов для светодиодной и лазерной техники. Эта задача неразрывна с проблемой получения материалов с определенными требованиями, предъявляемыми к электронной структуре полупроводника. И главным из этих требований является строение запрещенной зоны полупроводниковой матрицы, используемой для решения той или иной конкретной задачи. Активно ведутся исследования сочетаний материалов, которые позволяют достигать заданных требований к форме и размерам запрещенной зоны.

Составить представление о многосторонности этой работы можно, взглянув на график, по которому можно оценить многообразие «базовых» двойных соединений и возможности их сочетаний в композиционных гетероструктурах.

Принимаем тысячи солнц!

История технического света была бы неполна, если бы наряду с излучателями света не шла разработка его приемников. Если работы группы Алфёрова начались с поисков материала для излучателей, то сегодня один из членов этой группы, ближайший сотрудник Алфёрова и его давний друг профессор В. М. Андреев вплотную занимается работой, связанной с обратным превращением света, причем именно тем превращением, которое используется в солнечных элементах. Идеология гетероструктур как комплекса материалов с заданной шириной запрещенной зоны нашла активное применение и здесь. Дело в том, что солнечный свет состоит из большого количества световых волн различной частоты, в чем как раз и состоит проблема его полного использования, так как материала, который смог бы одинаково преобразовывать свет различной частоты в электрическую энергию, не существует. Получается, что любая кремниевая солнечная батарея преобразует не весь спектр солнечного излучения, а только его часть. Что делать? «Рецепт» обманчиво прост: изготовить слоеный пирог из различных материалов, каждый слой которого реагирует на свою частоту, но в то же время пропускает все остальные частоты без значимого ослабления.

Это дорогая структура, так как в ней должны быть не только переходы различной проводимости, на которые падает свет, но и множество вспомогательных слоев, например, для того чтобы получаемую ЭДС можно было снять для дальнейшего использования. По сути, «сэндвич»-сборка из нескольких электронных приборов. Использование ее оправдано более высоким КПД «сэндвичей», который эффективно использовать вкупе с солнечным концентратором (линзой или зеркалом). Если «сэндвич» позволяет поднять КПД по сравнению с кремниевым элементом, например, в 2 раза-с 17 до 34%, то за счет концентратора, увеличивающего плотность солнечного излучения в 500 раз (500 солнц), можно получить выигрыш в 2 × 500 = 1000 раз! Это выигрыш в площади самого элемента, т. е. материала надо в 1000 раз меньше. Современные концентраторы солнечного излучения измеряют плотность излучения в тысячах и десятках тысяч «солнц», сконцентрированных на одном элементе.

Другой из возможных способов - получение материала, который может работать хотя бы на двух частотах или, точнее, с более широким диапазоном солнечного спектра. В начале 1960-х была показана возможность «мультизонного» фотоэффекта. Это своеобразная ситуация, когда наличие примесей создает полосы в запрещенной зоне полупроводника, что позволяет электронам и дыркам «прыгать через пропасть» в два или даже в три прыжка. В результате можно получить фотоэффект для фотонов с частотой 0,7, 1,8 или 2,6 эВ, что, конечно, значительно расширяет спектр поглощения и увеличивает КПД. Если ученым удастся обеспечить генерацию без существенной рекомбинации носителей на тех же примесных полосах, то КПД таких элементов может достигать 57%.

С начала 2000-х в этом направлении ведутся активные исследования под руководством В. М. Андреева и Ж. И. Алфёрова.

Есть еще интересное направление: поток солнечного света сначала расщепляется на потоки различных диапазонов частот, каждый из которых затем направляется на «свои» ячейки. Такое направление тоже может считаться перспективным, так как при этом исчезает последовательное соединение, неизбежное в «сэндвич»-структурах типа изображенной выше, лимитирующее ток элемента наиболее «слабым» (в это время дня и на данном материале) участком спектра.

Принципиальную важность имеет оценка соотношения солнечной и атомной энергетики, высказанная Ж. И. Алфёровым на одной из недавних конференций: «Если бы на развитие альтернативных источников энергии было затрачено только 15% средств, брошенных на развитие атомной энергетики, то АЭС для производства электроэнергии в СССР вообще не потребовались бы!»

Будущее гетероструктур и новые технологии

Интересна и другая оценка, отражающая точку зрения Жореса Ивановича: в XXI веке гетероструктуры оставят только 1% для использования моноструктур, т. е. вся электроника уйдет от таких «простых» веществ, как кремний с чистотой 99,99–99,999%. Цифры - это чистота кремния, измеряемая в девятках после запятой, но этой чистотой уже лет 40 как никого не удивить. Будущее электроники, полагает Алфёров, - это соединения из элементов A 3 B 5 , их твердых растворов и эпитаксиальных слоев различных сочетаний этих элементов. Конечно, нельзя утверждать, что простые полупроводники типа кремния не могут найти широкого применения, но все же сложные структуры дают значительно более гибкий ответ на запросы современности. Уже сегодня гетероструктуры решают проблему высокой плотности информации для оптических систем связи. Речь идет об OEIC (optoelectronic integrated circuit ) - оптоэлектронной интегральной схеме. Основу любой оптоэлектронной интегральной микросхемы (оптопары, оптрона) составляют инфракрасный излучающий диод и оптически согласованный с ним приемник излучения, что дает простор формальной схемотехнике для широкого использования этих устройств в качестве приемо-передатчиков информации.

Кроме того, ключевой прибор современной оптоэлектроники - ДГС-лазер (ДГС - двойная гетероструктура) - продолжает совершенствоваться и развиваться. Наконец, сегодня именно высокоэффективные быстродействующие светодиоды на гетероструктурах обеспечивают поддержку технологии высокоскоростной передачи данных HSPD (High Speed Packet Data service ).

Но самое главное в выводе Алфёрова не эти разрозненные применения, а общее направление развития техники XXI века - получение материалов и интегральных схем на основе материалов, обладающих точно заданными, рассчитанными на много ходов вперед свойствами. Эти свойства задаются путем конструкторской работы, которая ведется на уровне атомной структуры материала, определяемой поведением носителей заряда в том особом регулярном пространстве, которое представляет собой внутренность кристаллической решетки материала. По сути эта работа - регулирование числа электронов и их квантовых переходов - ювелирная работа на уровне конструирования постоянной кристаллической решетки, составляющей величины нескольких ангстрем (ангстрем - 10 –10 м, 1 нанометр = 10 ангстрем). Но сегодня развитие науки и техники - это уже не тот путь вглубь вещества, каким он представлялся в 60-е годы прошлого века. Сегодня во многом это движение в обратном направлении, в область наноразмеров - например, создание нанообластей со свойствами квантовых точек или квантовых проволок, где квантовые точки линейно связаны.

Естественно, нанообъекты - лишь один из этапов, которые проходят в своем развитии наука и техника, и на нем они не остановятся. Надо сказать, что развитие науки и техники путь далеко не прямолинейный, и если сегодня интересы исследователей сместились в сторону увеличения размеров - в нанообласть, то завтрашние решения будут конкурировать в разных масштабах.

Например, возникшие на кремниевых чипах ограничения по дальнейшему увеличению плотности элементов микросхем можно решить двумя путями. Первый путь - смена полупроводника. Для этого предложен вариант изготовления гибридных микросхем, основанных на применении двух полупроводниковых материалов с различными характеристиками. В качестве наиболее перспективного варианта называется использование нитрида галлия совместно с кремниевой пластиной. С одной стороны, нитрид галлия обладает уникальными электронными свойствами, позволяющими создавать высокоскоростные интегральные микросхемы, с другой - использование кремния как основы делает такую технологию совместимой с современным производственным оборудованием. Однако подход со стороны наноматериалов содержит еще более новаторскую идею электроники одного электрона - одноэлектроники.

Дело в том, что дальнейшую миниатюризацию электроники - размещение тысяч транзисторов на подложке одного микропроцессора - ограничивает пересечение электрических полей при движении потоков электронов в расположенных рядом транзисторах. Идея в том, чтобы вместо потоков электронов использовать один-единственный электрон, который может двигаться в «индивидуальном» временном графике и поэтому не создает «очередей», снижая тем самым напряженность помех.

Если разобраться, то потоки электронов в общем-то и не нужны - для передачи управления можно подать как угодно малый сигнал, проблема заключается в том, чтобы его уверенно выделить (детектировать). И оказывается, что одноэлектронное детектирование технически вполне осуществимо - для этого используется туннельный эффект, который является для каждого электрона индивидуальным событием, в отличие от обычного движения электронов «в общей массе» - ток в полупроводнике является коллективным процессом. С точки зрения электроники туннельный переход - это перенос заряда сквозь конденсатор, поэтому в полевом транзисторе, где конденсатор стоит на входе, одиночный электрон можно «поймать» по частоте колебаний усиливаемого сигнала. Однако выделить этот сигнал в обычных устройствах удавалось только при криогенных температурах - повышение температуры разрушало условия детектирования сигнала. Но температура исчезновения эффекта оказалась обратно пропорциональной площади контакта, и в 2001 г. удалось сделать первый одноэлектронный транзистор на нанотрубке, в котором площадь контакта была так мала, что позволяла работать при комнатных температурах!

В этом отношении одноэлектроника повторяет путь, который прошли исследователи полупроводниковых гетеролазеров - группа Алфёрова билась как раз над тем, чтобы найти материал, который обеспечит эффект лазерной генерации при комнатной температуре, а не при температуре жидкого азота. А вот сверхпроводники, с которыми связаны самые большие надежды по передаче больших потоков электронов (силовых токов), пока не удается «вытащить» из области криогенных температур. Это не только существенно тормозит возможности снижения потерь при передаче энергии на большие расстояния - хорошо известно, что перенаправление потоков энергии по территории России в течение суток приводит к 30%-ным потерям на «нагрев проводов», - отсутствие «комнатных» сверхпроводников ограничивает развитие хранения энергии в сверхпроводящих кольцах, где движение тока может продолжаться практически вечно. Недостижимым пока идеалом создания таких колец служат обычные атомы, где движение электронов вокруг ядра порой устойчиво при самых высоких температурах и может продолжаться неограниченно долго.

Дальнейшие перспективы развития наук о материалах весьма разнообразны. Причем именно с развитием науки о материалах появилась реальная возможность прямого использования солнечной энергии, сулящая огромные перспективы возобновляемой энергетике. Порой именно такие направления работы определяют будущее лицо общества (в Татарии и Чувашии уже планируют «зеленую революцию» и всерьез разрабатывают создание биоэкоградов). Возможно, будущее этого направления состоит в том, чтобы от развития техники материалов шагнуть к пониманию принципов функционирования самой природы, встать на путь использования управляемого фотосинтеза, который может быть распространен в человеческом обществе так же широко, как и в живой природе. Речь уже идет об элементарной ячейке живой природы - клетке, и это следующий, более высокий этап развития после электроники с ее идеологией создания приборов для выполнения какой-то одной функции - транзистора для управления током, светодиода или лазера для управления светом. Идеология клетки - это идеология операторов как элементарных устройств, осуществляющих некий цикл. Клетка служит не изолированным элементом для выполнения какой-то одной функции за счет внешней энергии, но целой фабрикой по переработке доступной внешней энергии в работу поддержания циклов множества различных процессов под единой оболочкой. Работа клетки по поддержанию собственного гомеостазиса и накопления в ней энергии в виде АТФ - захватывающая проблема современной науки. Пока биотехнологи могут лишь мечтать о создании искусственного устройства со свойствами клетки, пригодного для использования в микроэлектронике. И когда это произойдет, несомненно, начнется новая эра микроэлектроники - эра приближения к принципам работы живых организмов, давняя мечта фантастов и давно придуманной науки бионики, все еще не вышедшей из колыбели биофизики.

Будем надеяться, что создание научного центра инноваций в Сколково сумеет реализовать нечто подобное «эффекту спутника» - открыть новые прорывные области, создать новые материалы и технологии электроники.

Пожелаем успеха Жоресу Ивановичу Алфёрову на посту научного руководителя этого нового научно-технологического агломерата. Хочется надеяться, что его энергия и настойчивость будут залогом успеха этого предприятия.

Запрещенная зона - область значений энергии, которыми не может обладать электрон в идеальном (бездефектном) кристалле. Характерные значения ширины запрещенной зоны в полупроводниках составляют 0,1–4 эВ. Примеси могут создать полосы в запрещенной зоне - возникает мультизона.

Жорес Алфёров. Фото: РИА Новости / Игорь Самойлов

В понедельник, 14 ноября, в Санкт-Петербурге ректор петербургского Академического университета Жорес Алфёров . Его состояние не вызывает опасений у врачей.

Жорес Алфёров — российский лауреат Нобелевской премии по физике. Премию он получил в 2000 году за разработку полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов.

АиФ.ru приводит биографию Жореса Алфёрова.

Досье

В декабре 1952 года окончил Ленинградский государственный электротехнический институт им. В.И. Ульянова (Ленина).

Годы учебы Ж.И. Алфёрова в ЛЭТИ совпали с началом студенческого строительного движения. В 1949 г. он в составе студенческого отряда участвовал в строительстве Красноборской ГЭС, одной из первых сельских электростанций Ленинградской области.

Ещё в студенческие годы Ж. И. Алфёров начал свой путь в науке. Под руководством доцента кафедры основ электровакуумной техники Наталии Николаевны Созиной он занимался исследованиями полупроводниковых плёночных фотоэлементов. Его доклад на институтской конференции студенческого научного общества (СНО) в 1952 г. был признан лучшим, за него физик получил первую в своей жизни научную премию: поездку на строительство Волго-Донского канала. Несколько лет он являлся председателем СНО факультета электронной техники.

После окончания ЛЭТИ Алфёров был направлен на работу в Ленинградский физико-технический институт, где стал работать в лаборатории В. М. Тучкевича . Здесь при участии Ж. И. Алфёрова были разработаны первые советские транзисторы.

В январе 1953 поступил в ФТИ им. А. Ф. Иоффе, где защитил кандидатскую (1961) и докторскую (1970) диссертации.

В начале 60-х годов Алфёров начал заниматься проблемой гетеропереходов. Открытие им идеальных гетеропереходов и новых физических явлений — «сверхинжекции», электронного и оптического ограничения в гетероструктурах — позволило кардинально улучшить параметры большинства известных полупроводниковых приборов и создать принципиально новые, особенно перспективные для применения в оптической и квантовой электронике.

Благодаря исследованиям Ж. И. Алфёрова фактически создано новое направление: гетеропереходы в полупроводниках.

Своими открытиями учёный заложил основы современной информационной техники, в основном через разработку быстрых транзисторов и лазеров. Созданные на базе исследований Алфёрова приборы и устройства буквально произвели научную и социальную революцию. Это лазеры, передающие информационные потоки посредством оптоволоконных сетей интернета, это технологии, лежащие в основе мобильных телефонов, устройства, декорирующие товарные ярлыки, запись и воспроизведение информации на CD-дисках и многое другое.

Под научным руководством Алфёрова были выполнены исследования солнечных элементов на основе гетероструктур, что привело к созданию фотоэлектрических преобразователей солнечного излучения в электрическую энергию, коэффициент полезного действия которых приблизился к теоретическому пределу. Они оказались незаменимыми для энергообеспечения космических станций, а в настоящее время рассматриваются как один из основных альтернативных источников энергии взамен убывающим запасам нефти и газа.

Благодаря фундаментальным работам Алфёрова были созданы светодиоды на гетероструктурах. Светодиоды белого света благодаря своей высокой надёжности и эффективности рассматриваются как источники освещения нового типа и в ближайшем будущем заменят традиционные лампы накаливания, что будет сопровождаться гигантской экономией электроэнергии.

С начала 1990-х годов Алфёров занимался исследованием свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек.

В 2003 году Алфёров оставил пост руководителя ФТИ им. А. Ф. Иоффе и до 2006 года занимал пост председателя учёного совета института. Однако Алфёров сохранил влияние на ряд научных структур, среди которых: ФТИ им. А. Ф. Иоффе, НТЦ « Центр микроэлектроники и субмикронных гетероструктур» , научно-образовательный комплекс (НОК) Физико-технического института и физико-технический лицей.

С 1988 г. (с момента основания) — декан физико-технического факультета СПбГПУ.

В 1990-1991 годах — вице-президент АН СССР, председатель Президиума Ленинградского научного центра.

10 октября 2000 года стало известно, что Жорес Алфёров стал лауреатом Нобелевской премии по физике за развитие полупроводниковых гетероструктур для высокоскоростной и оптоэлектроники. Саму премию он разделил с двумя другими физиками: Гербертом Крёмером и Джеком Килби .

С 2003 года — председатель Научно-образовательного комплекса «Санкт-Петербургский физико-технический научно-образовательный центр» РАН. Академик АН СССР (1979), затем РАН, почётный академик Российской академии образования. Вице-президент РАН, председатель президиума Санкт-Петербургского научного центра РАН.

Являлся инициатором учреждения в 2002 году премии «Глобальная энергия», до 2006 года возглавлял Международный комитет по её присуждению.

5 апреля 2010 года объявлено о том, что Алфёров назначен научным руководителем инновационного центра в Сколково.

С 2010 года — сопредседатель Консультативного научного Совета Фонда «Сколково».

В 2013 году баллотировался на пост президента РАН. Получив 345 голосов, занял второе место.

Автор более 500 научных работ, в том числе 4 монографий, более 50 изобретений. Среди его учеников более сорока кандидатов и десяти докторов наук. Наиболее известные представители школы: чл.-корреспонденты РАН Д. З. Гарбузов и Н. Н. Леденцов, доктора физ.-мат. наук: В. М. Андреев, В. И. Корольков, С. Г. Конников, С. А. Гуревич, Ю. В. Жиляев, П. С. Копьев и др.

О проблемах современной науки

Обсуждая с корреспондентом газеты «Аргументы и факты» проблемы современной российской науки, заметил: «Отставание в науке — не следствие какой-либо слабости русских учёных или проявления национальной черты, а результат дурацкого реформирования страны».

После начавшейся в 2013 году реформы РАН Алфёров неоднократно высказывал отрицательное отношение к данному законопроекту. В обращении учёного к Президенту РФ говорилось:

«После жесточайших реформ 1990-х годов, многое утратив, РАН тем не менее сохранила свой научный потенциал гораздо лучше, чем отраслевая наука и вузы. Противопоставление академической и вузовской науки совершенно противоестественно и может проводиться только людьми, преследующими свои очень странные политические цели, весьма далёкие от интересов страны. Закон о реорганизации РАН и других государственных академий наук отнюдь не решает задачу повышения эффективности научных исследований».

Политическая и общественная деятельность

1944 — член ВЛКСМ.

1965 — член КПСС.

1989-1992 — народный депутат СССР.

1995-1999 — депутат Государственной Думы Федерального Собрания РФ 2 созыва от движения «Наш дом — Россия» (НДР), председатель подкомитета по науке Комитета по науке и образованию Госдумы, член фракции НДР, с 1998 — член депутатской группы « Народовластие» .

1999-2003 — депутат Государственной Думы Федерального Собрания РФ 3 созыва от КПРФ, член фракции КПРФ, член Комитета по образованию и науке.

2003-2007 — депутат Государственной Думы Федерального Собрания РФ 4 созыва от КПРФ, член фракции КПРФ, член Комитета по образованию и науке.

2007-2011 — депутат Государственной Думы Федерального Собрания РФ 5 созыва от КПРФ, член фракции КПРФ, член Комитета Государственной Думы по науке и наукоёмким технологиям. Старейший депутат Государственной Думы Федерального Собрания РФ 5 созыва.

2012-2016 — депутат Государственной Думы Федерального Собрания РФ 6 созыва от КПРФ, член Комитета Государственной Думы по науке и наукоёмким технологиям.

С 2016 года — депутат Государственной Думы Федерального Собрания РФ 7 созыва от КПРФ. Старейший депутат Государственной Думы Федерального Собрания РФ 7 созыва.

Член редакционного совета радиогазеты «Слово».

Председатель Редакционной коллегии журнала «Нанотехнологии. Экология. Производство».

Учредил Фонд поддержки образования и науки для помощи талантливой учащейся молодёжи, содействия её профессиональному росту, поощрения творческой активности в проведении научных исследований в приоритетных областях науки. Первый вклад в Фонд был сделан Жоресом Алфёровым из средств Нобелевской премии.

В 2016 году подписал письмо с призывом к Greenpeace, Организации Объединённых Наций и правительствам всего мира прекратить борьбу с генетически модифицированными организмами (ГМО).

Награды и звания

Труды Ж. И. Алфёрова отмечены Нобелевской премией, Ленинской и Государственными премиями СССР и России, премией им. А. П. Карпинского (ФРГ), Демидовской премией, премией им. А. Ф. Иоффе и золотой медалью А. С. Попова (РАН), Хьюлетт-Паккардовской премией Европейского физического общества, медалью Стюарта Баллантайна Франклинского института (США), премией Киото (Япония), многими орденами и медалями СССР, России и зарубежных стран.

Жорес Иванович избран пожизненным членом института Б. Франклина и иностранным членом Национальной академии наук и Национальной инженерной академии США, иностранным членом академий наук Беларуси, Украины, Польши, Болгарии и многих других стран. Он является почётным гражданином Санкт-Петербурга, Минска, Витебска и других городов России и зарубежья. Почётным доктором и профессором его избрали учёные советы многих университетов России, Японии, Китая, Швеции, Финляндии, Франции и других стран.

Астероид (№ 3884) Alferov, открытый 13 марта 1977 года Н. С. Черных в Крымской астрофизической обсерватории был назван в честь учёного 22 февраля 1997 года.


До этого дня российским ученым принадлежало восемь Нобелевских премий, столько же, например, сколько и датчанам (Николай Семёнов – премия по химии за 1956 г.; Илья Франк , Игорь Тамм , – премия по физике за 1958 г.; Лев Ландау – 1962 г.; Александр Прохоров , Николай Басов – 1964 г.; Петр Капица – 1978 г.). И вот – успех Алфёрова.

Правда, и тут не обошлось не то чтобы без ложки дегтя, но не без маленькой психологической занозы: приз в 1 млн долларов Жорес Иванович в паре с Хербертом Кроемером разделит пополам с Джеком Килби. По решению Нобелевского комитета Алфёров и Килби удостоены Нобелевской премии (одной на двоих) за «работы по получению полупроводниковых структур, которые могут быть использованы для сверхбыстрых компьютеров». (Любопытно, что так же пришлось поделить Нобелевскую премию по физике за 1958 г. между советскими физиками Павлом Черенковым и Ильей Франком и за 1964 г. – между опять-таки советскими физиками Александром Прохоровым и Николаем Басовым.) Еще один американец, сотрудник корпорации «Техас Инструментс» Джек Килби , удостоен награды за работы в области интегральных схем.

Итак, кто же он, новый российский нобелевский лауреат?

Жорес Иванович Алфёров родился в белорусском городе Витебске. После 1935 года семья переехала на Урал. В г. Туринске А. учился в школе с пятого по восьмой классы. 9 мая 1945 года его отец, Иван Карпович Алфёров, получил назначение в Минск, где А. окончил мужскую среднюю школу №42 с золотой медалью. Он стал студентом факультета электронной техники (ФЭТ) Ленинградского электротехнического института (ЛЭТИ) им. В.И. Ульянова по совету школьного учителя физики, Якова Борисовича Мельцерзона.

На третьем курсе А. пошел работать в вакуумную лабораторию профессора Б.П. Козырева. Там он начал экспериментальную работу под руководством Наталии Николаевны Созиной. Со студенческих лет А. привлекал к участию в научных исследованиях других студентов. Так, в 1950 году полупроводники стали главным делом его жизни.

В 1953 году, после окончания ЛЭТИ, А. был принят на работу в Физико-технический институт им. А.Ф. Иоффе в лабораторию В.М. Тучкевича. В первой половине 50-х годов перед институтом была поставлена задача создать отечественные полупроводниковые приборы для внедрения в отечественную промышленность. Перед лабораторией стояла задача: получение монокристаллов чистого германия и создание на его основе плоскостных диодов и триодов. При участии А. были разработаны первые отечественные транзисторы и силовые германиевые приборы За комплекс проведенных работ в 1959 году А. получил первую правительственную награду, им была защищена кандидатская диссертация, подводившая черту под десятилетней работой.

После этого перед Ж.И. Алфёровым встал вопрос о выборе дальнейшего направления исследований. Накопленный опыт позволял ему перейти к разработке собственной темы. В те годы была высказана идея использования в полупроводниковой технике гетеропереходов. Создание совершенных структур на их основе могло привести к качественному скачку в физике и технике.

В то время во многих журнальных публикациях и на различных научных конференциях неоднократно говорилось о бесперспективности проведения работ в этом направлении, т.к. многочисленные попытки реализовать приборы на гетеропереходах не приходили к практическим результатам. Причина неудач крылась в трудности создания близкого к идеальному перехода, выявлении и получении необходимых гетеропар.

Но это не остановило Жореса Ивановича. В основу технологических исследований им были положены эпитаксиальные методы, позволяющие управлять такими фундаментальными параметрами полупроводника, как ширина запрещенной зоны, величина электронного сродства, эффективная масса носителей тока, показатель преломления и т.д. внутри единого монокристалла.

Для идеального гетероперехода подходили GaAs и AlAs, но последний почти мгновенно на воздухе окислялся. Значит, следовало подобрать другого партнера. И он нашелся тут же, в институте, в лаборатории, возглавляемой Н.А. Горюновой. Им оказалось тройное соединение AIGaAs. Так определилась широко известная теперь в мире микроэлектроники гетеропара GaAs/AIGaAs. Ж.И. Алфёров с сотрудниками не только создали в системе AlAs – GaAs гетероструктуры, близкие по своим свойствам к идеальной модели, но и первый в мире полупроводниковый гетеролазер, работающий в непрерывном режиме при комнатной температуре.

Открытие Ж.И. Алфёровым идеальных гетеропереходов и новых физических явлений – «суперинжекции», электронного и оптического ограничения в гетероструктурах – позволило также кардинально улучшить параметры большинства известных полупроводниковых приборов и создать принципиально новые, особенно перспективные для применения в оптической и квантовой электронике. Новый этап исследований гетеропереходов в полупроводниках Жорес Иванович обобщил в докторской диссертации, которую успешно защитил 1970 году.

Работы Ж.И. Алфёрова были по заслугам оценены международной и отечественной наукой. В 1971 году Франклиновский институт (США) присуждает ему престижную медаль Баллантайна, называемую «малой Нобелевской премией» и учрежденную для награждения за лучшие работы в области физики. Затем следует самая высокая награда СССР – Ленинская премия (1972 год).

С использованием разработанной Ж.И. Алфёровым в 70-х годах технологии высокоэффективных, радиационностойких солнечных элементов на основе AIGaAs/GaAs гетероструктур в России (впервые в мире) было организовано крупномасштабное производство гетероструктурных солнечных элементов для космических батарей. Одна из них, установленная в 1986 году на космической станции «Мир», проработала на орбите весь срок эксплуатации без существенного снижения мощности.

На основе предложенных в 1970 году Ж.И. Алфёровым и его сотрудниками идеальных переходов в многокомпонентных соединениях InGaAsP созданы полупроводниковые лазеры, работающие в существенно более широкой спектральной области, чем лазеры в системе AIGaAs. Они нашли широкое применение в качестве источников излучения в волоконно-оптических линиях связи повышенной дальности.

В начале 90-х годов одним из основных направлений работ, проводимых под руководством Ж.И. Алфёрова, становится получение и исследование свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек.

В 1993...1994 годах впервые в мире реализуются гетеролазеры на основе структур с квантовыми точками – «искусственными атомами». В 1995 году Ж.И. Алфёров со своими сотрудниками впервые демонстрирует инжекционный гетеролазер на квантовых точках, работающий в непрерывном режиме при комнатной температуре. Принципиально важным стало расширение спектрального диапазона лазеров с использованием квантовых точек на подложках GaAs. Таким образом, исследования Ж.И. Алфёрова заложили основы принципиально новой электроники на основе гетероструктур с очень широким диапазоном применения, известной сегодня как «зонная инженерия».

Награда нашла героя

В одном из своих многочисленных интервью (1984 год) на вопрос корреспондента: «По слухам, Вы нынче были представлены к Нобелевской премии. Не обидно, что не получили?» Жорес Иванович ответил: «Слышал, что представляли уже не раз. Практика показывает – либо ее дают стразу после открытия (в моем случае это середина 70-х годов), либо уже в глубокой старости. Так было с П.Л. Капицей. Значит, у меня еще все впереди».

Здесь Жорес Иванович ошибся. Как говорится, награда нашла героя раньше наступления глубокой старости. 10 октября 2000 года по всем программам российского телевидения сообщили о присуждении Ж.И. Алфёрову Нобелевской премии по физике за 2000 год.

Современные информационные системы должны отвечать двум простым, но основополагающим требованиям: быть быстрыми, чтобы большой объем информации, можно было передать за короткий промежуток времени, и компактными, чтобы уместиться в офисе, дома, в портфеле или кармане.

Своими открытиями Нобелевские лауреаты по физике за 2000 год создали основу такой современной техники. Жорес И. Алфёров и Герберт Кремер открыли и развили быстрые опто- и микроэлектронные компоненты, которые создаются на базе многослойных полупроводниковых гетероструктур.

Гетеролазеры передают, а гетероприемники принимают информационные потоки по волоконно-оптическим линиям связи. Гетеролазеры можно обнаружить также в проигрывателях CD-дисков, устройствах, декодирующих товарные ярлыки, в лазерных указках и во многих других приборах.

На основе гетероструктур созданы мощные высокоэффективные светоизлучающие диоды, используемые в дисплеях, лампах тормозного освещения в автомобилях и светофорах. В гетероструктурных солнечных батареях, которые широко используются в космической и наземной энергетике, достигнуты рекордные эффективности преобразования солнечной энергии в электрическую.

Джек Килби награжден за свой вклад в открытие и развитие интегральных микросхем, благодаря чему стала быстро развиваться микроэлектроника, являющаяся – наряду с оптоэлектроникой – основой всей современной техники.

Учитель, воспитай ученика...

В 1973 году А., при поддержке ректора ЛЭТИ А.А. Вавилова, организовал базовую кафедру оптоэлектроники (ЭО) на факультете электронной техники Физико-технического института им. А.Ф. Иоффе.

В невероятно сжатые сроки Ж.И. Алфёров совестно с Б.П. Захарченей и другими учеными Физтеха разработал учебный план подготовки инженеров по новой кафедре. Он предусматривал обучение студентов первого и второго курсов в стенах ЛЭТИ, поскольку уровень физико-математической подготовки на ФЭТ был высоким и создавал хороший фундамент для изучения специальных дисциплин, которые, начиная с третьего курса, читались учеными Физтеха на его территории. Там же с использованием новейшего технологического и аналитического оборудования выполнялись лабораторные практикумы, а также курсовые и дипломные проекты под руководством преподавателей базовой кафедры.

Прием студентов на первый курс в количестве 25 человек осуществлялся через вступительные экзамены, а комплектование групп второго и третьего курсов для обучения по кафедре ОЭ проходило из студентов, обучавшихся на ФЭТ и на кафедре диэлектриков и полупроводников Электрофизического факультета. Комиссию по отбору студентов возглавлял Жорес Иванович. Из примерно 250 студентов, обучавшихся на каждом курсе, было отобрано по 25 лучших. 15 сентября 1973 года начались занятия студентов вторых и третьих курсов. Для этого был подобран прекрасный профессорско-преподавательский состав.

Ж.И. Алфёров очень большое внимание уделял и уделяет формированию контингента студентов первого курса. По его инициативе в первые годы работы кафедры в период весенних школьных каникул проводились ежегодные школы «Физика и жизнь». Ее слушателями были учащиеся выпускных классов школ Ленинграда. По рекомендации учителей физики и математики наиболее одаренным школьникам вручались приглашения принять участие в работе этой школы. Таким образом набиралась группа в количестве 30...40 человек. Они размещались в институтском пионерском лагере «Звездный». Все расходы, связанны с проживанием, питанием и обслуживанием школьников, наш вуз брал на себя.

На открытие школы приезжали все ее лекторы во главе с Ж.И. Алфёровым. Все проходило и торжественно, и очень по-домашнему. Первую лекцию читал Жорес Иванович. Он так увлекательно говорил о физике, электронике, гетероструктурах, что все его слушали как завороженные. Но и после лекции не прекращалось общение Ж.И. Алфёрова с ребятами. Окруженный ими, он ходил по территории лагеря, играл в снежки, дурачился. Насколько не формально он относился к этому «мероприятию», говорит тот факт, что в эти поездки Жорес Иванович брал свою жену Тамару Георгиевну и сына Ваню...

Результаты работы школы не замедлили сказаться. В 1977 году состоялся первый выпуск инженеров по кафедре ОЭ, количество выпускников, получивших дипломы с отличием, на факультете удвоилось. Одна группа студентов этой кафедры дала столько же «красных» дипломов, сколько остальные семь групп.

В 1988 году Ж.И. Алфёров организовал в Политехническом институте физико-технический факультет.

Следующим логическим шагом стало объединение этих структур под одной крышей. К реализации данной идеи Ж.И. Алфёров приступил еще в начале 90-х годов. При этом он не просто строил здание Научно-образовательного центра, он закладывал фундамент будущего возрождения страны... И вот первого сентября 1999 года здание Научно-образовательного центра (НОЦ) вступило в строй.

На том стоит и стоять будет русская земля...

Алфёров всегда остается самим собой. В общении с министрами и студентами, директорами предприятий и простыми людьми он одинаково ровен. Не подстраивается под первых, не возвышается над вторыми, но всегда с убежденностью отстаивает свою точку зрения.

Ж.И. Алфёров всегда занят. Его рабочий график расписан на месяц вперед, а недельный рабочий цикл таков: утро понедельника – Физтех (он его директор), вторая половина дня – Санкт-Петербургский научный центр (он председатель); вторник, среда и четверг – Москва (он член Государственной думы и вице-президент РАН, к тому же нужно решать многочисленные вопросы в министерствах) или Санкт-Петербург (тоже вопросов выше головы); утро пятницы – Физтех, вторая половина дня – Научно-образовательный центр (директор). Это только крупные штрихи, а между ними – научная работа, руководство кафедрой ОЭ в ЭТУ и физико-техническим факультетом в ТУ, чтение лекций, участие в конференциях. Всего не перечесть!

Наш лауреат прекрасный лектор и рассказчик. Неслучайно все информационные агентства мира отметили именно Алфёровскую Нобелевскую лекцию, которую он прочитал на английском языке без конспекта и с присущим ему блеском.

При вручении Нобелевских премий существует традиция, когда на банкете, который устраивает король Швеции в честь Нобелевских лауреатов (на нем присутствуют свыше тысячи гостей), представляется слово только одному лауреату от каждой «номинации». В 2000 году Нобелевской премии по физике были удостоены три человека: Ж.И. Алфёров, Герберт Кремер и Джек Килби . Так вот двое последних уговорили Жореса Ивановича выступить на этом банкете. И он эту просьбу выполнил блестяще, в своем слове удачно обыграв нашу российскую привычку делать «одно любимое дело» на троих.

В своей книге «Физика и жизнь» Ж.И. Алфёров, в частности, пишет: «Все, что создано человечеством, создано благодаря науке. И если уж суждено нашей стране быть великой державой, то она ею будет не благодаря ядерному оружию или западным инвестициям, не благодаря вере в Бога или Президента, а благодаря труду ее народа, вере в знание, в науку, благодаря сохранению и развитию научного потенциала и образования.

Десятилетним мальчиком я прочитал замечательную книгу Вениамина Каверина «Два капитана». И всю последующую жизнь я следовал принципу ее главного героя Сани Григорьева: «Бороться и искать, найти и не сдаваться». Правда, очень важно при этом понимать, за что ты берешься».


Биография

Жорес Иванович Алфёров (белор. Жарэс Iванавiч Алфёраў; род. 15 марта 1930, Витебск, Белорусская ССР, СССР) - советский и российский физик, единственный ныне здравствующий - из проживающих в России - российский лауреат Нобелевской премии по физике (премия 2000 года за разработку полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов). Вице-президент РАН с 1991 года. Председатель Президиума Санкт-Петербургского научного центра РАН.

Академик АН СССР (1979; член-корреспондент 1972). Лауреат Ленинской премии (1972), Государственной премии СССР (1984), Государственной премии РФ (2001). Член КПСС с 1965 года.

Иностранный член Национальной академии наук США (1990) и Национальной инженерной академии США (1990), иностранный член Китайской академии наук, Академий наук Республики Беларусь (1995), Молдавии (2000), Азербайджана (2004), почётный член Национальной академии наук Армении (2011).

Депутат Государственной думы РФ (с 1995 года). В 1989 году был избран народным депутатом СССР от АН СССР, в декабре 1995 года Алферов был избран в Государственную думу второго созыва от движения «Наш дом - Россия», в 1999, 2003, 2007, 2011 годах переизбирался депутатом Госдумы РФ, проходя по партийным спискам КПРФ, не являясь членом КПРФ.

Родился в белорусско-еврейской семье Ивана Карповича Алфёрова и Анны Владимировны Розенблюм. Отец будущего учёного родился в Чашниках, мать происходила из местечка Крайск (ныне Логойский район Минской области Белоруссии). Имя получил в честь Жана Жореса. Довоенные годы провёл в Сталинграде, Новосибирске, Барнауле и Сясьстрое.

Во время Великой Отечественной войны семья Алфёровых переехала в Туринск (Свердловская область), где его отец работал директором целлюлозно-бумажного завода, и после её окончания вернулась в разрушенный войной Минск. Старший брат - Маркс Иванович Алфёров (1924-1944) - погиб на фронте. Окончил с золотой медалью среднюю школу № 42 в Минске и по совету учителя физики Якова Борисовича Мельцерзона несколько семестров отучился в Белорусском Политехническом Институте (ныне БНТУ) г. Минска на энергетическом факультете, после чего поехал поступать в Ленинград, в ЛЭТИ. В 1952 году окончил факультет электронной техники Ленинградского электротехнического института имени В. И. Ульянова (Ленина) (ЛЭТИ), куда был принят без экзаменов.

С 1953 года работал в Физико-техническом институте имени А. Ф. Иоффе, где был младшим научным сотрудником в лаборатории В. М. Тучкевича и принимал участие в разработке первых отечественных транзисторов и силовых германиевых приборов. Кандидат физико-математических наук (1961).

В 1970 году Алфёров защитил диссертацию, обобщив новый этап исследований гетеропереходов в полупроводниках, и получил степень доктора физико-математических наук. В 1972 году Алфёров стал профессором, а через год - заведующим базовой кафедрой оптоэлектроники ЛЭТИ. С начала 1990-х годов Алфёров занимался исследованием свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек. С 1987 по май 2003 года - директор ФТИ им. А. Ф. Иоффе.

В 2003 году Алферов оставил пост руководителя ФТИ им. А. Ф. Иоффе и до 2006 года занимал пост председателя ученого совета института. Однако Алферов сохранил влияние на ряд научных структур, среди которых: ФТИ им. А. Ф. Иоффе, НТЦ Центр микроэлектроники и субмикронных гетероструктур, научно-образовательный комплекс (НОК) Физико-технического института и физико-технический лицей. С 1988 г. (момента основания) декан физико-технического факультета СПбГПУ.

В 1990-1991 годах - вице-президент АН СССР, председатель Президиума Ленинградского научного центра. С 2003 года - председатель Научно-образовательного комплекса «Санкт-Петербургский физико-технический научно-образовательный центр» РАН. Академик АН СССР (1979), затем РАН, почётный академик Российской академии образования. Вице-президент РАН, председатель президиума Санкт-Петербургского научного центра РАН. Главный редактор «Писем в Журнал технической физики».

Был главным редактором журнала «Физика и техника полупроводников», членом редакционной коллегии журнала «Поверхность: Физика, химия, механика», членом редакционной коллегии журнала «Наука и жизнь». Был членом правления Общества «Знание» РСФСР.

Являлся инициатором учреждения в 2002 году премии «Глобальная энергия», до 2006 года возглавлял Международный комитет по её присуждению. Считается, что присуждение этой премии самому Алферову в 2005 году, стало одной из причин оставления им этого поста.

Является ректором-организатором нового Академического университета.

С 2001 года Президент Фонда поддержки образования и науки (Алфёровского фонда).

5 апреля 2010 года объявлено о том, что Алфёров назначен научным руководителем инновационного центра в Сколково.

С 2010 года - сопредседатель Консультативного научного Совета Фонда «Сколково».

В 2013 году баллотировался на пост президента РАН и, получив 345 голосов, занял второе место.

Политическая деятельность

1944 - член ВЛКСМ.
1965 - член КПСС.
1989-1992 - народный депутат СССР,
1995-1999 - депутат Государственной думы Федерального собрания РФ 2 созыва от движения «Наш дом - Россия» (НДР), председатель подкомитета по науке Комитета по науке и образованию Госдумы, член фракции НДР, с 1998 - член депутатской группы Народовластие.
1999-2003 - депутат Государственной думы Федерального собрания РФ 3 созыва от партии КПРФ, член фракции КПРФ, член комитета по образованию и науке.
2003-2007 - депутат Государственной думы Федерального собрания РФ 4 созыва от партии КПРФ, член фракции КПРФ, член комитета по образованию и науке.
В 2007-2011 - депутат Государственной думы Федерального собрания РФ 5 созыва от партии КПРФ, член фракции КПРФ, член Комитета Государственной Думы по науке и наукоёмким технологиям. Старейший депутат Государственной думы Федерального собрания РФ 5 созыва.
С 2011 - депутат Государственной думы Федерального собрания РФ 6 созыва от партии КПРФ.
Член редакционного совета радиогазеты «Слово».
Председатель Редакционной коллегии журнала «Нанотехнологии Экология Производство».
Учредил Фонд поддержки образования и науки для поддержки талантливой учащейся молодёжи, содействия её профессиональному росту, поощрения творческой активности в проведении научных исследований в приоритетных областях науки. Первый вклад в Фонд был сделан Жоресом Алфёровым из средств Нобелевской премии.

4 октября 2010 года Алексей Кондауров и Андрей Пионтковский опубликовали на сайте Грани.Ру статью «Как нам победить клептократию», где предложили выдвинуть в президенты единого кандидата от правой и левой оппозиции от партии КПРФ. В качестве кандидатов они предложили выдвинуть кого-нибудь из российских старейшин; при этом наряду с Виктором Геращенко и Юрием Рыжовым ими была предложена и кандидатура Жореса Алфёрова.

Взгляды

Один из авторов Открытого письма 10 академиков Президенту РФ В. В. Путину против клерикализации.
Выступает против преподавания в школах предмета Основы православной культуры, в то же время утверждая, что у него «очень простое и доброе отношение к Русской Православной Церкви», и что «Православная церковь отстаивает единство славян».
Продемонстрировал имеющееся в 2000-х годах социальное расслоение российского общества, взяв в руки бокал с вином и сказав: «Содержимое его принадлежит - увы! - всего-навсего десяти процентам населения. А ножка, на которой держится бокал, - это остальное население».
Обсуждая с корреспондентом газеты «Аргументы и факты» проблемы современной российской науки, заметил: «Отставание в науке - не следствие какой-либо слабости русских учёных или проявления национальной черты, а результат дурацкого реформирования страны».
После начавшейся в 2013 году реформы РАН Алфёров неоднократно высказывал отрицательное отношение к данному законопроекту. В обращении учёного к Президенту РФ говорилось:
После жесточайших реформ 1990-х годов, многое утратив, РАН тем не менее сохранила свой научный потенциал гораздо лучше, чем отраслевая наука и вузы. Противопоставление академической и вузовской науки совершенно противоестественно и может проводиться только людьми, преследующими свои и очень странные политические цели, весьма далекие от интересов страны.

Предложенный Д. Медведевым и Д. Ливановым в пожарном порядке Закон о реорганизации РАН и других государственных академий наук и, как сейчас очевидно, поддержанный Вами, отнюдь не решает задачу повышения эффективности научных исследований. Смею утверждать, что любая реорганизация, даже значительно более разумная, чем предложенная в упомянутом Законе, не решает эту проблему.

Позднее в ряде СМИ Алфёрова называли главным противником реформы (однако сам он не подписал заявление учёных, вошедших в т. н. Клуб 1 июля; не выступал активно в печати, как многие сотрудники РАН; его имени нет под Обращением, в котором более 1000 научных работников призвали депутатов, присвоивших чужие научные результаты и некомпетентно голосовавших за реформу РАН, добровольно сложить свои полномочия).

Награды и премии

Награды России и СССР

Полный кавалер ордена «За заслуги перед Отечеством»:
Орден «За заслуги перед Отечеством» I степени (14 марта 2005) - за выдающиеся заслуги в развитии отечественной науки и активное участие в законотворческой деятельности
Орден «За заслуги перед Отечеством» II степени (2000)
Орден «За заслуги перед Отечеством» III степени (4 июня 1999) - за большой вклад в развитие отечественной науки, подготовку высококвалифицированных кадров и в связи с 275-летием Российской академии наук
Орден «За заслуги перед Отечеством» IV степени (15 марта 2010) - за заслуги перед государством, большой вклад в развитие отечественной науки и многолетнюю плодотворную деятельность
Орден Александра Невского (2015)
Орден Ленина (1986)
Орден Октябрьской Революции (1980)
Орден Трудового Красного Знамени (1975)
Орден «Знак Почёта» (1959)
Медали
Государственная премия Российской Федерации 2001 года в области науки и техники (5 августа 2002) за цикл работ «Фундаментальные исследования процессов формирования и свойств гетероструктур с квантовыми точками и создание лазеров на их основе»
Ленинская премия (1972) - за фундаментальные исследования гетеропереходов в полупроводниках и создание новых приборов на их основе
Государственная премия СССР (1984) - за разработку изопериодических гетероструктур на основе четверных твёрдых растворов полупроводниковых соединений A3B5

Иностранные награды

Орден Франциска Скорины (Республика Беларусь, 17 мая 2001) - за большой личный вклад в развитие физической науки, организацию белорусско-российского научно-технического сотрудничества, укрепление дружбы народов Белоруссии и России
Орден князя Ярослава Мудрого V степени (Украина, 15 мая 2003) - за весомый личный вклад в развитие сотрудничества между Украиной и Российской Федерацией в социально-экономической и гуманитарной сферах
Орден Дружбы народов (Белоруссия)

Прочие награды и звания

Нобелевская премия (Швеция, 2000) - за развитие полупроводниковых гетероструктур для высокоскоростной оптоэлектроники
Премия Ника Холоньяка (Оптическое общество Америки, 2000)
Хьюллет-Паккардовская премия (Европейское физическое общество, 1978) - за новые работы в области гетеропереходов
Премия А. П. Карпинского (ФРГ, 1989) - за вклад в развитие физики и техники гетероструктур
Премия имени А. Ф. Иоффе (РАН, 1996) - за цикл работ «Фотоэлектрические преобразователи солнечного излучения на основе гетероструктур»
Демидовская премия (Научный Демидовский фонд, Россия, 1999)
Премия Киото (Инамори фонд, Япония, 2001) - за успехи в создании полупроводниковых лазеров, работающих в непрерывном режиме при комнатных температурах - пионерский шаг в оптоэлектронике
Премия В. И. Вернадского (НАН Украины, 2001)
Премия «Российский Национальный Олимп». Титул «Человек-легенда» (РФ, 2001)
Международная энергетическая премия «Глобальная энергия» (Россия, 2005)
Золотая медаль Х. Велькера (1987) - за пионерские работы по теории и технологии приборов на основе соединений III-V групп
Медаль Стюарта Баллантайна (Институт Франклина, США, 1971) - за теоретические и экспериментальные исследования двойных лазерных гетероструктур, благодаря которым были созданы источники лазерного излучения малых размеров, работающие в непрерывном режиме при комнатной температуре
Золотая медаль имени А. С. Попова (РАН, 1999)
Золотая медаль SPIE (SPIE, 2002)
Награда Симпозиума по GaAs (1987) - за пионерские работы в области полупроводниковых гетероструктур на основе соединений III-V групп и разработку инжекционных лазеров и фотодиодов
Награда «Золотая тарелка» (Академия достижений, США, 2002)
XLIX Менделеевский чтец - 19 февраля 1993 года
Звание и медаль Почётного профессора МФТИ (2008)
Награда «Почётный орден РАУ». Удостоен звания «Почётный доктор Российско-Армянского (Славянского) университета» (ГОУ ВПО Российско-Армянский (Славянский) университет, Армения, 2011).
Присвоено звание "Почетный профессор МИЭТ" (НИУ МИЭТ 2015)

Жоре́с Ива́нович Алфёров (белор. Жарэс Iванавiч Алфёраȳ; род. 15 марта 1930, Витебск, Белорусская ССР, СССР) - советский и российский физик, лауреат Нобелевской премии по физике 2000 года за разработку полупроводниковых гетероструктур и создание быстрых опто- и микроэлектронных компонентов, академик РАН, почётный член Национальной Академии наук Азербайджана (с 2004 года), иностранный член Национальной академии наук Беларуси, почётный член Национальной Академии наук Армении (с 2011 года). Его исследование сыграло большую роль в информатике. Депутат Госдумы РФ от КПРФ, являлся инициатором учреждения в 2002 году премии «Глобальная энергия», до 2006 года возглавлял Международный комитет по её присуждению. Является ректором-организатором нового Академического университета.

Биография

Родился в белорусско-еврейской семье Ивана Карповича Алфёрова и Анны Владимировны Розенблюм. Отец будущего учёного родился в Чашниках, мать происходила из местечка Крайск (ныне Логойский район Минской области Белоруссии). Имя получил в честь Жана Жореса. Довоенные годы провёл в Сталинграде, Новосибирске, Барнауле и Сясьстрое.

Во время Великой Отечественной войны семья Алфёровых переехала в Туринск (Свердловская область), где его отец работал директором целлюлозно-бумажного завода, и после её окончания в разрушенный войной Минск. Старший брат - Маркс Иванович Алфёров (1924-1944) - погиб на фронте. Окончил с золотой медалью среднюю школу № 42 в Минске и по совету учителя физики Якова Борисовича Мельцерзона поехал поступать в Ленинград, в ЛЭТИ. В 1952 году окончил факультет электронной техники Ленинградского электротехнического института имени В. И. Ульянова (Ленина) (ЛЭТИ), куда был принят без экзаменов.

Вице-президент Российской академии наук Жорес Алферов в школе был троечником. Учеба его не увлекала совершенно: одни предметы наводили сон, другие и вовсе раздражали. Особенно не любил маленький Жорес физику. Ни электрическую цепь правильно построить, ни в надоевшей баллистике разобраться он не мог. Да и не особенно хотелось… Учитель считал его посредственностью, и только в исключительных случаях, расщедрившись, ставил четверки. И ведь тогда никто и предположить не мог, что середнячок Алферов через несколько десятков лет станет лауреатом Нобелевской премии в области физики и премии Киото, которая состоит из золотой медали, диплома и 400 000 долларов.

С 1953 года работал в Физико-техническом институте имени А. Ф. Иоффе, где был младшим научным сотрудником в лаборатории В. М. Тучкевича и принимал участие в разработке первых отечественных транзисторов и силовых германиевых приборов. Кандидат физико-математических наук (1961). В 1970 году Алфёров защитил диссертацию, обобщив новый этап исследований гетеропереходов в полупроводниках, и получил степень доктора физико-математических наук. В 1972 году Алфёров стал профессором, а через год - заведующим базовой кафедрой оптоэлектроники ЛЭТИ. С начала 1990-х годов Алфёров занимался исследованием свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек. С 1987 по май 2003 года - директор ФТИ им. А. Ф. Иоффе, с мая 2003 по июль 2006 года - научный руководитель. С 1988 г. (момента основания) декан физико-технического факультета СПбГПУ.

В 1990-1991 годах - вице-президент АН СССР, председатель Президиума Ленинградского научного центра. С 2003 года - председатель Научно-образовательного комплекса «Санкт-Петербургский физико-технический научно-образовательный центр» РАН. Академик АН СССР (1979), затем РАН, почётный академик Российской академии образования. Вице-президент РАН, председатель президиума Санкт-Петербургского научного центра РАН. Главный редактор «Писем в Журнал технической физики».

В 2008 году принял участие в подготовке издания второй книги из серии «Автограф века». Был главным редактором журнала «Физика и техника полупроводников», членом редакционной коллегии журнала «Поверхность: Физика, химия, механика», членом редакционной коллегии журнала «Наука и жизнь». Был членом правления Общества "Знание" РСФСР.

5 апреля 2010 года объявлено о том, что Алфёров назначен научным руководителем инновационного центра в Сколково.

С 2010 года - сопредседатель Консультативного научного Совета Фонда «Сколково».

Политическая деятельность

  • 1944 - становится членом ВЛКСМ.
  • 1965 - становится членом КПСС.
  • 1989-1992 - народный депутат СССР,
  • 1995-1999 - депутат Государственной думы Федерального собрания РФ 2 созыва от движения «Наш дом - Россия» (НДР), председатель подкомитета по науке Комитета по науке и образованию Госдумы, член фракции НДР, с 1998 - член депутатской группы Народовластие.
  • 1999-2003 - депутат Государственной думы Федерального собрания РФ 3 созыва от партии КПРФ, член фракции КПРФ, член комитета по образованию и науке.
  • 2003-2007 - депутат Государственной думы Федерального собрания РФ 4 созыва от партии КПРФ, член фракции КПРФ, член комитета по образованию и науке.
  • C 2007 - депутат Государственной думы Федерального собрания РФ 5 созыва от партии КПРФ, член фракции КПРФ, член Комитета Государственной Думы по науке и наукоёмким технологиям. Старейший депутат Государственной думы Федерального собрания РФ 5 созыва.
  • Член редакционного совета радиогазеты «Слово»
  • Председатель Редакционной коллегии журнала «Нанотехнологии Экология Производство»
  • Учредил Фонд поддержки образования и науки для поддержки талантливой учащейся молодёжи, содействия её профессиональному росту, поощрения творческой активности в проведении научных исследований в приоритетных областях науки. Первый вклад в Фонд был сделан Жоресом Алфёровым из средств Нобелевской премии.

Взгляды

  • Автор Открытого письма 10 академиков Путину против клерикализации
  • Выступает против преподавания в школах предмета Основы православной культуры
  • Продемонстрировал в 2000-х г.г. социальное расслоение российского общества, взяв в руки бокал с вином и сказав: «Содержимое его принадлежит - увы! - всего-навсего десяти процентам населения. А ножка, на которой держится бокал, - это остальное население ».

Награды и премии

Награды России и СССР

Полный кавалер ордена «За заслуги перед Отечеством»:

  • Орден «За заслуги перед Отечеством» I степени (14 марта 2005) - за выдающиеся заслуги в развитии отечественной науки и активное участие в законотворческой деятельности
  • Орден «За заслуги перед Отечеством» II степени (2000)
  • Орден «За заслуги перед Отечеством» III степени (4 июня 1999) - за большой вклад в развитие отечественной науки, подготовку высококвалифицированных кадров и в связи с 275-летием Российской академии наук
  • Орден «За заслуги перед Отечеством» IV степени (15 марта 2010) - за заслуги перед государством, большой вклад в развитие отечественной науки и многолетнюю плодотворную деятельность
  • Орден Ленина (1986)
  • Орден Октябрьской Революции (1980)
  • Орден Трудового Красного Знамени (1975)
  • Орден «Знак Почёта» (1959)
  • Медали
  • Государственная премия Российской Федерации 2001 года в области науки и техники (5 августа 2002) за цикл работ «Фундаментальные исследования процессов формирования и свойств гетероструктур с квантовыми точками и создание лазеров на их основе»
  • Ленинская премия (1972) - за фундаментальные исследования гетеропереходов в полупроводниках и создание новых приборов на их основе
  • Государственная премия СССР (1984) - за разработку изопериодических гетероструктур на основе четверных твёрдых растворов полупроводниковых соединений A3B5

Иностранные награды

  • Орден Франциска Скорины (Белоруссия, 17 мая 2001) - за большой личный вклад в развитие физической науки, организацию белорусско-российского научно-технического сотрудничества, укрепление дружбы народов Белоруссии и России
  • Орден князя Ярослава Мудрого (Украина, 15 мая 2003) - за весомый личный вклад в развитие сотрудничества между Украиной и Российской Федерацией в социально-экономической и гуманитарной сферах

Прочие награды

  • Нобелевская премия (Швеция, 2000) - за развитие полупроводниковых гетероструктур для высокоскоростной оптоэлектроники
  • Премия Ника Холоньяка (Оптическое общество США, 2000)
  • Хьюллет-Паккардовская премия (Европейское физическое общество, 1978) - за новые работы в области гетеропереходов
  • Премия А. П. Карпинского (ФРГ, 1989) - за вклад в развитие физики и техники гетероструктур
  • Премия имени А. Ф. Иоффе (РАН, 1996) - за цикл работ «Фотоэлектрические преобразователи солнечного излучения на основе гетероструктур»
  • Демидовская премия (Научный Демидовский фонд, Россия, 1999)
  • Премия Киото (Инамори фонд, Япония, 2001) - за успехи в создании полупроводниковых лазеров, работающих в непрерывном режиме при комнатных температурах - пионерский шаг в оптоэлектронике
  • Премия В. И. Вернадского (НАН Украины, 2001)
  • Премия «Российский Национальный Олимп». Титул «Человек-легенда» (РФ, 2001)
  • Международная энергетическая премия «Глобальная энергия» (Россия, 2005)
  • Золотая медаль Х. Велькера (1987) - за пионерские работы по теории и технологии приборов на основе соединений III-V групп
  • Медаль Балантайна (Институт Франклина, США, 1971) - за теоретические и экспериментальные исследования двойных лазерных гетероструктур, благодаря которым были созданы источники лазерного излучения малых размеров, работающие в непрерывном режиме при комнатной температуре
  • Золотая медаль имени А. С. Попова (РАН, 1999)
  • Золотая медаль (SPIE, 2002)
  • Награда Симпозиума по GaAs (1987) - за пионерские работы в области полупроводниковых гетероструктур на основе соединений III-V групп и разработку инжекционных лазеров и фотодиодов
  • Награда «Золотая тарелка» (Академия достижений, США, 2002)
  • XLIX Менделеевский чтец - 19 февраля 1993 года
  • Звание и медаль Почётного профессора МФТИ (2008)
  • Награда «Почетный орден РАУ». Удостоен звания «Почетный доктор Российско-Армянского (Славянского) университета».(ГОУ ВПО Российско-Армянский (Славянский)университет,Армения, 2011)


Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта