Главная » 1 Описание » Через прямую mn провести плоскость перпендикулярную заданной. Алгоритм построения плоскости, перпендикулярной данной

Через прямую mn провести плоскость перпендикулярную заданной. Алгоритм построения плоскости, перпендикулярной данной

Построение взаимно перпендикулярных прямых и плоскостей является важной графической операцией при решении метрических задач.

Построение перпендикуляра к прямой или плоскости основывается на свойстве прямого угла, которое формулируется следующим образом: если одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то угол проецируется в натуральную величину на эту плоскость.

Рисунок 28

Сторона ВС прямого угла АВС, изображенного на рисунке 28, параллельна плоскости П 1 . Следовательно, проекция угла АВС на эту плоскость будет представлять прямой угол А 1 В 1 С 1 =90.

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. При построении перпендикуляра из множества прямых принадлежащих плоскости, выбирают прямые уровня - горизонталь и фронталь. В этом случае горизонтальную проекцию перпендикуляра проводят перпендикулярно горизонтали, а фронтальную -перпендикулярно фронтали. На примере, изображенном на рисунке 29, показано построение перпендикуляра к плоскости, заданной треугольником АВС, из точки К. Для этого сначала проводим горизонталь и фронталь в плоскости. Затем из фронтальной проекции точки К проводим перпендикуляр к фронтальной проекции фронтали, а из горизонтальной проекции точки - перпендикуляр к горизонтальной проекции горизонтали. Затем строим точку пересечения данного перпендикуляра с плоскостью при помощи вспомогательной секущей плоскости Σ. Искомая точка - F. Таким образом, полученный отрезок КF является перпендикуляром к плоскости АВС.


Рисунок 29

На рисунке 29 изображено построение перпендикуляра КF к плоскости АВС.

Две плоскости перпендикулярны, если прямая, лежащая в одной плоскости, перпендикулярна двум пересекающимся прямым другой плоскости. Построение плоскости перпендикулярной данной плоскости АВС показано на рисунке 30. Через точку М проводится прямая МN, перпендикулярная плоскости АВС. Горизонтальная проекция этой прямой перпендикулярна АС, так как АС является горизонталью, а фронтальная проекция перпендикулярна АВ, так как АВ - фронталь. Затем через точку М проводится произвольная прямая EF. Таким образом, плоскость перпендикулярна АВС и задана двумя пересекающимися прямыми EF и MN.


Рисунок 30

Этот способ применяется для определения натуральных величин отрезков общего положения, а также углов наклона их к плоскостям проекций. Для того, чтобы определить натуральную величину отрезка этим способом, необходимо достроить прямоугольный треугольник к одной из проекций отрезка. Другим катетом будет являться разность высот или глубин конечных точек отрезка, а гипотенуза - натуральной величиной.

Рассмотрим пример: на рисунке 31 дан отрезок АВ общего положения. Требуется определить его натуральную величину и углы его наклона к фронтальной и горизонтальной плоскостям проекций.

Проводим перпендикуляр к одному из концов отрезка на горизонтальной плоскости. Откладываем на нем разность высот (ZA-ZB) концов отрезка и достраиваем прямоугольный треугольник. Гипотенуза его является натуральной величиной отрезка, а угол между натуральной величиной и проекцией отрезка - натуральной величиной угла наклона отрезка к плоскости П 1 . Порядок построений на фронтальной плоскости тот же самый. По перпендикуляру откладываем разность глубин концов отрезка (YA-YB). Полученный угол между натуральной величиной отрезка и его фронтальной проекцией - это угол наклона отрезка к плоскости П 2 .


Рисунок 31

1. Сформулируйте теорему о свойстве прямого угла.

2. В каком случае прямая перпендикулярна плоскости?

3. Сколько прямых и сколько плоскостей, перпендикулярных данной плоскости, можно провести через точку пространства?

4. Для чего применяется способ прямоугольного треугольника?

5. Как при помощи этого способа определить угол наклона отрезка общего положения к горизонтальной плоскости проекций?

Из геометрии известно, что прямая параллельна плоскости, если она параллельна какой-либо прямой, принадлежащей плоскости. Пусть требуется (рис. 126) через точку D провести прямую, параллельную плоскости треугольника ABC. В плоскости треугольника лежат все три его стороны. Линию DE проводим так, чтобы она оказалась параллельной одной из сторон треугольника, например стороне АВ. Для этого, как известно, необходимо, чтобы было выдержано следующее условие: D 2 Е 2 ||А 2 В 2 и D 1 E 1 ||A 1 B 1 . Если требуется через точку D провести горизонталь, параллельную плоскости ABC, то предварительно в плоскости треугольника строят проекции горизонтали AF, а затем через точку проводят требуемую горизонталь DG||AF.

TBegin-->TEnd-->

Прежде чем рассматривать прямые, перпендикулярные плоскости, надо ознакомиться с проецированием прямого угла. Оказывается, что прямой угол проецируется без искажения, если одна его сторона параллельна данной плоскости, а другая не перпендикулярна ей (рис. 127, а). Докажем эту теорему; для этого изобразим прямой угол, составленный прямой а и горизонталью h, и его горизонтальную проекцию h 1 Хa 1 . Обратим внимание на плоскость а, она горизонтально-проецирующая, так как проходит через горизонтально-проецирующую прямую АА 1 . Сторона h угла по заданию параллельна плоскости П 1 и перпендикулярна прямой а. Одновременно прямая h перпендикулярна линии АА 1 , также принадлежащей плоскости а; значит, она перпендикулярна и самой плоскости а. Горизонтальная проекция h 1 параллельна горизонтали h, следовательно она тоже перпендикулярна плоскости а. Но тогда она перпендикулярна и прямой а 1 , принадлежащей этой плоскости. Итак, h 1 _|_a 1 , т. е. прямой угол спроецировался на плоскость без искажения, что и требовалось доказать.

На комплексном чертеже (рис. 127, б) горизонтальные проекции прямых составят прямой угол h1_|_ а1, фронтальные проекции h 2 и а 2 в данном случае образуют тупой угол. На фронтальную плоскость проекций П3 прямой угол спроецируется в виде прямого угла в том случае, когда одна из его сторон / будет являться фронталью.

TBegin-->
TEnd-->

Из геометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна двум прямым, принадлежащим этой плоскости. Такими прямыми могут быть выбраны горизонталь и фронталь плоскости. Если прямая перпендикулярна плоскости, то горизонтальная проекция прямой перпендикулярна горизонтальной проекции горизонтали, а фронтальная проекция - фронтальной проекции фронтали данной плоскости. Применим это положение для того, чтобы восставить перпендикуляр к плоскости треугольника ABC (рис. 128, а). Через точку А 2 A 1 проведем горизонталь h 2 h 1 , через точку С 2 С 1 проведем фронталь f 1 f 2 ; эти прямые пересекутся между собой в точке N 2 N 1 . Проекции перпендикуляра MN должны пройти: M 2 N 2 _|_ f 2 . M 1 N 1 _|_ h 1 Зная направление соответствующих проекций горизонтали и фронтали, можно провести проекции перпендикуляра из любой точки плоскости ABC. Решение упрощается, если плоскость задана следами kxl (рис. 128, б).

След k является нулевой фронталью, а след l - нулевой горизонталью. Ими можно воспользоваться для построения проекций перпендикуляра MN; фронтальная проекция M 2 N 2 перпендикуляра должна быть перпендикулярна фронтальной проекции k 2 фронтального следа плоскости k, горизонтальная проекция M 1 N 1 перпендикуляра должна быть перпендикулярна горизонтальной проекции l 1 горизонтального следа l плоскости. Точка N выбрана нами на фронтальном следе k; ее можно было взять на горизонтальном следе l или в другом месте плоскости.

rn
Для примера решим две задачи.

Задача 1 . Определить проекции расстояния от точки А до плоскости треугольника BCD.

Как известно, расстояние от точки до плоскости измеряется длиной перпендикуляра, опущенного из точки на эту плоскость. Для того чтобы опустить перпендикуляр, надо провести горизонталь и фронталь плоскости (рис. 129). Горизонталью h плоскости в этом примере является сторона треугольника BD, так как фронтальная ее проекция горизонтальна (перпендикулярна линиям связи). Остается провести фронталь BE (f); ее горизонтальная проекция B 1 E 1 должна быть параллельна воображаемой оси проекций х 12 ; фронтальную проекцию строим с помощью точки Е. Из фронтальной проекции А 3 точки А опускаем перпендикуляр на фронтальную проекцию В 2 Е 2 фронтали BE, а из горизонтальной проекции А 1 - на горизонтальную проекцию B 1 D 1 горизонтали BD. Теперь надо найти основание перпендикуляра - точку О. Для этого проводим горизонтально-проецирующую плоскость сигма _|_ П 1 находим линию пересечения MN, фронтальную проекцию O 2 точки О, а по ней и горизонтальную проекцию О 1 .

Задача решена: A 2 O 2 и А1O1 - проекции искомого расстояния. Отрезок АО видимый при проецировании на плоскости П2 и П1.

TBegin-->TEnd-->

Задача 2 . Через точку А провести плоскость р, перпендикулярную к плоскости a (BCD).

Из геометрии известно, что если плоскость проходит через прямую, которая перпендикулярна другой плоскости, то такие плоскости перпендикулярны. Воспользуемся предыдущим чертежом, на котором первая часть новой задачи решена - проведен перпендикуляр АО=а (рис. 130). Теперь достаточно провести через точку А любую прямую b. При этом образуется плоскость b_|_ а. Построенная плоскость для наглядности оттенена с помощью точек. Как видно, эта задача имеет множество решений.

Рис. 4.17 Рис. 4.18

Если плоскость задана пересекающимися прямыми (рис. 4.17), то решение задачи сводится к проведению через точку А пары прямых, параллельных заданным.

Если плоскость задана следами (4.18), то построение может быть выполнено по следующему алгоритму:

1. Через точку А проводим, например, горизонталь искомой плоскости Q, параллельную горизонталям заданной плоскости Р.

2. Через эту горизонталь проводим искомую плоскость параллельно заданной. Фронтальный след Q V проводим через фронтальную проекцию п" фронтального следа горизонтали параллельно следу P V ; горизонтальный след Q H - через точку Q Х параллельно следу Р Н .

Задача 2. Через точку А (а, а" ) провести плоскость Q , перпендикулярную к прямой (рис. 4.19).


а) Требуется показать искомую плоскость пересекающимися прямыми. В этом случае наиболее просто построить плоскость Q главными линиями — горизонталью и фронталью, проходящими через точку А (а, а") .

Рис. 4.19 Рис. 4.20

б) Требуется показать искомую плоскость следами. Построение может быть выполнено по следующему алгоритму. Через точку А проводим горизонталь плоскости Q перпендикулярно к отрезку ВС. Затем через эту горизонталь проводим искомую плоскость перпендикулярно к прямой ВС. Фронтальный след Q V проводим через фронтальную проекцию п" фронтального следа горизонтали перпендикулярно b"с′ ; горизонтальный след Q H — через точку Q Х перпендикулярно к bс.

Задача 3 . Через точку А (а, а") провести плоскость Q, перпендикулярную к заданной плоскости Р и проходящую через точку схода следов Q Х на оси X (рис. 4.20).

Известно, что плоскость Q будет перпендикулярна к заданной плоскости Р, если она проходит через перпендикуляр к ней или перпендикулярно к линии, лежащей в плоскости Р.

На рис. 4.20 решение задачи выполнено по плану, использующему первое из этих условий:

1. Через заданную точку А проведен перпендикуляр к плоскости Р (am+P H , a′m′+P V ).

2. Через этот перпендикуляр и заданную точку Q X проведена искомая плоскость Q . При этом след Q Н проведен через горизонтальную проекцию т горизонтального следа перпендикуляра и точку Q X ; след Q V — через фронтальную проекцию п′ фронтального следа перпендикуляра и точку Q X .

Искомую плоскость можно было бы построить и пересекающимися прямыми, если через точку Q X провести какую-либо прямую, имеющую общую точку с перпендикуляром.

Задача 4. Через точку А (а, а" )провести прямую, перпендикулярную к прямой ВС.

Искомый перпендикуляр лежит в плоскости, перпендикулярной к заданной прямой ВС.


Поэтому задача может быть решена по следующему алгоритму:

1. Через точку А проводим плоскость Q , перпендикулярную к прямой ВС.

2. Определяем точку К (k, k") пересечения прямой ВС с плоскостью Q при помощи горизонтально-проецирующей плоскости S .

3. Соединяем точки А и К .


На эпюре, решая задачу по этому алгоритму, можно плоскость показать двумя пересекающимися главными линиями (h×f ) (рис. 4.21) или следами (рис. 4.22).

Рис. 4.21 Рис. 4.22

Задача 5. Построить линию пересечения плоскостей ABC и DEF .

Эту задачу можно решать с использованием задачи на пересечение прямой с плоскостью. На рис. 4.23 показано построение линии пересечения плоскостей, заданных треугольниками ABC и DEF . Прямая MN построена по найденным точкам пересечения сторон DF и EF треугольника DEF с плоскостью треугольника ABC .

Например, чтобы найти точку М пересечения стороны DF с плоскостью ABC , через прямую DF проводят фронтально-проецирующую плоскость Р ABC по прямой I II df и 12 m искомой точки М . Затем находят фронтальную проекцию m " точки М . Точку N пересечения прямой EF с плоскостью ABC находят, используя фронтально-проецирующую плоскость Q , которая пересекается с плоскостью треугольника ABC по прямой III IV . На пересечении горизонтальных проекций ef и 34 получают горизонтальную проекцию n искомой точки N .

Соединив попарно точки m " и n ", m и n , получают проекции линии пересечения MN плоскостей ABC и DEF .

Видимость частей отрезков плоскостей устанавливается способом конкурирующих точек.

Не будет преувеличением утверждать, что построение взаимно перпендикулярных прямых и плоскостей наряду с определением расстояния между двумя точками являются основными графическими операциями при решении метрических задач.

Теоретической предпосылкой для построения на эпюре Монжа проекций прямых и плоскостей, перпендикулярных по отношению друг к другу в пространстве, служит отмеченное раньше (см. § 6) свойство

проекции прямого угла, одна из сторон которого параллельна какой-либо плоскости проекции:

1. Взаимно перпендикулярные прямые.

Чтобы можно было воспользоваться отмеченным свойством для построения на эпюре Монжа двух пересекающихся под углом 90° прямых, необходимо, чтобы одна из них была параллельна какой-либо плоскости проекции. Поясним сказанное на примерах.

ПРИМЕР 1. Через точку А провести прямую l, пересекающую горизонталь h под прямым углом (рис. 249).

Так как одна из сторон h прямого угла параллельна плоскости π 1 , то на эту плоскость прямой угол спроецируется без искажения. Поэтому через А" проводим горизонтальную проекцию l" ⊥ h". Отмечаем точку М" = l" ∩ h". Находим М" (М" ∈ h"). Точки А" и М" определяют l" (см. рис. 249, а).

Если вместо горизонтали будет задана фронталь f, то геометрические построения по проведению прямой l ⊥ f аналогичны только что рассмотренным с той лишь разницей, что построения неискаженной проекции прямого угла следует начинать с фронтальной проекции (см. рис. 249, б).

ПРИМЕР 2. Через точку А провести прямую l , пересекающую прямую а, заданную отрезком [ВС], под углом 90° (рис. 250).

Так как данный отрезок занимает произвольное положение по отношению к плоскостям проекций, мы не можем, как в предыдущем примере, воспользоваться свойством о частном случае проецирования прямого угла, поэтому вначале необходимо [ВС] перевести в положение, параллельное какой-либо плоскости проекции.

На рис. 250 [ВС] переведен в положение, параллельное плоскости π 3 . Это сделано с помощью способа замены плоскостей проекции путем замены плоскости π 1 → π 3 || [ВС].

В результате такой замены в новой системе x 1 π 2 /π 3 [ВС] определяет горизонтальную прямую, поэтому все дальнейшие простроения выполнены так же, как это было сделано в предыдущем примере: после того, как была найдена точка М" 1 , ее перевели на исходные плоскости проекции в положение М" и М", эти точки совместно с А" и А" определяют проекции прямой l.

ПРИМЕР 3. Провести горизонтальную проекцию стороны [ВС] прямого угла АВС, если известны его фронтальная проекция ∠A"B"C" и горйзонтапьная проекция стороны [А"В"] (рис. 251).

1. Переводим сторону угла [ВА] в положение || π 3 путем перехода от системы плоскостей проекции хπ 2 /π 1 к новой x 1 π 3 /π 2



2. Определяем новую фронтальную проекцию .

Из В" 1 восставляем перпендикуляр к [В" 1 A" 1 ]. На этом перпендикуляре определяем точку С" 1 (С" 1 удалена от оси x 1 на расстояние |С x 1 С" 1 | = |С x С"|).

4. Горизонтальная проекция С" определяется как точка пересечения прямых (С" 1 С x 1) ∩ (С"С x) = С".

2. Взаимно перпендикулярные прямая и плоскость.

Из курса стереометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна хотя бы к двум пересекающимся прямым, принадлежащим этой плоскости.

Если в плоскости взять не произвольные пересекающиеся прямые, а ее горизонталь и фронталь, то открывается возможность воспользоваться свойством проекции прямого угла, как это было сделано в примере 1, рис. 249.

Рассмотрим следующий пример; пусть из точки A ∈ α требуется восставить перпендикуляр к плоскости α (рис. 252).

Через точку А проводим горизонталь h и фронталь f плоскости α. Тогда, по определению (АВ), перпендикулярная к плоскости α, должна быть перпендикулярна к прямым h и f, т. е. . Но сторона AM ∠ ВАМ || π 1 , поэтому ∠ВАМ проецируется на плоскость π 1 , без искажения, т. е.. Сторона АК ∠ ВАК || π 2 и, следовательно, на плоскость π 2 этот угол проецируется также без искажения, т. е. и . Приведенные рассуждения можно сформулировать в виде следующей теоремы: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой была перпендикулярна к горизонтальной проекции горизонтали плоскости, а фронтальная проекция к фронтальной проекции фронтали этой плоскости.

Если плоскость задана следами, то теорема может быть сформулирована иначе: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы проекции этой прямой были перпендикулярны к одноименным следам плоскости.


Установленные теоремой зависимости между прямой в пространстве, перпендикулярной к плоскости, и проекциями этой прямой к проекциям линий уровня (следам) плоскости лежат в основе графического алгоритма решения задачи по проведению прямой, перпендикулярной к плоскости, а также построения плоскости, перпендикулярной к заданной прямой.

ПРИМЕР 1. Восставить в вершине А перпендикуляр AD к плоскости ΔАВС (рис. 253).

Для того чтобы определить направление проекций перпендикуляра, проводим проекции горизонтали h и фронтали f плоскости ΔАВС. После этого из точки А" восставляем перпендикуляр к h", а из А" - к f".

ПРИМЕР 2. Из точки А, принадлежащей плоскости α (m || n), восставить перпендикуляр к этой плоскости (рис. 254).

РЕШЕНИЕ. Для определения направления проекций перпендикуляра l" и l", как и в предыдущем примере, проводим через точку А (А",А") горизонталь h(h", h"), принадлежащую плоскости α. Зная направление h", строим горизонтальную проекцию перпендикуляра l" (l" ⊥ h"). Для определения направления фронтальной проекции перпендикуляра через точку А (А", А") проводим фронталь f (f", f") плоскости α. В силу параллельности f фронтальной плоскости проекции прямой угол между l и f проецируется на π 2 без искажения, поэтому проводим l" ⊥ f".

На рис. 255 эта же задача решена для случая, когда плоскость α задана следами. Для определения направлений проекций перпендикуляра отпадает необходимость в проведении горизонтали и фрон-


тали, так как их функции выполняют следы плоскости h 0α и f 0α . Как видно из чертежа, решение сводится к проведению через точки А" и А" проекций l" ⊥ h 0α и l" ⊥ f 0α .

ПРИМЕР 3. Построить плоскость γ, перпендикулярную к данной прямой l и проходящую через заданную точку А (рис. 256).

РЕШЕНИЕ. Через точку А проводим горизонталь h и фронталь f. Эти две пересекающиеся прямые определяют плоскость; чтобы она была перпендикулярна к прямой l, необходимо, чтобы прямые h и f составляли с прямой l угол 90°. Для этого проводим h" ⊥ l" и f" ⊥ l". Фронтальная проекция h" и горизонтальная проекция f" проводятся параллельно оси x.

Рассмотренный случай позволяет по иному решать задачу, приведенную в примере 3 (с. 175 рис. 251). Сторона [ВС] ∠АВС должна принадлежать плоскости γ ⊥ [АВ] и проходить через точку В (рис. 257).

Это условие и определяет ход решения задачи, который состоит в следующем: заключаем точку В в плоскость γ ⊥ [АВ], для этого через точку В проводим горизонталь и фронталь плоскости γ так, чтобы h" ⊥ A"B" и f" ⊥ A"B".

Точка С ∈ (ВС), принадлежащей плоскости γ, поэтому для нахождения ее горизонтальной проекции проводим через С" произвольную прямую 1"2", принадлежащую плоскости γ; определяем горизонтальную проекцию этой прямой 1"2" и на ней отмечаем точку С" (С" определяется пересечением линии связи - перпендикуляра, опущенного из С", с горизонтальной проекцией прямой 1"2"). С" совместно с В" определяют горизонтальную проекцию (ВС) ⊥ (АВ).

3. Взаимно перпендикулярные плоскости..

Две плоскости перпендикулярны, если одна из них содержит прямую, перпендикулярную к другой плоскости .

Исходя из определения перпендикулярности плоскостей, задачу на построение плоскости β, перпендикулярной к плоскости α, решаем следующим путем: проводим прямую l, перпендикулярную к плоскости α; заключаем прямую l в плоскость β. Плоскость β ⊥ α, так как β ⊃ l ⊥ α.

Через прямую l можно провести множество плоскостей, поэтому задача имеет множество решений. Чтобы конкретизировать ответ, необходимо указать дополнительные условия.

ПРИМЕР 1. Через данную прямую а провести плоскость β, перпендикулярную к плоскости α (рис. 258).

РЕШЕНИЕ. Определяем направление проекций перпендикуляра к плоскости α, для этого находим горизонтальную проекцию горизонтали (h") и фронтальную проекцию фронтали (f") ; из проекций произвольной точки А ∈ α проводим проекции перпендикуляра l" ⊥ h" и l" ⊥ f". Плоскость β ⊥ α, так как β ⊃ l ⊥ α.


ПРИМЕР 2. Через данную точку А провести горизонтально проецирующую плоскость γ, перпендикулярную к плоскости α, заданной следами (рис. 259, а).

Искомая плоскость γ должна содержать прямую, перпендикулярную плоскости α, или быть перпендикулярной к прямой, принадлежащей плоскости α. Так как плоскость γ должна быть горизонтально проецирующей, то прямая, перпендикулярная к ней, должна быть параллельна плоскости π 1 , т. е. являться горизонталью плоскости α или (что то же самое) горизонтальным следом этой плоскости - h 0α Поэтому через горизок тальную проекцию точки А" проводим горизонтальный след h 0γ ⊥ h 0α фронтальный след f 0γ ⊥ оси х.

На рис. 259, б показана фронтально проецирующая плоскость γ, проходящая через точку В и перпендикулярная к плоскости π 2 .

Из чертежа видно, что отличительной особенностью эпюра, на котором заданы две взаимно перпендикулярные плоскости, из которых одна - фронтально проецирующая, является перпендикулярность их фронтальных следов f 0γ ⊥ f 0α , горизонтальный след фронтально проецирующей плоскости перпендикулярен оси х.


ПОСТРОЕНИЕ ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ

Из всех возможных положений прямой, пересекающей плоскость, отметим случай, когда прямая перпендикулярна к плоскости, и рассмотрим свойства проекций такой прямой.

На рис. 185 задана плоскость, определяемая двумя пересекающимися прямыми AN и AM, причем AN является горизонталью, а AM - фронталью этой плоскости. Прямая АВ, изображенная на том же чертеже, перпендикулярна к AN и к AM и, следовательно, перпендикулярна к определяемой ими плоскости.

Перпендикуляр к плоскости перпендикулярен к любой прямой, проведенной в этой плоскости. Но чтобы при этом проекция перпендикуляра к плоскости общего положения оказалась перпендикулярной к одноименной проекции какой-либо прямой этой плоскости, прямая должна быть горизонталью, или фронталью, или профильной прямой плоскости. Поэтому, желая построить перпендикуляр к плоскости, берут в общем случае две такие прямые (например, горизонталь и фронталь, как это показано на рис. 185).

Итак, у перпендикуляра к плоскости его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, фронтальная проекция перпендикулярна к фронтальной проекции фронтали, профильная проекция перпендикулярна к профильной проекции профильной прямой этой плоскости.

Очевидно, в случае, когда плоскость выражена следами (рис. 186), мы получаем следующий вывод: если прямая перпендикулярна к плоскости, то горизонтальная проекция этой прямой перпендикулярна к горизонтальному следу плоскости, а фронтальная проекция перпендикулярна к фронтальному следу плоскости.

Итак, если в системе π 1 п 2 горизонтальная проекция прямой перпендикулярна к горизонтальному следу и фронтальная проекция прямой перпендикулярна к фронтальному следу плоскости, то в случае плоскостей общего положения (рис. 186), а также горизонтально и фронтально-проецирующих прямая перпендикулярна к плоскости. Но для профильно-проецирующей плоскости может оказаться, что прямая к этой плоскости не перпендикулярна, хотя проекции прямой соответственно перпендикулярны к горизонтальному и фронтальному следам плоскости. Поэтому в случае профильно-проецирующей плоскости надо рассмотреть также взаимное положение профильной проекции прямой и профильного следа данной плоскости и лишь после этого установить, будут ли перпендикулярны между собой данные прямая и плоскость.

Очевидно (рис. 187), горизонтальная проекция перпендикуляра к плоскости сливается с горизонтальной проекцией линии ската, проведенной в плоскости через основание перпендикуляра.

На рис. 186 из точки А проведен перпендикуляр к пл. a (А"С" ⊥ f" 0a , А"С" ⊥ h" 0a) и показано построение точки Е, в которой перпендикуляр АС пересекает пл. а. Построение выполнено с помощью горизонтально-проецирующей пл. β, проведенной через перпендикуляр АЕ.

На рис. 188 показано построение перпендикуляра к плоскости, определяемой треугольником АВС. Перпендикуляр проведен через точку А.

Так как фронтальная проекция перпендикуляра к плоскости должна быть перпендикулярна к фронтальной проекции фронтали плоскости, а его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, то в плоскости через точку А проведены фронталь с проекциями A"D" и A"D" и горизонталь А"Е", А"Е". Конечно, эти прямые не обязательно проводить именно через точку А.

Далее проведены проекции перпендикуляра: M"N" ⊥ A"D", M"N" ⊥ А"Е". Почему проекции на рис. 188 на участках A"N" и А"М" показаны штриховыми линиями? Потому, что здесь рассматривается плоскость, заданная треугольником АВС, а не только этот треугольник: перпендикуляр находится частично перед плоскостью, частично за ней.

На рис. 189 и 190 показано построение плоскости, проходящей через точку А перпендикулярно к прямой ВС. На рис. 189 плоскость выражена следами. Построение начато с проведения через точку А горизонтали искомой плоскости: так как горизонтальный след плоскости должен быть перпендикулярен к В"С" то и горизонтальная проекция горизонтали должна быть перпендикулярна к В"С". Поэтому A"N" ⊥ В"С. Проекция A"N" || оси х, как это должно быть у горизонтали. Затем проведен через точку N" (N" - фронтальная проекция фронтальною следа горизонтали AN) след f" 0a ⊥ В"С", получена точка Х a и проведен след h" 0a || A"N" (h" 0a ⊥ В"С").

На рис. 190 плоскость определена ее фронталью AM и горизонталью AN. Эти прямые перпендикулярны к ВС (А"М"" ⊥ В"С", A"N" ⊥ В"С); определяемая ими плоскость перпендикулярна к ВС.

Так как перпендикуляр к плоскости перпендикулярен к каждой прямой, проведенной в этой плоскости, то, научившись проводить плоскость перпендикулярно к прямой, можно воспользоваться этим для проведения перпендикуляра из некоторой точки А к прямой общего положения ВС. Очевидно, можно наметить следующий план построения проекций искомой прямой:

1) через точку А провести плоскость (назовем ее ϒ), перпендикулярную к ВС;

2) определить точку К пересечения прямой ВС с пл. ϒ;

3) соединить точки А и К отрезком прямой линии.

Прямые АК и ВС взаимно перпендикулярны.

Пример построения дан на рис. 191. Через точку А проведена плоскость (ϒ), перпендикулярная к ВС. Это сделано при помощи фронтали, фронтальная проекция A"F" которой проведена перпендикулярно к фронтальной проекции В"С" и горизонтали, горизонтальная проекция которой перпендикулярна к В"С".

Затем найдена точка К, в которой прямая ВС пересекает пл. ϒ. Для этого через прямую ВС проведена горизонтально-проецируюшая плоскость β (на чертеже она задана только горизонтальным следом β"). Пл. β пересекает пл. ϒ по прямой с проекциями 1"2‘ и 1"2". В пересечении этой прямой с прямой ВС получается точка К. Прямая АК является искомым перпендикуляром к ВС. Действительно, прямая АК пересекает прямую ВС и находится в пл. ϒ, перпендикулярной к прямой ВС; следовательно, АК ⊥ ВС.

На рис. 192 изображены плоскость общего положения а, проходящая через точку А, и перпендикуляр AM к этой плоркости, продолженный до пересечения с пл. п 1 , в точке В".

Угол ф 1 между пл. а и пл. п 1 и угол ф между прямой AM и пл. п 1 являются острыми углами прямоугольного треугольника В"АМ" и, следовательно, ф 1 +ф = 90°. Аналогично, если пл. а составляет с пл. п 2 угол σ 2 , а прямая AM, перпендикулярная к а, составляет с пл. п 2 угол σ, то σ 2 + σ = 90°. Из этого, прежде всего, следует, что плоскость общею положения, которая должна составлять с пл. п 1 угол ф 1 а с пл. п 2 угол σ 2 , может быть построена, лишь если 180° > Ф 1 + σ2 > 90°.

Действительно, складывая почленно Ф 1 + Ф = 90° и σ 2 + σ = 90°, получим Ф 1 + σ 2 + Ф + σ = 180°, т. е. Ф 1 + σ 2 < 180, а так как Ф + σ < 90 , то Ф 1 + σ 2 > 90°. Если взять Ф 1 + σ 2 =90°, то получится профильно-проецирующая плоскость, а если взять Ф 1 + σ 2 = 180°, то получится профильная плоскость, т. е. в обоих этих случаях плоскость не общего положения, а частного.

ПОСТРОЕНИЕ ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫХ ПЛОСКОСТЕЙ

Построение плоскости β, перпендикулярной к плоскости a, может быть произведено двумя путями: 1) пл. β проводится через прямую, перпендикулярную к пл. а; 2) пл. β проводится перпендикулярно к прямой, лежащей в пл. а или параллельной этой плоскости. Для получения единственного решения требуются дополнительные условия.

На рис. 193 показано построение плоскости, перпендикулярной к плоскости, заданной треугольником CDE. Дополнительным условием здесь служит то, что искомая плоскость должна проходить через прямую А В. Следовательно, искомая плоскость определяется прямой АВ и перпендикуляром к плоскости треугольника. Для проведения этого перпендикуляра к пл. CDE в ней взяты фронталь CN и горизонталь СМ: если B"F" ⊥ C“N" и B"F"⊥C"M", то BF⊥ пл. CDE.

Образованная пересекающимися прямыми АВ и BF плоскость перпендикулярна к пл. СОЕ, так как проходит через перпендикуляр к этой плоскости. На рис. 194 горизонтально-проецирующая плоскость β проходит через точку К перпендикулярно к плоскости, заданной треугольником АВС. Здесь дополнительным условием являлась перпендикулярность искомой плоскости сразу к двум плоскостям: к пл. АВС и к пл. п 1 . Поэтому и ответом служит горизонтально-проецирующая плоскость. А так как она проведена перпендикулярно к горизонтали AD, т. е. к прямой, принадлежащей пл. АВС, то пл. β перпендикулярна к пл. АВС.

Может ли перпендикулярность одноименных следов плоскостей служить признаком перпендикулярности самих плоскостей?

К очевидным случаям, когда это так, относится взаимная перпендикулярность двух горизонтально-проецирующих плоскостей, у которых горизонтальные следы взаимно перпендикулярны. Также это имеет место при взаимной перпендикулярности фронтальных следов фронтально-проецирующих плоскостей; эти плоскости взаимно перпендикулярны.

Рассмотрим (рис. 195) горизонтально-проецирующую плоскость β, перпендикулярную к плоскости общего положения а.

Если пл. β перпендикулярна к пл. л, п 1 пл. а, то β⊥h" 0a как к линии пересечения пл. а и пл. п 1 . Отсюда h" 0a ⊥ β и, следовательно, h" 0a ⊥ β , как к одной из прямых в пл. β.

Итак, перпендикулярность горизонтальных следов плоскости общего положения и горизонтально-проецирующей соответствует взаимной перпендикулярности этих плоскостей.

Очевидно, перпендикулярность фронтальных следов фронтально-проецирующей плоскости и плоскости общего положения также соответствует взаимной перпендикулярности этих плоскостей.

Но если одноименные следы двух плоскостей общего положения взаимно перпендикулярны, то самые плоскости не перпендикулярны между собой, так как здесь не соблюдается ни одно из условий, изложенных в начале этого параграфа.

В заключение рассмотрим рис. 196. Здесь имеет место случай взаимной перпендикулярности одноименных следов в обеих их парах и перпендикулярности самих плоскостей: обе плоскости особого (частного) положения - профильная ϒ и профильно-проецирующая а.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта