Главная » 2 Распространение и сезон сбора » Затухающие колебания рисунок. Свободные затухающие колебания

Затухающие колебания рисунок. Свободные затухающие колебания

Затуханием колебаний называется постепенное уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Собственные колебания без затухания – это идеализация. Причины затухания могут быть разные. В механической системе к затуханию колебаний приводит наличие трения. В электромагнитном контуре к уменьшению энергии колебаний приводят тепловые потери в проводниках, образующих систему. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю.

Затухающие колебания, как и собственные, в системах, разных по своей природе, можно рассматривать с единой точки зрения – общих признаков. Однако, такие характеристики, как амплитуда и период, требуют переопределения, а другие – дополнения и уточнения по сравнению с такими же признаками для собственных незатухающих колебаний. Общие признаки и понятия затухающих колебаний следующие:

Дифференциальное уравнение должно быть получено с учетом убывания в процессе колебаний колебательной энергии.

Уравнение колебаний – решение дифференциального уравнения.

Амплитуда затухающих колебаний зависит от времени.

Частота и период зависят от степени затухания колебаний.

Фаза и начальная фаза имеют тот же смысл, что и для незатухающих колебаний.

3.1. Механические затухающие колебания

Механическая система : пружинный маятник с учетом сил трения.

Силы, действующие на маятник :

Упругая сила . , где k – коэффициент жесткости пружины, х – смещение маятника от положения равновесия.

Сила сопротивления . Рассмотрим силу сопротивления, пропорциональную скорости v движения (такая зависимость характерна для большого класса сил сопротивления): . Знак "минус" показывает, что направление силы сопротивления противоположно направлению скорости движения тела. Коэффициент сопротивления r численно равен силе сопротивления, возникающей при единичной скорости движения тела:

Закон движения пружинного маятника – это второй закон Ньютона:

ma = F упр. + F сопр.

Учитывая, что и , запишем второй закон Ньютона в виде:

.

Разделив все члены уравнения на m, перенеся их все в правую часть, получим дифференциальное уравнение затухающих колебаний:

Обозначим , где β – коэффициент затухания , , где ω 0 – частота незатухающих свободных колебаний в отсутствии потерь энергии в колебательной системе.

В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:

.

Это линейное дифференциальное уравнение второго порядка.

Уравнение затухающих колебаний есть решение такого дифференциального уравнения:

В приложении 1 показано получение решения дифференциального уравнения затухающих колебаний методом замены переменных.

Частота затухающих колебаний :

(физический смысл имеет только вещественный корень, поэтому ).

Период затухающих колебаний :

.

Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее: .

Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении.

Для механической системы пружинного маятника имеем:

, .

Амплитуда затухающих колебаний :

Для пружинного маятника .

Амплитуда затухающих колебаний – величина не постоянная, а изменяющаяся со временем тем быстрее, чем больше коэффициент β. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить.

При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период.

Графики зависимости смещения от времени и амплитуды от времени представлены на Рисунках 3.1 и 3.2.

Рисунок 3.1 – Зависимость смещения от времени для затухающих колебаний

Рисунок 3.2 – Зависимости амплитуды от времени для затухающих колебаний

3.2. Электромагнитные затухающие колебания

Электромагнитные затухающие колебания возникают в электромагнитной колебательной систему , называемой LCR – контур (Рисунок 3.3).

Рисунок 3.3.

Дифференциальное уравнение получим с помощью второго закона Кирхгофа для замкнутого LCR – контура: сумма падений напряжения на активном сопротивлении (R) и конденсаторе (С) равна ЭДС индукции, развиваемой в цепи контура:

Падение напряжения:

На активном сопротивлении: , где I – сила тока в контуре;

На конденсаторе (С): , где q – величина заряда на одной из обкладок конденсатора.

ЭДС, развиваемая в контуре – это ЭДС индукции, возникающая в катушке индуктивности при изменении тока в ней, а следовательно, и магнитного потока сквозь ее сечение: (закон Фарадея).

Подставим значения U R , U C , в уравнение, отражающее закон Кирхгофа, получим:

.

Сила тока определяется как производная от заряда , тогда , и дифференциальное уравнение примет вид:

.

Обозначим , , получим в этих обозначениях дифференциальное уравнение затухающих колебаний в виде:

Решение дифференциального уравнения или уравнение колебаний для заряда на обкладках конденсатора имеет вид:

Амплитуда затухающих колебаний заряда имеет вид:

Частота затухающих колебаний в LCR – контуре:

.

Период затухающих электромагнитных колебаний:

.

Возьмем уравнение для заряда в виде , тогда уравнение для напряжения на обкладках конденсатора можно записать так
.

Величина называется амплитудой напряжения на конденсаторе .

Ток в контуре меняется со временем. Уравнение для силы тока в контуре можно получить, используя соотношение и векторную диаграмму.

Окончательное уравнение для силы тока таково:

где - начальная фаза.

Она не равна α, так как сила тока изменяется не по синусу, что дала бы производная от заряда, а по косинусу.

Энергия колебаний в контуре складывается из энергии электрического поля

и энергии магнитного поля

Полная энергия в любой момент времени:

где W 0 полная энергия контура в момент времени t=0.

3.3. Характеристики затухающих колебаний

1. Коэффициент затухания β.

Изменение амплитуды затухающих колебаний происходит по экспоненциальному закону:

Пусть за время τ амплитуда колебаний уменьшится в "e " раз ("е" – основание натурального логарифма, е ≈ 2,718). Тогда, с одной стороны, , а с другой стороны, расписав амплитуды А зат. (t) и А зат. (t+τ), имеем . Из этих соотношений следует βτ = 1, отсюда

Промежуток времени τ, за который амплитуда уменьшается в "е" раз, называется временем релаксации .

Коэффициент затухания β – величина, обратно пропорциональная времени релаксации.

2. Логарифмический декремент затухания δ - физическая величина, численно равная натуральному логарифму отношения двух последовательных амплитуд, отстоящих по времени на период.

Все реальные колебательные системы являются диссипативными. Энергия механических колебаний системы с течением времени расходуется на работу против сил трения, поэтому собственные колебания всегда затухают – их амплитуда постепенно уменьшается. Потеря энергии происходит и при деформациях тел, так как вполне упругих тел не существует, а деформации не вполне упругих тел сопровождаются частичным переходом механической энергии в энергию хаотического теплового движения частиц этих тел.

Во многих случаях в первом приближении можно считать, что при небольших скоростях движения силы, вызывающие затухание механических колебаний, пропорциональны величине скорости. Будем называть эти силы, независимо от их происхождения, силами трения или сопротивления и вычислять их по следующей формуле: . Здесь r – коэффициент сопротивления среды, – скорость движения тела. Знак минус указывает на то, что силы трения всегда направлены в сторону, противоположную направлению движения тела.

Запишем уравнение второго закона Ньютона для затухающих прямолинейных колебаний пружинного маятника

Здесь: m – масса груза, k – жесткость пружины, – проекция скорости на ось ОХ, – проекция ускорения на ось ОХ. Поделим обе части уравнения (13) на массу m и перепишем его в виде:

. (14)

Введем обозначения:

, (15)

. (16)

Назовем коэффициентом затухания, а мы ранее назвали собственной циклической частотой. С учетом введенных обозначений (15 и 16) уравнение (14) запишется

. (17)

Это дифференциальное уравнение затухающих колебаний любой природы. Вид решения этого линейного дифференциального уравнения второго порядка зависит от соотношения между величиной – собственной частотой незатухающих колебаний и коэффициентом затухания .

Если трение очень велико (в этом случае ), то система, выведенная из положения равновесия, возвращается в него, не совершая колебаний («ползет»). Такое движение (кривая 2 на рис.3) называют апериодическим.

Если же в начальный момент система с большим трением находится в положении равновесия и ей сообщается некоторая начальная скорость , то система достигает наибольшего отклонения от положения равновесия , останавливается и после этого смещение асимптотически стремится к нулю (рис.4).



Рис.3 Рис.4

Если система выведена из положения равновесия при условии и отпущена без начальной скорости, то система также не переходит положения равновесия. Но в этом случае время практического приближения к нему оказывается меньше, чем в случае большого трения (кривая 1 на рис 3). Такой режим называется критическим и к нему стремятся при использовании различных измерительных приборов (для быстрейшего отсчета показаний).



при малом трении (в этом случае ) движение носит колебательный характер (рис.5) и решение уравнения (17) имеет вид:

(19)

описывает изменение амплитуды затухающих колебаний со временем. Амплитуда затухающих колебаний уменьшается с течением времени (рис.5) и тем быстрее, чем больше коэффициент сопротивления и чем меньше масса колеблющегося тела, то есть чем меньше инертность системы.


Рис.5

Величину

называют циклической частотой затухающих колебаний. Затухающие колебания представляют собой непериодические колебания, так как в них никогда не повторяются, например, максимальные значения смещения, скорости и ускорения. Поэтому назвать частотой можно лишь условно в том смысле, что она показывает, сколько раз за секунд колеблющаяся система проходит через положение равновесия. По этой же причине величину

(21)

можно назвать условным периодом затухающих колебаний .

Для характеристики затухания введем следующие величины:

Логарифмический декремент затухания;

Время релаксации;

Добротность.

Отношение двух любых последовательных смещений, разделенных во времени одним периодом называют декрементом затухания .

Логарифмическим декрементом затухания называется натуральный логарифм отношения значений амплитуды затухающих колебаний в моменты времени t и t+T (натуральный логарифм отношение двух любых последовательных смещений, разделенных во времени одним периодом):

Поскольку и , то .

Воспользуемся формулой зависимости амплитуды от времени (19) и получим

Выясним физический смысл величин и . Обозначим через промежуток времени, за который амплитуда затухающих колебаний убывает в е раз и назовем его временем релаксации . Тогда . отсюда следует, что

До сих пор мы рассматривали гармонические колебания, возникающие, как это уже отмечалось, при наличии в системе единственной силы - силы упругости или квазиупругой силы. В окружающей нас природе, строго говоря, таких колебаний не существует. В реальных системах кроме упругих или квазиупругих сил всегда присутствуют и другие силы, отличающиеся по характеру действия от упругих - это силы, возникающие при взаимодействии тел системы с окружающей средой - диссипативные силы. Конечным результатом их действия является переход механической энергии движущегося тела в теплоту. Другими словами, происходит рассеяние или диссипация механической энергии. Процесс рассеяния энергии не является чисто механическим и для своего описания требует привлечения знаний из других разделов физики. В рамках механики мы можем описать этот процесс путем введения сил трения или сопротивления. В результате рассеяния энергии амплитуда колебаний убывает. В этом случае принято говорить, что колебания тела или системы тел затухают. Затухающие колебания уже не являются гармоническими, так как их амплитуда и частота со временем изменяются.

Колебания, которые вследствие рассеяния энергии в колеблющейся системе происходят с непрерывно уменьшающейся амплитудой, называются затухающими. Если колебательная система, выведенная из состояния равновесия, совершает колебания под действием только внутренних сил, без сопротивления и рассеяния (диссипации) энергии, то совершающиеся в ней колебания называются свободными (или собственными) незатухающими колебаниями. В реальных механических системах с диссипацией энергии свободные колебания всегда затухающие. Их частота со отличается от частоты со 0 колебаний системы без затухания (о 0 тем больше, чем больше влияние сил сопротивления.

Рассмотрим затухающие колебания на примере пружинного маятника. Ограничимся рассмотрением малых колебаний. При малых скоростях колебаний силу сопротивления можно принять пропорциональной величине скорости колебательных смещений

где v = 4 - скорость колебаний; г - коэффициент пропорциональности, называемый коэффициентом сопротивления. Знак минус в выражении (2.79) для силы сопротивления обусловлен тем, что она направлена в сторону, противоположную скорости движения колеблющегося тела.

Зная выражения для квазиупругой силы i^p = -и силы сопротивления F c = с учетом совместного действия этих сил, можно записать динамическое уравнение движения тела, совершающего затухающие колебания

В этом уравнении коэффициент (3 в соответствии с формулой (2.49) заменим на ты], после чего последнее уравнение разделим наши получим

Будем искать решение уравнения (2.81) в виде функции времени вида

Здесь пока еще неопределенная постоянная величина у. Начальная фаза в нашем рассмотрении будет для упрощения предполагаться равной нулю, т.е. мы можем «включить» секундомер тогда, когда колебательное смещение проходит через положение равновесия (нуль координаты).

Определить величину у можем путем подстановки в дифференциальное уравнение затухающих колебаний (2.81) предполагаемого решения (2.82), а также получаемых из него скорости

и ускорения

Подстановка (2.83) и (2.84) совместно с (2.82) в (2.81) дает После сокращения на /1 () е" : " и умножения на «-1» получим Решив это квадратное уравнение относительно у, имеем

Подставив у в (2.82), найдем, как зависит смещение от времени при затухающих колебаниях. Введем обозначения

где символом со обозначена угловая частота затухающих колебаний и соо угловая частота свободных колебаний без затухания. Видно, что при S > 0 частота со затухающих колебаний всегда меньше частоты

Таким образом, и, следовательно, смещение при затухающих колебаниях может быть выражено в виде

Выбор знака «+» или «-» в показателе второй экспоненты произволен и отвечает сдвигу колебаний по фазе на л . Будем записывать затухающие колебания с учетом выбора знака «+», тогда выражение (2.90) будет

Это и есть искомая зависимость смещения от времени. Ее можно переписать и в тригонометрической форме (ограничиваясь действительной частью)

Искомая зависимость амплитуды A(t ) от времени может быть представлена в виде

где А(, - амплитуда в момент времени t = 0.

Постоянную 8, равную согласно (2.88) отношению коэффициента сопротивления г к удвоенной массе т колеблющегося тела, называют коэффициентом затухания колебаний. Выясним физический смысл этого коэффициента. Найдем то время т, за которое амплитуда затухающих колебаний уменьшится в е (основание натуральных логарифмов е = 2,72) раз. Для этого положим

Используя соотношение (2.93), получим: или

откуда следует

Следовательно, коэффициент затухания 8 - это величина, обратная времени т, по прошествии которого амплитуда затухающих колебаний уменьшится в е раз. Величина т, имеющая размерность времени, называется постоянной времени затухающего колебательного процесса.

Кроме коэффициента 8 для характеристики процесса затухания колебаний часто используют так называемый логарифмический декремент затухания X, равный натуральному логарифму отношения двух амплитуд колебаний, отделенных друг от друга промежутком времени, равным периоду Т

Выражение под логарифмом, обозначенное символом d, называется просто декрементом колебаний (декрементом затухания).

Используя выражение амплитуды (2.93), получим:

Выясним физический смысл логарифмического декремента затухания. Пусть амплитуда колебаний уменьшается в е раз по прошествии N колебаний. Время т, за которое тело совершит N колебаний, можно выразить через период т = NT. Подставив это значение т в (2.97), получаем 8NT= 1. Поскольку 67"= А., то NX = 1, или

Следовательно, логарифмический декремент затухания есть величина, обратная числу колебаний, за которые амплитуда затухающих колебаний уменьшится в е раз.

В ряде случаев зависимость амплитуды колебаний от времени A{t) удобно выразить через логарифмический декремент затухания А. Показатель степени 61 выражения (2.93) можно записать согласно (2.99) следующим образом:

Тогда выражение (2.93) принимает вид

где величина, равная числу N колебаний, совершаемых системой за время т.

В таблице 2.1 проведены примерные значения (по порядку величины) логарифмических декрементов затухания некоторых колебательных систем.

Таблица 2.1

Значения декрементов затухания некоторых колебательных систем

Проанализируем теперь влияние сил сопротивления на частоту колебаний. При смешении тела из положения равновесия и возвращении его в положение равновесия, на него все время будет действовать сила сопротивления, вызывая его торможение.

Это значит, что те же самые участки пути при затухающих колебаниях будут пройдены телом за больший интервал времени, чем при свободных колебаниях. Период затухающих колебаний Т, следовательно, будет больше периода собственных свободных колебаний. Из выражения (2.89) видно, что различие в частотах становится тем больше, чем больше коэффициент затухания б. При больших б (б > соо) затухающие колебания вырождаются в апериодический {не периодический) процесс, при котором в зависимости от начальных условий система возвращается в положение равновесия сразу без его прохождения, либо перед остановкой проходит положение равновесия однократно (совершает только одно колебание) - см. рис. 2.16.

Рис. 2.16. Затухающие колебания:

На рисунке 2.16, а изображен график зависимости %{t) и A{t) (при 5 > со 0 и начальной фазе соо, колебания вовсе невозможны (этому случаю соответствует мнимое значение частоты, определяемой из равенства (2.89). Система становится демпфирующей, а колебательный процесс - апериодическим (рис. 2.16, б).

  • Запись ехр(х) эквивалентна е*. Мы будем пользоваться обеими формами.
  • При общем рассмотрении колебаний полное значение фазы колебаний задается начальными условиями, т.е. величиной смещения 4(0 и скорости 4(0 в начальный моментвремени (t = 0) и включает слагаемое

В реальных колебательных системах кроме квазиупругих сил присутствуют силы сопротивления среды. Наличие сил трения приводит к рассеянию (диссипации) энергии и уменьшению амплитуды колебаний. Замедляя движение, силы трения увеличивают период, т.е. уменьшает частоту колебаний. Такие колебания не будут гармоническими .

Колебания с непрерывно уменьшающейся во времени амплитудой вследствие рассеяния энергии называются затухающими . При достаточно малых скоростях сила трения пропорциональна скорости тела и направлена против движения

где r– коэффициент трения, зависящий от свойств среды, формы и размеров движущегося тела. Дифференциальное уравнение затухающих колебаний при наличии сил трения будет иметь вид:

или
(21)

где
- коэффициент затухания,

- собственная круговая частота свободных колебаний при отсутствии сил трения.

Общим решением уравнения (21) в случае малых затуханий (
) является:

Оно отличается от гармонического (8) тем, что амплитуда колебаний:

(23)

является убывающей функцией времени, а круговая частота связана с собственной частотойи коэффициентом затуханиясоотношением:

. (24)

Период затухающих колебаний равен:

. (25)

Зависимость смещения Х от tзатухающих колебаний представлена на рис.4.

Cтепень убывания амплитуды определяется коэффициентом затухания.

За время
амплитуда (23) уменьшается в е ≈ 2,72 раз. Это времяестественного затухания называютвременем релаксации . Следовательно, коэффициент затухания есть величина, обратная времени релаксации:

.(26)

Скорость уменьшения амплитуды колебаний характеризуется логарифмическим декрементом затухания . ПустьА(t) и А(t+T) – амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на один период. Тогда отношение:

(27)

называется декрементом затухания , который показывает, во сколько раз уменьшается амплитуда колебаний за время, равное периоду. Натуральный логарифм этого отношения:

(28)

называется логарифмическим декрементом затухания. Здесь, N e – число колебаний, совершаемых за время уменьшения амплитуды в е раз, т.е. за время релаксации.

Таким образом, логарифмический декремент затухания есть величина, обратная числу колебаний, по прошествии которых амплитуда колебаний уменьшается в е раз.

Скорость уменьшения энергии колебательной системы характеризуется добротностью Q.Добротность колебательной системы - величина, пропорциональная отношению полной энергии Е(t) колебательной системы к энергии (-Е), теряемой за период Т:

(29)

Полная энергия колебательной системы в произвольный момент времени и при любом значении Х имеет вид:

(30)

Так как энергия пропорциональна квадрату амплитуды, энергия затухающих колебаний уменьшается пропорционально величине
, можно написать:

. (31)

Тогда, согласно определению, выражение для добротности колебательной системы будет иметь вид:

Здесь учтено, что при малых затуханиях (1): 1-е -2   2.

Следовательно, добротность пропорциональна числу колебаний N e , совершаемых системой за время релаксации.

Добротность колебательных систем может сильно различаться, например, добротность физического маятника Q~ 10 2 , а добротность атома, который тоже является колебательной системой, достигаетQ~ 10 8 .

В заключение отметим, что при коэффициенте затухания β=ω 0 период становится бесконечным Т =∞ (критическое затухание). При дальнейшем увеличении β период Т становится мнимым, а затухание движения происходит без колебаний, как говорят, апериодически. Этот случай движения изображен на рис.5. Критическое затухание (успокоение) происходит за минимальное время и имеет важное значение в измерительных приборах, например, в баллистических гальванометрах.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ И РЕЗОНАНС

Если на тело с массой m действуют упругая сила F у = -kX, сила трения
и внешняя периодическая сила
, то оно совершает вынужденные колебания. В этом случае дифференциальное уравнение движения имеет вид:

где
,
- коэффициент затухания,
- собственная частота свободных незатухающих колебаний тела,F 0 – амплитуда, ω – частота периодической силы.

В начальный момент времени работа внешней силы превосходит энергию, которая расходуется на трение (рис. 6). Энергия и амплитуда колебаний тела будет возрастать до тех пор, пока вся сообщаемая внешней силой энергия не будет целиком расходоваться на преодоление трения, которое пропорционально скорости. Поэтому устанавливается равновесие, при котором сумма кинетической и потенциальной энергии оказывается постоянной. Это условие характеризует стационарное состояние системы.

В таком состоянии движение тела будет гармоническим с частотой, равной частоте внешнего возбуждения, но вследствие инерции тела его колебания будут сдвинуты по фазе по отношению к мгновенному значению внешней периодической силы:

X = AСos(ωt + φ). (34)

В отличие от свободных колебаний амплитуда А и фаза  вынужденных колебаний зависят не от начальных условий движения, а будут определяться только свойствами колеблющейся системы, амплитудой и частотой вынуждающей силы:

, (35)

. (36)

Видно, что амплитуда и сдвиг по фазе зависят от частоты вынуждающей силы (рис.7, 8).

Характерной особенностью вынужденных колебаний является наличие резонанса. Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте свободных незатухающих колебаний тела ω 0 носит названиемеханического резонанса . Амплитуда колебаний тела при резонансной частоте
достигает максимального значения:


(37)

По поводу резонансных кривых (см. рис. 7) сделаем следующие замечания. Если ω→ 0, то все кривые (см. также (35)) приходят к одному и тому же, отличному от нуля, предельному значению
, так называемомустатистическому отклонению . Если ω→ ∞, то все кривые асимптотически стремятся к нулю.

При условии малого затухания (β 2 ‹‹ω 0 2) резонансная амплитуда (см.(37))

(37а)

При этом условии возьмем отношение резонансного смещения к статическому отклонению:

из которого видно, что относительное увеличение амплитуды колебаний при резонансе определяется добротностью колебательной системы. Здесь добротность является, по сути, коэффициентом усиления отклика
системы и при малом затухании может достигать больших значений.

Это обстоятельство обусловливает огромное значение явления резонанса в физике и технике. Его используют, если хотят усилить колебания, например, в акустике – для усиления звучания музыкальных инструментов, в радиотехнике – для выделения нужного сигнала из множества других, отличающихся по частоте. Если резонанс можетпривести к нежелательному росту колебаний, пользуются системой с малой добротностью.

СВЯЗАННЫЕ КОЛЕБАНИЯ

Источником внешней периодической силы может служить вторая колебательная система, упруго связанная с первой. Обе колебательные системы могут действовать одна на другую. Так, например, случай двух связанных маятников (рис. 9).

Система может совершать как синфазные (рис. 9б), так и противофазные (рис. 9с) колебания. Такие колебания называются нормальным типом или нормальной модой колебаний и характеризуются своей собственной нормальной частотой. При синфазных колебаниях смещения маятников во все моменты времени Х 1 = Х 2 , а частота ω 1 точно такая же, как частота отдельно взятого маятника
. Это объясняется тем, что легкая пружина находится в свободном состоянии и не оказывает никакого влияния на движение. При противофазных колебаниях во все моменты времени – Х 1 = Х 2 . Частота таких колебаний больше и равна
, так как пружина, обладающая жесткостьюk и осуществляющая связь, все время находится то в растянутом, то в сжатом состоянии.

Л
юбое состояние нашей связанной системы, в том числе и начальное смещение Х (рис. 9а), можно представить в виде суперпозиции двух нормальных мод:

Если привести систему в движение из начального состояния Х 1 = 0,
, Х 2 = 2А,
,

то смещения маятников будут описываться выражениями:

На рис. 10 представлено изменение смещения отдельных маятников во времени.

Частота колебаний маятников равна средней частоте двух нормальных мод:

, (39)

а их амплитуда изменяется по закону синуса или конуса с меньшей частотой, равной половине разности частоты нормальных мод:

. (40)

Медленное изменение амплитуды с частотой, равной половине разности частот нормальных мод, называется биениями двух колебаний с почти одинаковыми частотами. Частота “биений” равна разности ω 1 –ω 2 частот, (а не половине этой разности), поскольку максимум амплитуды 2А достигается дважды за период, соответствующий частоте

Отсюда период биений оказывается равным:

(41)

При биениях между маятниками происходит обмен энергией. Однако полный обмен энергией возможен только тогда, когда обе массы одинаковы и отношение (ω 1 +ω 2 / ω 1 -ω 2) равно целому числу. Необходимо отметить один важный момент: хотя отдельные маятники могут обмениваться энергией, обмен энергией между нормальными модами отсутствует.

Наличие таких колеблющихся систем, которые взаимодействуют между собой и способны передавать друг другу свою энергию, составляют основу волнового движения.

Колеблющееся материальное тело, помещенное в упругую среду, увлекает за собой и приводит в колебательное движение прилегающие к нему частицы среды. Благодаря наличию упругих связей между частицами колебания распространяются с характерной для данной среды скоростью по всей среде.

Процесс распространения колебаний в упругой среде называется волной .

Различают два основных типа волн: продольные и поперечные. В продольных волнах частицы среды колеблются вдоль направления распространения волны, а в поперечных – перпендикулярно к направлению распространения волны. Не во всякой упругой среде возможно распространение поперечной волны. Поперечная упругая волна возможна лишь в таких средах, в которых имеет место упругая деформация сдвига. Например, в газах и жидкостях распространяются только продольные упругие волны (звук).

Геометрическое место точек среды, до которых к данному моменту времени дошло колебание, называется фронтом волны . Фронт волны отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникали. В зависимости от формы фронта различают волны плоские, сферические, цилиндрические и т.д.

Уравнение плоской волны, распространяющейся без потерь в однородной среде, имеет вид:
, (42)

где ξ(Х,t) – смещение частиц среды с координатой Х от положения равновесия в момент времени t, А – амплитуда,
- фаза волны,
- круговая частота колебания частиц среды,v – скорость распространения волны.

Длиной волны λ называется расстояние между точками, колеблющимися с разностью фаз 2π, другими словами, длиной волны называется путь, проходимый любой фазой волны за один период колебаний:

фазовая скорость, т.е. скорость распространения данной фазы:

λ / Т (44)

Волновое число – число длин волн, укладывающихся на длине 2π единиц:

k = ω / v = 2π / λ. (45)

Подставляя эти обозначения в (42), уравнение плоской бегущей монохроматической волны можно представить в виде:

(46)

Отметим, что уравнение волны (46) обнаруживает двойную периодичность по координате и времени. Действительно, фазы колебаний совпадают при изменении координаты на λ и при изменении времени на период Т. Поэтому изобразить графически волну на плоскости нельзя. Часто фиксируют время t и на графике представляют зависимость смещения ξ от координаты Х, т.е. мгновенное распределение смещений частиц среды вдоль направления распространения волны (рис.11). Разность фаз Δφ колебаний точек среды зависит от расстояния ΔХ =Х 2 – Х 1 между этими точками:

(47)

Если волна распространяется противоположно направлению Х, то уравнение обратной волны запишется в виде:

ξ (Х,t) = АСos(ωt + kX). (48)

СТОЯЧИЕ ВОЛНЫ – это результат особого вида интерференции волн. Они образуются при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Уравнения двух плоских волн, распространяющихся вдоль оси Х в противоположных направлениях, имеют вид:

ξ 1 =АСos(ωt – kX)

ξ 2 = AСos(ωt + kX). (49)

Складывая эти уравнения по формуле суммы косинусов и учитывая, что k = 2π / λ, получим уравнение стоячей волны:

. (50)

Множитель Сos ωt показывает, что в точках среды возникает колебание той же частоты ω с амплитудой
, зависящей от координаты Х рассматриваемой точки. В точках среды, где:
, (51)

амплитуда колебаний достигает максимального значения, равного 2А. Эти точки называются пучностями .

Из выражения (51) можно найти координаты пучностей:
(52)

В точках, где
(53) амплитуда колебаний обращается в нуль. Эти точки называютсяузлами .

Координаты узлов:
. (54)

Расстояния между соседними пучностями и соседними узлами одинаковы и равны λ/2. Расстояние между узлом и соседней пучностью равно λ / 4. При переходе через узел множитель
меняет знак, поэтому фазы колебаний по разные стороны от узла отличаются на π, т.е. точки, лежащие по разные стороны от узла, колеблются в противофазе. Точки, заключенные между двумя соседними узлами, колеблются с разными амплитудами, но с одинаковыми фазами.

Распределение узлов и пучностей в стоячей волне зависит от условий, имеющих место на границе раздела двух сред, от которой происходит отражение. Если отражение волны происходит от среды более плотной, то фаза колебаний в месте отражения волны меняется на противоположную или, как говорят, теряется половина волны. Поэтому, в результате сложения колебаний противоположных направлений смещение на границе равно нулю, т.е. имеет место узел (рис. 12).При отражении волны от границы менее плотной среды фаза колебаний в месте отражения остается без изменения и у границы складываются колебания с одинаковыми фазами – получается пучность.

В стоячей волне нет перемещения фаз, нет распространения волны, нет переноса энергии, с чем и связано название такого типа волн.

Затухающие колебания

Затухающие колебания пружинного маятника

Затухающие колебания - колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

В акустике: затухание - уменьшение уровня сигнала до полной неслышимости.

Затухающие колебания пружинного маятника

Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m . Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Корни которого вычисляются по следующей формуле

Решения

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

  • Апериодичность

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

  • Граница апериодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место вре́менный рост, но потом - экспоненциальное затухание.

  • Слабое затухание

Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

Где - собственная частота затухающих колебаний.

Константы и в каждом из случаев определяются из начальных условий:

См. также

  • Декремент затухания

Литература

Лит.: Савельев И. В., Курс общей физики:Механика, 2001.


Wikimedia Foundation . 2010 .

Смотреть что такое "Затухающие колебания" в других словарях:

    Затухающие колебания - Затухающие колебания. ЗАТУХАЮЩИЕ КОЛЕБАНИЯ, колебания, амплитуда которых A уменьшается с течением времени вследствие потерь энергии: превращения энергии колебаний в тепло в результате трения в механических системах (например, в точке подвеса… … Иллюстрированный энциклопедический словарь

    Собственные колебания, амплитуда А которых убывает со временем t по закону экспоненты А(t) = Аоexp (?t) (? показатель затухания из за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Большой Энциклопедический словарь

    Колебания, амплитуда которых постепенно уменьшается, напр. колебания маятника, испытывающего сопротивление воздуха и трение в подвесе. Все свободные колебания, происходящие в природе, являются в большей или меньшей мере З. К. Электрические З. К.… … Морской словарь

    затухающие колебания - Механические колебания с уменьшающимися во времени значениями размаха обобщенной координаты или ее производной по времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно технической… … Справочник технического переводчика

    Затухающие колебания - (ВИБРАЦИЯ) колебания (вибрация) с уменьшающимися значениями размаха … Российская энциклопедия по охране труда

    Собственные колебания системы, амплитуда А которых убывает со временем t по закону экспоненты А(t) = А0ехр(?α t) (α показатель затухания) из–за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Энциклопедический словарь

    Затухающие колебания - 31. Затухающие колебания Колебания с уменьшающимися значениями размаха Источник … Словарь-справочник терминов нормативно-технической документации

    Собственные колебания системы, амплитуда А к рых убывает со временем t по закону экспоненты A(t) = = Аоехр(at) (a показатель затухания) из за диссипации энергии благодаря силам вязкого трения для механич. 3. к. и омическому сопротивлению для эл … Естествознание. Энциклопедический словарь

    затухающие колебания - silpstantieji virpesiai statusas T sritis automatika atitikmenys: angl. damped oscillation vok. gedämpfte Schwingung, f rus. затухающие колебания, n pranc. oscillations amorties, f; oscillations décroissantes, f … Automatikos terminų žodynas

    затухающие колебания - slopinamieji virpesiai statusas T sritis fizika atitikmenys: angl. damped oscillations; damped vibrations; dying oscillations vok. abklingende Schwingungen, f; gedämpfte Schwingungen, f rus. затухающие колебания, n pranc. oscillations amorties, f … Fizikos terminų žodynas



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта