Главная » 2 Распространение и сезон сбора » В чем полезность талой воды. Что такое тяжелая и легкая вода

В чем полезность талой воды. Что такое тяжелая и легкая вода

О структуре талой воды написаны просто терабайты статей: как ее готовить в домашних условиях, какое удивительное оздоравливающее влияние она оказывает на организм и все в том же духе. Есть даже отзывы потребляющих: как им стало здорово жить уже после третьего приема чудодейственной жидкости. Но когда мы попытались найти подобные свидетельства, подкрепленные исследованиями мирового научного сообщества, то не обнаружили ровным счетом ничего. Вот тут и закрались сомнения.

Миф 1. В обычной воде, которую мы с вами пьем, содержится вреднейший дейтерий, отравляющий все живое. Когда воду замораживают, рекомендуется удалять корку льда, которая образуется сверху. И тогда никакого дейтерия в воде не останется.

Для начала разберемся, что такое этот самый ядовитый дейтерий. Обычный атом водорода состоит из одного протона и одного электрона, вращающегося вокруг него. Стало быть, его атомная масса равна единице (для тех, у кого еще свежи воспоминания о школьном курсе химии: 1/12 атомной массы углерода). Так вот, дейтерий - это изотоп водорода. И его ядро состоит из двух протонов, а значит, и в два раза тяжелее. Оксид дейтерия - D 2 O - это тяжелая вода, которая используется в работе атомных электростанций. Но сам по себе этот изотоп не радиоактивен: используется уникальное свойство тяжелой воды не поглощать нейтроны.

Тяжелую воду, необходимую для работы атомных электростанций, получают с помощью сложнейшего процесса, включающего в себя электролиз и некоторые другие манипуляции. Потому как в природе его ничтожно мало: на шесть - семь тысяч атомов протия (обычного, «легкого» водорода) приходится всего один атом дейтерия. «И в таких количествах он совершенно не вредит человеческому организму, - комментирует Андрей Игольников, изобретатель, доктор физических наук. - Искать дейтерий в пресной воде - такой же абсурд, как пытаться добыть золото из воды морской. Его там примерно такая же концентрация!»

«Тяжелая вода токсична лишь в слабой степени, химические реакции в ее среде проходят несколько медленнее по сравнению с обычной водой, - комментирует врач Анна Косогова, заведующая Московским поликлиническим отделением клиники «Скандинавия». - Водородные связи с участием дейтерия несколько сильнее обычных. Эксперименты над млекопитающими (мышами, крысами и собаками) показали, что замещение 25% водорода в тканях дейтерием приводит к стерильности - иногда необратимой. Более высокие концентрации приводят к быстрой гибели животного; так, млекопитающие, которые пили тяжелую воду в течение недели, погибли, когда половина воды в их теле была дейтерирована; рыбы и беспозвоночные погибают при дейтерировании воды в теле на 90% . Простейшие способны адаптироваться к семидесятипроцентному раствору тяжелой воды, а водоросли и бактерии способны жить даже в чистой тяжелой воде».

Конечно, на людях подобных экспериментов не проводилось, но опыт показывает, что от нескольких стаканов тяжелой воды вреда здоровью не причинит: весь дейтерий будет выведен из организма через несколько дней, говорят специалисты.

«Также среди населения бытует миф о том, что при длительном кипячении природной воды концентрация тяжелой воды в ней повышается, что, якобы, может вредно сказаться на здоровье, - добавляет Анна Косогова. - В действительности же реальное повышение концентрации тяжелой воды при кипячении ничтожно. Гораздо сильнее сказывается на вкусе и свойствах воды при кипячении повышение концентрации растворенных солей, переход в раствор веществ из стенок посуды и термическое разложение органических примесей».

Конечно, в домашних условиях полностью очистить воду от дейтерия невозможно. Также невозможно визуально на глаз отличить кристаллы тяжелой воды от обычной воды.

Напомним, что мы на 70% от самого рождения состоим из воды. Значит, некоторое количество дейтерия содержит от рождения каждая человеческая особь - включая тех самых горцев-долгожителей, которые активно потребляют талую воду и на которых так любят ссылаться авторы статей про нее.

Мы больше того скажем: есть подозрение, что дейтерий не только вреден, но и полезен! К таким сенсационным выводам пришли ученые из московского Института геронтологии. Высокие концентрации тяжелой воды убивают живые организмы, но увеличение ее в составе организма в пределах разумного позволяет затормозить процессы старения. Еще немного - и эликсир вечной молодости найден! Это тоже объяснимо с медицинской точки зрения.

«В тяжелой воде связи, образованные дейтерием, прочнее связей с участием протия, следовательно они меньше рвутся и меньше подвержены мутациям и другим внешним воздействиям. Химические реакции в ее среде проходят несколько медленнее», - объясняет Анна Косогова.

Миф 2. В воде, которая замерзла, а потом оттаяла, сохраняются на пять - шесть часов межмолекулярные связи, характерные для кристаллической решетки льда. Таким образом, вода легче проникает в клетки и отлично омолаживает организм.

Ага, а еще оживляет мертвецов, пошутим мы. А если серьезно, это утверждение не выдерживает никакой критики. Во-первых, кристаллическая структура характерна для кристаллов льда. При температуре выше нуля градусов по Цельсию кристаллы льда плавятся: связи в решетке ослабевают, а потом и вовсе сходят на нет. И через пару часов, когда от ледышки остается лужица, по своим физическим свойствам она ничем не отличается от лужицы, из которой ледышка была сделана. А насчет того, легче ли талая вода проникает в клетки, можно сказать только одно: пейте не менее двух литров жидкости в день - если это чуть больше, чем нужно, организм сам избавится от излишков.

«Есть такая гипотеза, что на какое-то время межмолекулярные связи в оттаявшей воде должны оставаться такими же, как и в льде - в теории по-другому и быть не может, - добавляет Андрей Игольников. - А на практике этого никому не удалось зафиксировать и доказать. Стало быть, все разговоры об особенных свойствах талой воды - просто спекуляция».

«Сторонники лечения талой водой считают, что в ней образуется множество так называемых центров кристаллизации. И если пить такую воду, центры кристаллизации всасываются и, попав в нужную зону в организме, дают в ней начало цепной реакции «замораживания» воды организма, то есть, восстанавливается необходимая для протекания жизни регулярная структурированная «ледяная структура», а с нею все полноценные жизненные функции, - рассказывает Анна Косогова. - Однако этот факт не имеет доказательной базы. Улучшение состояния некоторых людей, пьющие талую воду, возможно, связано с употреблением большего количества воды в этот период, чем обычно».

Миф 3. Кусок льда, из которого вы собираетесь приготовить талую воду, надо промыть под струей. Сначала он станет мутным - это смываются все вредные примеси. А когда лед прозрачный, готово дело: можно оттаивать и пить.

Когда вы подставляете кусок льда температурой, предположим, минус пять градусов под струю проточной воды температурой градусов 15-20, сначала он запотевает. И совершенно моментально становится мутным: это не вредные примеси, а всего лишь разница температур. Мелкая взвесь песка - если, например, вы воду взяли из речки - так и останется в структуре льда. А уж совсем невидимые примеси вы точно не смоете. Кстати, готовить талую воду из речной или родниковой не очень безопасно с точки зрения бактериологических показателей. Некоторые болезнетворные микроорганизмы вполне спокойно переживают замораживание, а при комнатной температуре возобновляют жизнедеятельность. И вместо оздоровления вы получите обезвоживание в результате кишечной инфекции.

Вот что действительно правда, так это то, что с помощью талой воды можно похудеть. Точнее, не талой, а очень холодной - такой, чтобы в ней плавали кристаллики льда. Правда, с научной точки зрения этот механизм тоже не до конца ясен. Но исследования уже подтвердили, что люди, выпивающие стакан ледяной воды перед едой, потребляют намного меньше калорий, чем те, которые этого не делают. Правда, учтите, что исследования проводились в США. Если россиянин зимой, вернувшись с крепкого морозца, хлопнет стакан ледяной воды, а потом побежит к врачу за больничным, тот только руками разведет: климат у нас для такого похудения неподходящий.

В далеком прошлом человек не задумывался над тем, что представляет собой вода и каково ее происхождение. Существовало мнение, что это элемент, но теперь известно, что она является химическим соединением.

В 1932 г. весь мир облетела новость, что на планете Земля кроме простой есть и тяжелая вода. Сейчас уже известно, что может быть 135 ее изотопных разновидностей.

Состав

Тяжелая вода, которая еще называется оксидом дейтерия, по химическому составу не отличается от простой обычной, но вместо атомов водорода, содержащихся в воде, в ней присутствуют 2 тяжелых изотопа водорода, так называемого дейтерия. Тяжелая вода имеет формулу 2H2O или D2O. Внешне нет различий между тяжелой и простой жидкостью, но по своим свойствам они отличаются.

Химические реакции в тяжелой воде протекает слабее, чем в обычной.

Тяжелая вода слаботоксична. Научные эксперименты показали, что замещение атомов легкого водорода дейтерием на 25%, вызывает бесплодие у животных. Если еще больше увеличить его содержание в воде, животное погибает. Однако ряд организмов выживает при 70% дейтерия Человек без последствий для здоровья может выпить около стакана такой жидкости. При выводится из организма в течение нескольких дней.

Тяжелая вода обладает свойством накапливаться в остатке электролита, если проводится многоразовый Она поглощает пары простой жидкости на открытом воздухе, т.е. она гигроскопична.

Одним из самых важных свойств данного типа воды является то, что она почти не поглощает нейтроны, а это позволяет ее применять в ядерных реакторах для процесса торможения нейтронов, а в химии ее используют как изотопный индикатор.

Тяжелая вода, получение

В 1933-1946 годах единственным методом обогащения являлся электролиз. Уже позже появились более прогрессивные технологии. Современным массовым производством во входном потоке используется жидкость, дистиллированная из электролита, с содержанием в ней тяжелой воды 0,1-0,2 %.

Первая стадия концентрирования применяет двухтемпературную противоточную сероводородную технологию изотопного обмена, концентрация на выходе тяжёлой воды составляет 5-10 %. Вторая стадия — каскадный электролиз щелочного раствора при нулевой температуре, выходная концентрация - 99,75-99,995 %.

Российскими учеными были разработаны оригинальные технологии для производства и очистки тяжелой воды. В 1995 года установка, обладающая высокой эффективностью, была введена в промышленную эксплуатацию. Производство полностью обеспечивает потребность предприятий тяжелой водой в любом объеме, а также позволяет экспортировать ее за границу.

Применение

Тяжелая вода используется в различных биологических и химических процессах. Учеными было определено, что такая жидкость препятствует развитию бактерий, грибов, водорослей, а если в ней содержится 50 % дейтерия, то приобретает антимутагенные свойства, способствует росту биологической массы и ускорению полового созревания у людей.

Европейские ученые проводили опыты на мышах со злокачественной опухолью. Тяжелая вода погубила и болезнь, и ее носителей. Было установлено, плохо действует на растения и животных. У подопытных, которых поили тяжелой водой, разрушались почки и расстраивался обмен веществ. При высоких дозах воды животные погибали. При небольшом объеме (до 25%), животные набирали вес и приносили хороший приплод, а у кур увеличивалась яйценоскость.

Вопрос о том, что произойдет, если совершенно избавиться от дейтерия, пока остается открытым.

Сравнение свойств легкой и тяжелой воды

Ответ на вопрос о различии между природной легкой и тяжелой жидкостью зависит от того, кому он был задан.

По химическим свойствам между ними нет практически никакой разницы. В каждой из них натрий одинаково выделяет водород, при электролизе и та, и другая вода одинаково разлагается, их химические свойства тоже совпадают, потому что у них одинаковый состав.

Этих жидкостей разные: и замерзания у них неодинаковая, также у них разная плотность и упругость пара. Тяжелая и легкая вода разлагаются при электролизе с разной скоростью.

С биологической точки зрения - вопрос достаточно сложный, здесь еще нужно поработать.

Эликсиром здоровья и молодости можно назвать талую воду. Это высококачественный чистый «продукт», содержащий минимальное количество тяжелой и дейтериевой воды. Талая вода оказывает неоценимую пользу для организма человека любого возраста. Она является природным энергетиком, даёт значительную подпитку энергии, насыщает весь организм человека здоровьем и силой. Вред талая вода может нанести только при переизбытке её применения или при нарушении технологии приготовления в домашних условиях.

Чем полезно употребление талой воды

Правильно приготовленная и правильно принимаемая талая вода приносит несомненную пользу организму, что выражается в ускорении обменных процессов, избавлении от аллергии любого вида, экземы, нейродермита, псориаза, выведении из организма токсинов и шлаков, укреплении иммунитета, улучшении пищеварения, повышении работоспособности, активизации памяти, улучшении сна.

Также употребление талой воды положительно влияет на качество крови, работу сердца, помогает .

Применение талой воды при лечении кожных заболеваний наряду с назначенным лечением помогает устранить зуд, раздражение и гипертермию на третий или четвертый день лечения. При этом ускоряется период перехода патологического процесса в регрессивную стадию.

Употребление чистой жидкости тормозит процессы старения организма. Талая вода способствует активизации метаболизма, выводу из организма вредных веществ, происходит ускорение обменных процессов в организме, что способствует избавлению от лишних килограммов и происходит постепенное мягкое похудение.

Какую структуру получаем после разморозки


Талую воду получают из растаявшего льда. В момент замерзания воды происходит изменение её структуры.

Доказано, что вода впитывает информацию. Для удаления «плохой» информации воде необходимо приобрести энергетическую чистоту, чтобы вернуть первоначальную структуру. Заморозка и её последующая разморозка помогают вернуть ей энергетическую чистоту. В результате несложных действий состав воды «обнуляется», восстанавливается её первоначальное состояние – энергетическое, информационное и структурное.

Употребление чистой ледниковой воды способствует очищению крови в организме человека. Что даёт чистая кровь? Кровь разносит по всем органам полезные вещества. Очищенная кровь в организме способствует активизации иммунных процессов, регуляции обмена веществ, активизации мозговой деятельности, очистке сосудов и снижению уровня холестерина в крови. Для того, чтобы запустить все эти процессы необходимо употреблять ежедневно не менее 200 мл талой воды.

Свойства талой воды

Обыкновенная вода, после замораживания и последующего оттаивания, изменяет свою структуру. Ее молекулы становятся меньше и по структуре похожи на протоплазму клеток человеческого организма. Это дает возможность молекулам легко проникать через клеточные оболочки. Благодаря этому процессу ускоряются химические реакции организма.

Полезные свойства талой воды улучшаются в связи с удалением в процессе заморозки дейтерия – тяжелого изотопа. Дейтерий в большом количестве присутствует в водопроводной воде. Его наличие негативно воздействует на клетки организма, причиняя им значительный вред. Даже небольшое количество удаленного из воды дейтерия помогает оздоровить организм, освободить резервы энергии, стимулировать все жизненные процессы.

Главным преимуществом употребления талой воды становится её чистота. В ней полностью отсутствуют хлориды, соли, изотопные молекулы, другие опасные вещества и соединения.

Правила употребления талой воды


Ежедневный приём 500-700граммов такой воды способствует получению заряда бодрости и улучшению самочувствия. Рекомендуется первую дозу талой воды пить утром натощак за час до еды. В течение дня остальную часть пить за полчаса до еды три раза в день.

Воду необходимо пить непосредственно после размораживания, чтобы её температура не была выше 10 градусов. Если по каким-то причинам холодную воду пить не можете, не давайте ей нагреться выше 30 градусов.

Как правильно приготовить талую воду в домашних условиях

Талая вода − это не просто размороженная вода или размороженный лёд. Кстати, снег и лёд, взятый на улице или в холодильнике и затем размороженный, не является талой водой. Скорее такой состав можно назвать бактериальной бомбой. Природный снег или лед содержат много грязи и вредных примесей. Снежная шуба в холодильнике также может содержать хладагенты и другие опасные вещества, а также иметь неприятный запах.

Сделать правильную талую воду в домашних условиях совсем не сложно. Ёмкость для замораживания не должна быть стеклянной, во избежание повреждения вплоть до раскола из-за увеличения объёма воды в процессе замерзания. Металлическая посуда также не подходит. Эффект от её взаимодействия с водой будет низким. Лучше всего для замораживания подходит пластмассовая коробка или другая пластмассовая емкость с широким горлом.

  1. Наливаем фильтрованную воду или отстоянную на протяжении нескольких часов водопроводную в подготовленную емкость. Емкость лучше брать на 1литр. Её удобно замораживать и заморозка происходит быстрее. Можно подготовить несколько емкостей сразу.
  2. Закрываем крышкой и ставим (во избежание примерзания ёмкости к днищу морозильника) на картонную подставку в морозильник.
  3. Через 1,5 часа образуется первая корка льда. Это − дейтерий, который следует удалить. Снять корку льда и продолжить замораживание.
  4. Примерно через шесть часов вода в ёмкости замерзнет до двух третей объёма. Незамерзшую внутри льда воду аккуратно сливаем, расколов лед — это так называемая лёгкая вода. В ней содержатся все оставшиеся вредные химические соединения.


Лёд, оставшийся в ёмкости, растапливается естественным способом при комнатной температуре, без принудительного подогрева.

Свежую талую воду можно пить по мере её таяния.

Оздоровляющие и лечебные свойства талой воды не теряются на протяжении 8 часов, с момента размораживания.

Есть ли вред от талой воды

Польза от приёма талой воды очевидна, а вред организму она может нанести только при нарушении технологии приготовления в домашних условиях и неправильном её употреблении. Если вам запрещено употребление холодных напитков, с осторожностью отнеситесь к ее приёму, начинайте пить, постепенно понижая температуру.

Также не следует переходить на питьё исключительно талой воды. Организм должен постепенно приспособиться к жидкости без вредных примесей, добавок, минералов, солей.

Приём лучше начинать со 100мл в день, постепенно доводя объём до 500−700мл.

Также следует понимать, что талая вода − это не лекарство! Начиная ее пить не допустимо отказываться от назначенных лекарств. Целебные свойства воды служат прекрасным очищающим и профилактическим средством для организма. В процессе лечения приём талой воды повышает эффективность лекарственных средств и способствует скорейшему выздоровлению.

Предлагаю вам посмотреть очень интересное видео об альтернативном способе добычи талой воды, придуманным доктором Тороповым:

Уважаемый Олег Викторович!

Я очень рада, что нашла Ваш адрес и с надеждой обращаюсь к Вам за консультацией. Дело в том, что я из неполной случайной информации сделала неправильный вывод о методе замораживания воды и долгое время пила не замёрзшую воду. Не знаю, это ли явилось причиной моего сильного заболевания: душераздирающий сухой кашель и боли всего, что только может болеть.

1. Может ли дейтериевая вода вызвать такое отравление и избавлюсь ли я от этого состояния?

2. Какая примерно толщина верхнего слоя льда должна быть удалена при первом замораживании воды?

3. Нужно ли удалять нижний слой льда (тяжёлая вода?) или весь дейтерий остался в не замёрзшей половине воды?

Жалею, что во-время не разобралась в способе очистки воды и только сейчас нашла Ваши работы.

Буду бесконечно благодарна Вам, если Вы сможете мне ответить.

Успехов Вам и новых достижений!

С уважением Лилия Михайловна.

_____________________________________

Здравствуйте, уважаемая Лидия Михайловна!

Ваш случай – это яркий пример того, к каким плачевным последствиям может привести следование неполной или случайной информации и неправильное приготовление и потребление талой воды. Я не врач и мне трудно сделать какие-либо выводы, но то, что вы потребляли концентрированную “грязную воду”, т. е. воду, содержащую примеси – это очевидно. А вот насколько потребление такой воды было опасно для здоровья, зависит от первоначального качественного и количественного состава воды.

Значительный ущерб здоровью могут нанести наличие в воде хлорорганики и тяжелых металлов. Я не думаю, что причиной ухудшения здоровья могла быть тяжелая вода. Природное содержание дейтерия в обычной воде составляет 0,015%. Это означает, что в 1 литре воды содержится 0,15 г дейтерия в виде тяжёлой воды, а в 1 тонне – 150 г. В смесях обычной воды с тяжелой водой с большой скоростью происходит обратный изотопный обмен (1 Н- 2 Н) между молекулами: H 2 O + 2 H 2 O = H 2 HO, поэтому в воде тяжелая вода присутствует в составе полутяжелой воды H 2 HO. Физико-химические свойства тяжелой воды отличаются от свойств обычной воды. Тяжёлая вода кипит при 101.44 0 С, замерзает при 3,82 0 С, имеет плотность при 20 0 С 1,10539 г/см 3 , причём максимум плотности приходится не на 4 0 С, как у обычной воды, а на 11,2 0 С (1,10602 г/см 3). Химические реакции в тяжелой воде протекают медленнее, чем в обычной воде, она слабее ионизирована, чем обычная вода, константа диссоциации тяжёлой воды меньше таковой для обычной воды, растворимость органических и неорганических веществ в 2 Н 2 O, как правило ниже, чем в Н 2 O, водородные связи с участием дейтерия несколько прочнее обычных, подвижность ионов 2 Н 3 O + на 28,5% ниже Н 3 O + , а О 2 Н - - на 39,8% ниже ОН - . В сё это приводит к изменением скоростей ферментативных реакций и в конечном итоге влияет на клеточный метаболизм и обмен веществ. Клетки животных способны выдерживать лишь 25-30% 2 Н 2 О, растения – не более 50-60% 2 Н 2 О и лишь клетки простейших бактерий и микроводорослей способны жить на 100% 2 Н 2 О. Высокие концентрации тяжелой воды токсичны для организма. Известен случай отравления с летальным исходом, когда человек в течение дня по ошибке выпил около 3 литров тяжёлой воды. Симптомы напоминали химическое отравление. Несмотря на это, человек может выпить стакан тяжёлой воды без видимых изменений , поскольку быстрый изотопный обмен водорода на дейтерий служит защитным барьером. Кроме этого, наш организм настроен на потребление и ассимиляцию легкого изотопа водорода, поэтому в организме будет проходить своеобразное биологическое фракционирование изотопов.

Согласно моим расчетам в течение всей своей жизни человек потребляет с водой около 35 кг дейтерия в виде тяжелой воды (хотя она, на самом деле находится в виде молекул полутяжелой H 2 HO воды), которая выводится из организма как за счёт реакций изотопного обмена водорода на дейтерий, так за счёт биологических процессов фракционирования изотопов.

Поэтому я не считаю, что причиной ухудшения здоровья являлась тяжелая вода. Скорее всего негативные последствия произошли из-за потребления концентрированной “грязной воды”, т.е. воды, содержащей примеси.

Первую образующуюся корочку льда (толщиной несколько милиметров) рекомендуется удалять механически, поскольку в ней могут содержаться примеси тяжелой воды, которая кристаллизуется при более высокой температуре, чем обычная вода.

Не отчаивайтесь; следуйте инструкциям приготовления талой воды, изложенные на нашем сайте и будьте здоровы!

С пожеланием здоровья,

Содержание статьи

ДЕЙТЕРИЙ И ТЯЖЕЛАЯ ВОДА. Дейтерий (тяжелый водород) – один из двух стабильных изотопов водорода , ядро которого состоит из одного протона и одного нейтрона. Молекула D 2 – двухатомна. Содержание в природном водороде – 0,012–0,016%. Температура плавления – 254,5° С, температура кипения – 249,5° С. Тяжелая вода D 2 O (оксид дейтерия) – изотопная разновидность воды; плотность 1,1, температура плавления – 3,8° С, температура кипения – 101,4° С.

В 1932 одно за другим следовали выдающиеся открытия в области физики: были открыты нейтрон и позитрон, разработана протоно-нейтронная теория строения ядер и релятивистская квантовая механика, построен первый циклотрон и изобретен электронный микроскоп, проведена первая реакция ядерного синтеза, экспериментально измерена скорость движения молекул. Недаром физики назвали этот год anno mirabilis – год чудес. В этом же году был открыт и второй изотоп водорода, названный дейтерием (от греческого deuteros – второй, символ D).

Открытие дейтерия может служить прекрасной иллюстрацией к парадоксальному на первый взгляд высказыванию французского физикохимика Анри Ле Шателье , обращенному к ученикам: «Ошибкой не только начинающих исследователей, но многих немолодых, весьма опытных и зачастую талантливых ученых является то, что они устремляют свое внимание на разрешение очень сложных проблем, для чего еще недостаточно подготовлена почва. Если вы хотите сделать нечто действительно большое в науке, если вы хотите создать нечто фундаментальное, беритесь за детальное обследование самых, казалось бы, до конца обследованных вопросов. Эти-то на первый взгляд простые и не таящие в себе ничего нового объекты и являются тем источником, откуда вы при умении сможете почерпнуть наиболее ценные и порой неожиданные данные».

Действительно, что можно было ожидать от исследования физических свойств обыкновенной чистой воды – они были изучены, как говорится, вдоль и поперек еще в 19 в. Вспомним однако, что проведенные в 1893 рутинные определения плотности газообразного азота, полученного разными методами (литр азота из воздуха весил 1,257 г, а полученного химическим путем – 1,251 г), привели к выдающемуся открытию – сначала аргона, а за ним и других благородных газов.

Можно ли было надеяться обнаружить нечто новое в обычной воде? В начале 19 в. лондонский врач и химик Уильям Праут опубликовал гипотезу, согласно которой из самого легкого элемента – водорода могли возникнуть все остальные элементы путем конденсации. В этом случае атомные массы всех элементов должны быть кратны массе атома водорода. Определения атомных масс, которые оказались дробными, эту гипотезу не подтвердили, и химики 19 в. часто осмеивали ее как лишенную научного содержания (см . ОТНОСИТЕЛЬНАЯ АТОМНАЯ МАССА).

В 1917 немецкий ученый К.Шерингер предположил, что атомы разных элементов построены не только из протия (от греческого protos – первый), т.е. «легкого» водорода с атомной массой 1, а из разных изотопов водорода. К тому времени уже было известно, что один и тот же элемент может иметь изотопы с разной массой. Впечатляющих успехов в открытии большого числа изотопов нерадиоактивных элементов достиг английский физик Фрэнсис Уильям Астон с помощью сконструированного им масс-спектрографа. В этом приборе изучаемые атомы или молекулы бомбардируются пучком электронов и превращаются в положительно заряженные ионы. Пучок этих ионов далее подвергается действию электрического и магнитного поля, и их траектории отклоняются от прямой. Это отклонение тем сильнее, чем больше заряд иона и чем меньше его масса. Из значений отклоняющих напряжений непосредственно получают относительные массы ионов. А из интенсивности пучка ионов с данной массой можно судить об относительном содержании в образце этих ионов.

Гипотеза Шерингера предполагала, что и у самого легкого элемента – водорода тоже могут быть изотопы. Однако попытки обнаружить «второй», тяжелый водород, предпринятые в 1919 Отто Штерном и Максом Фольмером, оказались безуспешными. Не удалось обнаружить его и Астону. Это означало одно из двух: либо у водорода тяжелого изотопа вовсе нет, либо его содержание в природном водороде слишком мало и чувствительности имевшегося в распоряжении Астона прибора недостаточно для его обнаружения. Правильным оказалось второе предположение, однако тяжелый водород прятался от исследователей в течение еще многих лет, маскируясь под ошибки эксперимента.

В 1927 Астон очень точно для того времени измерил отношение масс атомов водорода и кислорода-16; у него получилось 1,00778:16,0000, что, казалось, находится в прекрасном соответствии с результатами самых точных измерений атомной массы водорода химическим путем: у химиков это отношение получалось равным 1,00777:16,0000. Однако такое единодушие физиков и химиков было недолгим: оказалось, что природный кислород, с которым работали химики, – плохой эталон для измерения атомных масс, поскольку кислород представляет собой смесь изотопов, причем их относительное содержание в разных источниках не вполне постоянно. Точные измерения в начале 30-х соотношения 18 O: 16 O = 1:630 существенным образом изменили все прежние расчеты и данные об атомных массах. Пришлось в срочном порядке отказываться от «химической» шкалы атомных масс и переходить на «физическую» шкалу, основанную на кислороде-16. Такой пересчет данных химических анализов дал отношение масс Н: 16 О = 1,00799:16,0000, что уже заметно отличалось от измерений Астона. Кто же ошибся – физики или химики, выполнившие определения атомных масс? И те и другие ручались за точность своих определений, расхождение в результатах далеко выходило за пределы экспериментальных ошибок.

В 1931 было высказано предположение о том, что причина небольшого расхождения – наличие в обычном водороде более тяжелого изотопа. Расчеты показали, что расхождение устраняется в том случае, если на 5000 атомов обычного водорода 1 H приходится всего один атом его вдвое более тяжелой разновидности 2 Н. Дело оставалось за малым – обнаружить этот изотоп экспериментально. Но как это сделать, если его действительно так мало? С учетом чувствительности имевшейся в то время аппаратуры выход был один: сконцентрировать тяжелый водород, увеличив тем самым его содержание в обычном водороде, – примерно так же, как концентрируют спирт, перегоняя его смесь с водой. Если перегонять смесь обычного и тяжелого водорода, остаток должен обогащаться более тяжелым изотопом. После этого можно было снова попытаться обнаружить тяжелый изотоп водорода аналитически.

В конце 1931 группа американских физиков – Гарольд Юри со своими учениками, Фердинандом Брикведде и Джорджем Мерфи, взяли 4 л жидкого водорода и подвергли его фракционной перегонке, получив в остатке всего 1 мл, т.е. уменьшив объем в 4 тысячи раз. Этот последний миллилитр жидкости после ее испарения и был исследован спектроскопическим методом. Талантливый спектроскопист Гарольд Клейтон Юри заметил на спектрограмме обогащенного водорода новые очень слабые линии, отсутствующие у обычного водорода. При этом положение линий в спектре точно соответствовало проведенному им квантово-механическому расчету предполагаемого атома 2 H. Соотношение интенсивностей линий нового изотопа (Юри назвал его дейтерием) и обычного водорода показало, что в исследованном обогащенном образце нового изотопа в 800 раз меньше, чем обычного водорода. Значит, в исходном водороде тяжелого изотопа еще меньше. Но насколько?

Пытаясь оценить так называемый коэффициент обогащения при испарении жидкого водорода, исследователи поняли, что в своих опытах использовали самый неподходящий источник водорода. Дело в том, что он был получен, как обычно, путем электролиза воды. А ведь при электролизе легкий водород должен выделяться быстрее, чем тяжелый. Получается, что образец был сначала обеднен тяжелым водородом, а затем снова обогащался им!

После того, как дейтерий был обнаружен спектроскопически, Эдвард Уошберн предложил разделять изотопы водорода электролизом. Эксперименты показали, что при электролизе воды легкий водород действительно выделяется быстрее, чем тяжелый. Именно это открытие стало ключевым для получения тяжелого водорода. Статья, в которой сообщалось об открытии дейтерия, была напечатана весной 1932, а уже в июле были опубликованы результаты по электролитическому разделению изотопов. В 1934 за открытие тяжелого водорода Юри была присуждена Нобелевская премия по химии. (Уошберн тоже был представлен к премии, но скончался в том же году, а по положению о Нобелевских премиях они вручаются только прижизненно.)

Когда был открыт нейтрон, стало ясно, что в ядре дейтерия, в отличие от протия, помимо протона находится также нейтрон. Поэтому ядро дейтерия – дейтрон вдвое тяжелее протона; его масса в углеродных единицах равна 2,0141018. В среднем в природном водороде содержится 0,0156% дейтерия. В прибрежной морской воде его немного больше, в поверхностных водах суши – меньше, в природном газе – еще меньше (0,011–0,013%). По химическим свойствам дейтерий схож с протием, но огромное различие в их массах приводит к заметному замедлению реакций с участием атомов дейтерия. Так, реакция дейтерированного углеводорода R–D с хлором или кислородом замедляется, в зависимости от температуры, в 5–10 раз по сравнению с реакцией R–Н. С помощью дейтерия можно «пометить» водородсодержащие молекулы и изучить механизмы их реакций. Так, в частности, были изучены реакции синтеза аммиака, окисления углеводородов, ряд других важных процессов.

Тяжелая вода.

После фундаментальных работ Уошберна и Юри исследования нового изотопа стали развиваться быстрыми темпами. Уже вскоре после открытия дейтерия в природной воде была обнаружена ее тяжелая разновидность. Обычная вода состоит в основном из молекул 1 Н 2 О. Но если в природном водороде есть примесь дейтерия, то и в обычной воде должны быть примеси НDO и D 2 O. И если при электролизе воды Н 2 выделяется с большей скоростью, чем НD и D 2 , то со временем в электролизере должна накапливаться тяжелая вода. В 1933 Гилберт Льюис и американский физикохимик Роналд Макдональд сообщили, что в результате длительного электролиза обычной воды им удалось получить не виданную никем до этого новую разновидность воды – тяжелую воду.

Открытие и выделение весовых количеств новой разновидности воды – D 2 O произвело большое впечатление на современников. Всего за два года после открытия было опубликовано более сотни работ, посвященных исключительно тяжелой воде. О ней читались популярные лекции, печатались статьи в массовых изданиях. Практически сразу же после открытия тяжелую воду стали использовать в химических и биологических исследованиях. Так, было обнаружено, что рыбы, микробы и черви не могут существовать в ней, а животные погибают от жажды, если их поить тяжелой водой. Не прорастают в тяжелой воде и семена растений.

Однако технически получение значительных количеств D 2 О представляло собой трудную задачу. Для обогащения воды дейтерием на 99% необходимо уменьшить объем воды при электролизе в 100 тысяч раз. Льюис и Макдональд взяли для своих опытов 10 л воды из проработавшей несколько лет большой электролитической ванны, в которой содержание дейтерия было повышенным. Пропуская через эту воду ток большой силы – 250 ампер (для увеличения электропроводности вода содержала щелочь), они за неделю уменьшили ее объем в 10 раз. Чтобы жидкость при электролизе таким огромным током не закипела, ее приходилось непрерывно охлаждать холодной водой, пропускаемой по металлическим трубкам внутри электролизера. Остаток объемом 1 л перенесли в электролизер поменьше и снова путем электролиза снизили объем в 10 раз. Затем в третьей ячейке объем был уменьшен до 10 мл, и, наконец, в четвертой он был доведен до 0,5 мл. Отогнав этот остаток в вакууме в небольшую колбочку, они получили воду, содержащую 31,5% D 2 O. Ее плотность (1,035) уже заметно отличалась от плотности обычной воды.

В следующей серии опытов из 20 л воды, также в несколько этапов, получили 0,5 мл воды с плотностью 1,075, содержащей уже 65,7% D 2 O. Продолжая такие опыты, удалось, наконец, получить 0,3 мл воды, плотность которой (1,1059 при 25° С) уже больше не увеличивалась при уменьшении объема при электролизе до 0,12 мл. Эти несколько капель и были первые за всю историю Земли капли почти чистой тяжелой воды. Соответствующие расчеты показали, что прежние оценки соотношения обычного и тяжелого водорода в природе были слишком оптимистическими: оказалось, что в обычной воде содержится всего 0,017% (по массе) дейтерия, что дает соотношение D:Н = 1:6800.

Чтобы получать заметные количества тяжелой воды, необходимой ученым для исследований, необходимо было подвергать электролизу уже огромные по тем временам объемы обычной воды. Так, в 1933 группе американских исследователей для получения всего 83 мл D 2 O 99%-ой чистоты пришлось взять уже 2,3 тонны воды, которую разлагали в 7 стадий. Было ясно, что такими методами ученые не смогут обеспечить всех желающих тяжелой водой. А тут выяснилось, что тяжелая вода является прекрасным замедлителем нейтронов и потому может быть использована в ядерных исследованиях, в том числе для построения ядерных реакторов. Спрос на тяжелую воду вырос настолько, что стала ясна необходимость налаживания ее промышленного производства. Трудность состояла в том, что для получения 1 тонны D 2 O необходимо переработать около 40 тысяч тонн воды, израсходовав при этом 60 млн кВт-ч электроэнергии – столько уходит на выплавку 3000 т алюминия!

Первые полупромышленные установки были маломощными. В 1935 на установке в Беркли еженедельно получали 4 г почти чистой D 2 O, стоимость которой составляла 80 долларов за грамм – это очень дорого, если учесть, что за прошедшие годы доллар «подешевел» в десятки раз. Более эффективной была установка в химической лаборатории Принстонского университета – она давала ежедневно 3 г D 2 O ценой по 5 долларов за грамм (через 40 лет стоимость тяжелой воды снизилась до 14 центов за грамм). Наиболее трудоемким оказался самый первый этап электролиза, в котором концентрация тяжелой воды повышалась до 5–10%, поскольку именно на этом этапе приходилось перерабатывать огромные объемы обычной воды. Дальнейшее концентрирование можно было уже без особых проблем провести в лабораторных условиях. Поэтому преимущества получали те промышленные установки, которые могли подвергать электролизу большие объемы воды.

Теоретически можно вместо электролиза использовать простую перегонку, поскольку обычная вода испаряется легче, чем тяжелая (ее температура кипения 101,4° С). Однако этот способ еще более трудоемкий. Если при электролизе коэффициент разделения изотопов водорода (т.е. степень обогащения в одной стадии) теоретически может достигать 10, то при перегонке он составляет всего 1,03–1,05. Это означает, что разделение путем перегонки исключительно малоэффективно. Академик Игорь Васильевич Петрянов-Соколов как-то подсчитал, сколько воды должно испариться из чайника, чтобы в остатке заметно повысилось содержание дейтерия. Оказалось, что для получения 1 литра воды, в которой концентрация D 2 О всего в 10 раз превышает природную, в чайник надо долить в общей сложности 2,1O 30 тонн воды, что в 300 млн. раз превышает массу Земли!

Масса молекулы D 2 O на 11% превышает массу Н 2 О. Такая разница приводит к существенным различиям в физических, химических и, что особенно важно, биологических свойствах тяжелой воды. Тяжелая вода кипит при 101,44° С, замерзает при 3,82° С, имеет плотность при 20° С 1,10539 г/см 3 , причем максимум плотности приходится не на 4° С, как у обычной воды, а на 11,2° С (1,10602 г/см 3). Кристаллы D 2 O имеют такую же структуру, как и обычный лед, но они более тяжелые (0,982 г/см 3 при 0°С по сравнению с 0,917 г/см 3 для обычного льда). В смесях с обычной водой с большой скоростью происходит изотопный обмен: Н 2 О + D 2 O 2HDO. Поэтому в разбавленных растворах атомы дейтерия присутствуют в основном в виде HDO. В среде тяжелой воды значительно замедляются биохимические реакции, и эта вода не поддерживает жизни животных и растений.

В настоящее время разработан ряд эффективных методов получения тяжелой воды: электролизом, изотопным обменом, сжиганием обогащенного дейтерием водорода. В настоящее время тяжелую воду получают ежегодно тысячами тонн. Ее используют в качестве замедлителя нейтронов и теплоносителя в ядерных реакторах (для заполнения одного современного крупного ядерного реактора требуется 100–200 тонн тяжелой воды чистотой не менее 99,8%); для получения дейтронов D + в ускорителях частиц; как растворитель в спектроскопии протонного магнитного резонанса (обычная вода своими протонами смазывает картину). Не исключено, что роль тяжелой воды значительно возрастет, если будет осуществлен промышленный термоядерный синтез.

«Битва за воду».

Для промышленного получения тяжелой воды очень важно наличие дешевой электроэнергии. Уже в довоенные годы стало понятно, что идеальные условия для этого имеются в Норвегии, где давно работали мощные электролизные установки для получения водорода. Завод по производству тяжелой воды вошел в строй в 1934; к 1938 он производил 40 кг D 2 О в год, а в 1939 – второе больше. В то время уже стало очевидным огромное стратегическое значение тяжелой воды для разработки ядерного оружия. Поэтому не удивительно, что немцы, оккупировавшие Норвегию в мае 1940, приняли самые энергичные меры по засекречиванию завода тяжелой воды и его охране. К концу 1941 Германия вывезла из Норвегии 361 кг чистой D 2 O, а через год – уже 800 кг.

Союзники отдавали себе отчет в смертельной для себя опасности норвежского производства и потому решили во что бы то ни стало уничтожить завод. Главный инженер завода Йомар Брун с риском для жизни достал исключительно ценную информацию – чертежи и фотографии завода. Все материалы были пересняты на микропленку и в тюбике для зубной пасты переправлены через Швецию в Англию. Немцы ожидали нападения с воздуха на завод и усиленно укрепляли особо важные цеха. Поэтому было решено послать в Норвегию специально подготовленную команду подрывников. Диверсионной группе удалось взорвать электролизные баки в цехе концентрирования тяжелой воды. На восстановление оборудования ушло полгода – срок огромный в условиях войны. Немцы решили подстраховаться, и в мае 1943 их делегация, состоящая из ученых и промышленников, выехала в Италию, чтобы наладить там производство тяжелой воды на электролизном заводе в поселке Маренго на севере страны. Но было уже поздно: 3 сентября король Виктор-Эммануил III подписал на Сицилии акт о капитуляции Италии, а 9 сентября около Неаполя на территорию Италии вступили англо-американские войска. Так что норвежский завод оставался для немцев единственным источником тяжелой воды. Однако и он уже был обречен: 16 ноября на завод был произведен массированный воздушный налет. В течение 33 минут 140 тяжелых бомбардировщиков «Летающая крепость» сбросили на завод 800 бомб! В результате была выведена из строя гидроэлектростанция, однако установки для производства тяжелой воды, защищенные толстым слоем бетона, практически не пострадали. Не обошлось и без жертв среди мирного норвежского населения – погибло 22 человека.

Немцы понимали, что и после бомбежки союзники не оставят завод в покое, и потому приняли решение вывезти в Германию все имеющиеся запасы тяжелой воды – а было ее ни много ни мало 15 тонн! Разведка союзников сработала четко и своевременно: в результате тщательно продуманной и с блеском проведенной операции 20 февраля 1944 был взорван паром, на котором находились железнодорожные цистерны с тяжелой водой. Паром, переправлявшийся в этот момент через озеро Тинсьё, пошел на дно, и поднять его было практически невозможно, так как озеро было очень глубоким – около 400 м. И в этом эпизоде битвы за тяжелую воду не обошлось без трагедии: за уничтожение практически всего запаса тяжелой воды заплатили жизнью 14 норвежцев, находившихся на пароме. Но немцы лишились всякой возможности запустить ядерный реактор и получить атомную бомбу.

Илья Леенсон



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта