Главная » Несъедобные грибы » Что изучает раздел физики термодинамика. Уравнение состояния и его функции

Что изучает раздел физики термодинамика. Уравнение состояния и его функции

Введение

Дисциплины техническая термодинамика и теория тепло - и массообмена формируют теоретическую базу для освоения дисциплин специального цикла по направлениям "Энергомашиностроение" и "Теплоэнергетика".

В первой части рассматриваются основные понятия термодинамики, приложение первого закона термодинамики к закрытым, открытым термодинамическим системам и системам с переменной массой. Изучаются равновесные состояния и квазиравновесные процессы в макроскопических системах. Значительное внимание уделяется второму закону термодинамики и его применению к необратимым процессам, вскрываются причины необратимости и ее влияние на потерю работоспособности (эксергии) системы. Подробно рассматриваются газовые циклы и реактивные двигатели. Уделяется внимание условиям равновесия в однородной и двухфазной системах, фазовым переходам при плоской и искривленной границах раздела фаз. Приводятся основные положения теории образования новой фазы. Рассматриваются свойства реальных газов и паров, вопросы дросселирования реальных газов и паров, процессы, протекающие в паре и влажном воздухе. Представлен достаточно подробный материал по паровым и комбинированным циклам теплоэнергетических установок, рассматриваются способы повышения их эффективности, проведен анализ циклов паротурбинной и газотурбинной установок с учетом необратимых потерь с помощью энтропийного и эксергетического методов. Вопросы непосредственного преобразования теплоты в электрическую энергию изложены в конспективной форме на основе упрощенных тепловых схем без рассмотрения состояния плазмы и процессов в ней. Даются основы термоэлектрического генератора. Рассматриваются идеальные циклы холодильных машин, тепловых насосов и методы ожижения газов. В разделе "Основы химической термодинамики" излагаются законы и положения, касающиеся процессов превращения одних веществ в другие. Даны основные понятия неравновесной термодинамики. В приложении Iприводятся программы расчета на ЭВМ газотурбинной установки с регенерацией теплоты и паротурбинной установки с оптимизацией параметров рабочего тела на примере геотермальной тепловой электрической станции. Приводится список литературы для более подробного изучения законов, методов и истории развития термодинамики.

Вторая часть курса содержит основные законы и положения теории тепло- и массообмена в природе и включает такие разделы как стационарная и нестационарная теплопроводность, конвективный теплообмен в однородных средах, теплоотдача при изменении агрегатного состояния вещества, массоперенос в двухкомпонентных средах, лучистый теплообмен, основы расчета теплообменных аппаратов рекуперативного типа.

Основные явления тепло- и массопереноса, имеющие место в природе, рассмотрены достаточно подробно на основе упрощенных физических моделей с получением расчетных формул. Такой академический подход, на наш взгляд, способствует развитию у студента творческого мышления: он видит, как создается физическая модель, как она упрощается путем введения обоснованных допущений для получения аналитического решения.

Так как в настоящее время трудно представить решение научных и инженерных задач без использования ЭВМ, то в разделе "Численные методы решения задач теплопроводности" показывается, как создаются уравнения в конечно-разностной форме для различных “узлов“ изучаемого тела. Рассматриваются вопросы устойчивости разностных схем. В приложении IIприводятся программы расчета двумерного температурного поля итерационным и матричным методами, а также текст программы расчета теплообменного аппарата для выполнения курсовой работы по методике .

Список литературы, приведенный в конце лекций, позволяет студенту более глубоко изучить интересующие его вопросы, которые в ряде случаев изложены в конспективной форме.

Часть I. Техническая термодинамика

1. Основные понятия термодинамики

Термодинамика - это наука, изучающая законы превращения энергии в различных процессах, сопровождающихся тепловыми эффектами. Термодинамика - дедуктивная наука: она базируется на основных законах природы (первом и втором началах термодинамики) и носит феноменологический характер, привлекая для своих исследований опытные данные.

Краткий исторический очерк развития термодинамики

Термодинамика как наука возникла в начале XIXвека. Основные задачи, которые она должна была решать - это установление количественной связи между теплотой и работой и повышение тепловой эффективности паровых машин, которые стали широко использоваться в промышленности. В 1824 году французский инженер Сади Карно опубликовал трактат “ Размышления о движущей силе огня и машинах, способных развивать эту силу“11. В этом научном труде он впервые доказывает, что “движущая сила огня“ (работа) зависит от величины температуры “горячего” и “холодного “ источников теплоты, и что более эффективными являются паровые машины высокого давления, в которых по его словам “...большее падение “теплорода” (под теплородом понимали все проникающее вещество)”. Еще тогда он пишет о причинах потери движущей силы: “...от бесполезного восстановления равновесия теплорода “. Таким образом, в работе Карно были заложены основные положения первого и второго законов термодинамики.

В 1842 году Роберт Майер устанавливает связь между теплотой и работой, определив механический эквивалент теплоты Джемс Джоуль в 1843 году, проведя уникальный эксперимент, находит тепловой эквивалент работывеличина которого до настоящего времени остается практически неизменной. Работы Майера и Джоуля устанавливают частный случай первого начала термодинамики - закона отражающего количественную сторону сохранения и превращения энергии.

Рудольф Клаузиус в 1854 году, рассматривая обратимый круговой процесс, вводит в термодинамику новую функцию состояния - энтропию S и тем самым устанавливает второй закон термодинамики для обратимых процессовПозднее Макс Планк в своей докторской диссертации показывает, что энтропия может быть использована при анализе необратимых процессов (с чем был не согласен Роберт Кирхгоф)14. В общем случае второе начало имеет види характеризует качественную сторону в процессах превращения энергии.

Виллиам Томсон (лорд Кельвин) вводит понятие абсолютной (термодинамической) температуры, которая является термодинамическим потенциалом.

Джозайя Виллард Гиббс создает новый метод термодинамических исследований - метод термодинамических потенциалов, устанавливает условия термодинамического равновесия. Развивает теорию фазовых переходов (правило фаз Гиббса).

В 1906 году Вальтер Герман Нернст (1864-1941) на основании опытных данных открывает третий закон термодинамики (теорема Нернста). Согласно этой теореме при температурах, стремящихся к абсолютному нулю, равновесные изотермические процессы протекают без изменения энтропии, то есть . В этом случае энтропия перестает быть функцией состояния и стремится к некоторой постоянной величине, не зависящей от параметров состояния.

В работах Д.И.Менделеева впервые используется “критическая температура”, при которой коэффициент поверхностного натяжения равен нулю.

В.А. Михельсон и Б.Б. Голицын внесли значительный вклад в термодинамику излучения.

Большой вклад в развитие термодинамики внесли также русские ученые: Д.П. Коновалов и Н.С. Курнаков (термодинамические методоы в физической химии), Н.Н. Боголюбов и М.А. Леонтович (статистическая термодинамика, неравновесные состояния), Л.Д. Ландау (теория сверхтекучести), В.К. Семенченко (термодинамическая теория растворов).

Термодинамическая система

Под термодинамической системой понимают совокупность макротел, находящихся между собой и окружающей средой в тепловом и механическом взаимодействии. Термодинамическая система (ТС) может быть закрытой (с подвижной или неподвижной границами) и открытой, когда через нее проходит поток массы. Если ТС не обменивается теплотой с окружающей средой, то такая система называется адиабатической. ТС может быть гомогенной и гетерогенной. В гомогенной системе свойства вещества остаются неизменными во всех точках или плавно изменяются, например, в поле гравитационных или иных массовых сил. Если ТС состоит из подсистем с различными физическими свойствами, то такая система называется гетерогенной. В этом случае считают, что физические свойства на границе подсистем изменяются скачком. В действительности изменение свойств происходит на длине свободного пробега молекулы.

Термодинамический метод исследования

Термодинамика рассматривает системы, состоящие из большого, но конечного числа частиц, она не изучает процессы на молекулярном уровне и оперирует макровеличинами - термодинамическими параметрами.

Термодинамический процесс

Совокупность последовательных состояний, проходящих термодинамической системой, называется термодинамическим процессом. Если ТС проходит практически равновесные состояния, то такой процесс называется квазистатическим. В пределе, когда процесс протекает бесконечно медленно, то имеем равновесный или обратимый процесс. Вообще под обратимым понимают такой процесс, когда при совершении прямого и обратного процесса ТС приходит в исходное состояние, а в окружающей среде не происходит ни каких изменений. В диаграммах состояния можно изобразить только квазистатические или равновесные процессы. Под квазистатическим процессом понимают такой процесс, когда скорость процесса намного меньше скорости релаксации

где a - любой термодинамический параметр (p , T , v ) ; - время; - время релаксации - время, за которое во всех точках ТС установится термодинамическое равновесие, то есть будем иметь одинаковые физические свойства (для газовсекунд).

Параметры термодинамической системы

Это макровеличины, характеризующие физическое состояние термодинамической системы. К ним относятся температураT , давление -p , объем -V (термические параметры).

Температура является одним из основных термических параметров. Температура есть мера нагретости тела. Температура тела, измеренная термометром, называется эмпирической (t ). К понятию абсолютной температуры (T ) приводит кинетическая теория газов. Между средней кинетической энергией поступательного движения молекул и температурой существует связь

(1.2)

где m - масса молекулы;
- средняя скорость поступательного движения молекул;k = 1,38 10 - 23 - постоянная Больцмана (универсальная газовая постоянная на одну молекулу газа) ;R 0 = 8314- универсальная газовая постоянная;N 0 = 6,022810 26 - число Авогадро (число молекул в одном киломоле). Из (1.2) следует, чтоT является статистической величиной, характеризующей состояние большого числа молекул. Между абсолютной и эмпирической температурой, измеренной в градусах Цельсия, существует зависимость

(1.3)

Давление , как и температура, - статистическая величина. Из курса молекулярной физики известно, что давление газа на стенки сосуда можно рассчитать по формуле

H/м 2 (1.4)

где n =N 0 /V  - число молекул, заключенных в объеме одного киломоля;

V  = 22,4 м 3 / кмоль - объем одного киломоля при нормальных условиях ( p н = 760 мм. рт. ст. = 1,01310 5 Па,t н = 0 С) ;- коэффициент сжимаемости.

С учетом (1.2) перепишем (1.4) в виде

. (1.5)

Для идеального газа, молекулы которого представляются в виде материальных точек, имеющих массу и не имеющих объема, а взаимодействие осуществляется только за счет упругих соударений (= 1), можно написать

pV =R 0 T . (1.6)

Выражение (1.6) является термическим уравнением состояния идеального газа для одного киломоля. Для М киломолей

pV = MR 0 T . (1.7)

Уравнение состояния в форме (1.7) носит название Клапейрона-Менделеева.

Так как масса газа

G =M , (1.8)

где - молекулярная масса газа, кг/ кмоль, аR = R 0 / , то (1.7) можно переписать в форме Клапейрона

pV = GRT . (1.9)

Разделив уравнение (1.9) на массу газа, получим

pv = RT ,

где v = V / G - удельный объем газа, м 3 /кг. Удельный объем газа связан с плотностью соотношением = 1/ v , тогда

p = RT . (1.10)

Таким образом, чем выше плотность и температура идеального газа, тем больше давление. Давление, входящее в уравнение состояния, называется абсолютным и измеряется в Паскалях (Па=Н/м 2). Если давление газа в сосуде выше давления окружающей средыр ос (барометрического давления), то абсолютное давление

р=р ман + р ос , (1.11)

где р ман изб - давление измеренное манометром (манометр измеряет избыточное давление между давлением в сосуде и окружающей средой).

В случае, когда давление газа в сосуде меньше давления окружающей среды, то используется вакууметр, тогда

р=р ос - р вак. (1.12)

Сказанное может быть представлено в графическом виде (см. рис.1.1).

Удельный объем так же какТ ир , характеризует физичское состояние тела

(1.13)

Термодинамические параметры (ТП) могут быть экстенсивными и интенсивными. К экстенсивным параметрам относятся внутренняя энергия газа U , энтальпияI = U + pV , энтропияS . Эти параметры обладают свойствами аддитивности (их можно складывать). Интенсивными параметрами являютсяp , T , удельный объемv - они не обладают свойствами аддитивности.

В продолжение нашего курса «Физика для чайников» начнем рассматривать основы такого важнейшего раздела как термодинамика .

Активное развитие термодинамики началось в девятнадцатом веке. Именно тогда люди начали строить первые паровые машины, а потом активно внедрять их в производство. Началась промышленная революция, и, естественно, всем хотелось увеличить коэффициент полезного действия машин, чтобы произвести больше продукции, доехать подальше и в конце-концов получить больше денег. Все это очень хорошо стимулировало развитие науки и наоборот. Но давайте ближе к сути вопроса.

Термодинамика – раздел физики, изучающий макроскопические системы, их наиболее общие свойства, способы передачи и превращения энергии в таких системах.

Что такое макроскопические системы? Это системы, состоящие из очень большого числа частиц. Например, баллон с газом или воздушный шар. Описание таких систем методами классической механики просто невозможно – ведь мы не можем измерить скорость, энергию и другие параметры каждой молекулы газа в отдельности. Тем не менее, поведение всей совокупности частиц подчиняется статистическим закономерностям. По сути любой видимый нами (невооруженным глазом) предмет может быть определен как термодинамическая система.

– реально или мысленно выделяемая макроскопическая физическая система, состоящая из большого числа частиц, не требующая для своего описания привлечения микроскопических характеристик отдельных частиц. Соответственно, для описания термодинамической системы используются макроскопические параметры, не относящиеся к каждой частице, но описывающие систему целиком. Это температура, давление, объем, масса системы и проч.

Важно отметить, что термодинамические системы могут быть замкнутыми и незамкнутыми . Замкнутая система – это такая система, которую при помощи реальной или воображаемой оболочки оградили от окружающей среды, при этом количество частиц в системе остается постоянным.

Система может находится в разных состояниях. Например, мы взяли баллон с газом и начали его нагревать. Тем самым мы изменили энергию молекул газа, они стали двигаться быстрее, и система перешла в какое-то новое состояние с более высокой температурой. Но что будет, если систему оставить в покое? Тогда система через какое-то время придет в состояние термодинамического равновесия .

Что это значит?

Термодинамическое равновесие – это состояние системы, в котором ее макроскопические параметры (температура, объем и др.) остаются неизменными с течением времени.

Термодинамика стоит на трех своих столпах. Существуют три основных постулата или три закона термодинамики. Они называются соответственно первым, вторым и третьим началами термодинамики. Рассмотрим первое начало или первый закон термодинамики.

Первое начало термодинамики

Первое начало термодинамики гласит:

В любой изолированной системе запас энергии остается постоянным.

К слову, у данного постулата есть еще несколько эквивалентных формулировок. Приведем их ниже:

Количество теплоты, полученное системой, идет на изменение внутренней энергии системы, а также на совершение работы против внешних сил.

Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии).

Запишем также математическое выражение первого начала термодинамики:

Здесь Q - количество теплоты, дельта U - изменение внутренней энергии, A - работа против внешних сил. Для различных термодинамических процессов в силу их особенностей запись первого начала будет выглядеть по-разному.

Почему невозможен вечный двигатель первого рода?

Людей издревле привлекала ее величество Халява. Философский камень, превращающий любой металл в золото, скатерть самобранка, с которой не нужно готовить, джин, исполняющий любые желания. Еще одной такой идеей была идея вечного двигателя.

Вечный двигатель невозможен, потому что так устроен мир . Об этом говорят нам законы термодинамики. Согласно первому началу термодинамики, количество теплоты, полученное системой, идет на изменение внутренней энергии системы, а также на совершение работы против внешних сил. Например, газ, помещенный в цилиндр с поршнем, получая определенное количество теплоты, увеличивает свою внутреннюю энергию, молекулы движутся быстрее, газ занимает больший объем и толкает поршень (работа против внешних сил). Иными словами, если работа совершается без внешнего притока энергии, она может совершаться лишь за счет внутренней энергии системы, которая рано иди поздно иссякнет, преобразовавшись в совершенную работу, на чем все закончится и система придет к состоянию термодинамического равновесия. Ведь энергия в мире никуда не уходит и не приходит, ее количество остается постоянным, а меняется лишь форма. Конечно, Вы обратили внимание на то, что речь идет о так называемом вечном двигателе первого рода (который может совершать работу без энергии). Спешим заверить, существование вечного двигателя второго рода также невозможно и объясняется вторым началом термодинамики, о котором мы поговорим в ближайшем будущем.

Надеемся, знакомство с термодинамикой прошло для Вас приятно и Вы полюбите ее всем сердцем. Если же этого не произойдет, Вы всегда можете поручить выполнение задач по термодинамике , пока сами занимаетесь более приятными делами.

Термодинамика - наука, которая изучает тепловые явления, происходящие в телах, не связывая их с молекулярным строением вещества.

В термодинамике считается, что все тепловые процессы в телах характеризуются только лишь макроскопическими параметрами - давлением, объёмом и температурой. А так как их невозможно применить к отдельно взятым молекулам или атомам, то, в отличие от молекулярно-кинетической теории, в термодинамике молекулярное строение вещества в тепловых процессах не учитывается.

Все понятия термодинамики сформулированы как обобщение фактов, наблюдаемых в ходе экспериментов. Из-за этого её называют феноменологической (описательной) теорией тепла.

Термодинамические системы

Термодинамика описывает тепловые процессы, происходящие в макроскопических системах. Такие системы состоят из огромного количества частиц - молекул и атомов, и называются термодинамическими.

Термодинамической системой можно считать любой объект, который можно увидеть невооружённым глазом или с помощью микроскопов, телескопов и других оптических приборов. Главное, чтобы размеры системы в пространстве и время её существования позволяли провести измерения её параметров - температуры, давления, массы, химического состава элементов и др., с помощью приборов, не реагирующих на воздействие отдельных молекул (манометров, термометров и др.).

Для химиков термодинамическкой системой является смесь химических веществ, взаимодействующих между собой в процессе химической реакции. Астрофизики назовут такой системой небесное тело. Смесь горючего с воздухом в автомобильном двигателе, земной шар, наше тело, пишущая ручка, тетрадь, станок и др. - это также термодинамические системы.

Каждая термодинамическая система отделена от окружающей среды границами. Они могут быть реальными - стеклянные стенки пробирки с химическим веществом, корпус цилиндра в двигателе и т.п. А могут быть и условными, когда, например, изучают образование облака в атмосфере.

Если такая система не обменивается с внешней средой ни энергией, ни веществом, то её называют изолированной или замкнутой .

Если же система обменивается с внешней средой энергией, но не обменивается веществом, то она называется закрытой .

Открытая система обменивается с внешней средой и энергией, и веществом.

Термодинамическое равновесие

Это понятие также введено в термодинамику, как обобщение результатов экспериментов.

Термодинамическим равновесием называют такое состояние системы, при котором все её макроскопические величины - температура, давление, объём и энтропия - не изменяются во времени, если система является изолированной. В такое состояние может самопроизвольно перейти любая замкнутая термодинамическая система, если остаются постоянными все внешние параметры.

Самый простой пример системы в состоянии термодинамического равновесия - термос с горячим чаем. Температура в нём одинакова в любой точке жидкости. Хотя термос можно назвать изолированной системой лишь приблизительно.

Любая замкнутая термодинамическая система самопроизвольно стремится перейти в термодинамическое равновесие, если не меняются внешние параметры.

Термодинамический процесс

Если меняется хотя бы один из макроскопических параметров, то говорят, что в системе происходит термодинамический процесс . Такой процесс может возникнуть, если изменяются внешние параметры или система начинает получать или передавать энергию. В результате она переходит в другое состояние.

Вспомним пример с чаем в термосе. Если мы опустим в чай кусочек льда и закроем термос, то сразу же появится разница в температурах в разных частях жидкости. Жидкость в термосе будет стремиться к выравниванию температур. Из областей с более высокой температурой тепло будет передаваться туда, где температура ниже. То есть, будет происходить термодинамический процесс. В конце концов, температура чая в термосе снова станет одинаковой. Но она уже будет отличаться от первоначальной температуры. Состояние системы изменилось, так как изменилась её температура.

Термодинамический процесс происходит, когда ночью остывает песок, нагретый на пляже в жаркий день. К утру его температура понижается. Но как только взойдёт солнце, процесс нагревания начнётся снова.

Внутренняя энергия

Одно из главных понятий термодинамики - внутренняя энергия .

Все макроскопические тела обладают внутренней энергией, которая является суммой кинетических и потенциальных энергий всех частиц (атомов и молекул), из которых состоит тело. Эти частицы взаимодействуют только между собой и не взаимодействуют с частицами окружающей среды. Внутренняя энергия зависит от кинетической и потенциальной энергии частиц и не зависит от положения самого тела.

U = E k +E p

Внутренняя энергия изменяется с изменением температуры. Молекулярно-кинетическая теория объясняет это изменением скорости движения частиц вещества. Если температура тела растёт, то растёт и скорость движения частиц, расстояние между ними становится больше. Следовательно, увеличивается их кинетическая и потенциальная энергия. При понижении температуры происходит обратный процесс.

Для термодинамики важнее не величина внутренней энергии, а её изменение. А изменить внутреннюю энергию можно с помощью процесса теплопередачи или совершая механическую работу.

Изменение внутренней энергии механической работой

Бенджамин Румфорд

Внутреннюю энергию тела можно изменить, совершив над ней механическую работу. Если работа совершается над телом, то механическая энергия превращается во внутреннюю энергию. А если работу совершает тело, то его внутренняя энергия превращается в механическую.

Почти до конца XIX века считалось, что существует невесомое вещество - теплород, которое передаёт тепло от тела к телу. Чем больше теплорода втекает в тело, тем теплее оно будет, и наоборот.

Однако в 1798 г. англо-американский учёный граф Бенджамин Румфорд стал сомневаться в теории теплорода. Причиной тому были нагревания стволов пушек при сверлении. Он предположил, что причиной нагревания является механическая работа, которая совершается во время трения сверла о ствол.

И Румфорд провёл эксперимент. Чтобы увеличить силу трение, взяли тупое сверло, а сам ствол поместили в бочку с водой. К концу третьего часа сверления вода в бочке закипела. Это означало, что ствол получил тепло при совершении механической работы над ним.

Теплопередача

Теплопередачей называют физический процесс передачи тепловой энергии (теплоты) от одного тела к другому либо при непосредственном контакте, либо через разделяющую перегородку. Как правило, теплота передаётся от более тёплого тела к более холодному. Это процесс заканчивается, когда система приходит в состояние термодинамического равновесия.

Энергия, которую получает или отдаёт тело при теплопередаче, называется количеством теплоты .

По способу передачи теплоты теплообмен можно разделить на 3 вида: теплопроводность, конвенция, тепловое излучение.

Теплопроводность

Если между телами или частями тел существует температурная разница, то между ними будет происходить процесс теплопередачи. Теплопроводностью называют процесс переноса внутренней энергии от более нагретого тела (или его части) к менее нагретому телу (или его части).

К примеру, нагрев на огне один конец стального прута, через некоторое время мы почувствуем, что и другой его конец также становится тёплым.

Стеклянную палочку, один конец которой раскалён, мы легко держим за другой конец, не обжигаясь. Но если мы попробуем проделать такой же эксперимент с железным прутом, у нас ничего не получится.

Разные вещества по-разному проводят тепло. Каждое из них имеет свой коэффициент теплопроводности , или удельной проводимости , численно равный количеству теплоты, которая проходит через образец толщиной 1 м, площадью 1 м 2 за 1 секунду. За единицу температуры принимают 1 К.

Лучше всего проводят тепло металлы. Это их свойство мы используем в быту, готовя пищу в металлических кастрюлях или на сковородках. А вот их ручки не должны нагреваться. Поэтому их делают из материалов с плохой теплопроводностью.

Теплопроводность жидкостей меньше. А газы обладают слабой теплопроводностью.

Мех животных также плохо проводит тепло. Благодаря этому они не перегреваются в жаркую погоду и не замерзают в холодную.

Конвенция

При конвенции теплота передаётся струями и потоками газа или жидкости. В твёрдых телах конвенции нет.

Как возникает конвенция в жидкости? Когда мы ставим на огонь чайник с водой, нижний слой жидкости нагревается, его плотность уменьшается, он движется вверх. Его место занимает более холодный слой воды. Через какое-то время он тоже нагреется и тоже поменяется местами с более холодным слоем. И т.д.

Подобный процесс происходит и в газах. Не случайно батареи отопления размещают в нижней части комнаты. Ведь нагретый воздух всегда поднимается в верхнюю часть комнаты. А нижний, холодный, наоборот, опускается. Затем он нагревается также и вновь поднимается, а верхний слой за это время остывает и опускается.

Конвенция бывает естественная и принудительная.

Естественная конвенция постоянно происходит в атмосфере. В результате этого происходят постоянные перемещения тёплых воздушных масс вверх, а холодных - вниз. В результате возникает ветер, облака и другие природные явления.

Когда естественной конвенции недостаточно, применяю принудительную конвенцию. Например, потоки тёплого воздуха перемещают в комнате с помощью лопастей вентилятора.

Тепловое излучение

Солнце нагревает Землю. При этом не происходит ни теплопередачи, ни конвенции. Так почему же тела получают тепло?

Дело в том, что Солнце является источником теплового излучения.

Тепловое излучение - это электромагнитное излучение, возникающее за счёт внутренней энергии тела. Все окружающие нас тела излучают тепловую энергию. Это может быть видимое световое излучение настольной лампы, или источники невидимых ультрафиолетовых, инфракрасных или гамма-лучей.

Но тела не только излучают тепло. Они его также и поглощают. Одни в большей степени, другие в меньшей. Причём тёмные тела и нагреваются, и охлаждаются быстрее, чем светлые. В жаркую погоду мы стараемся надеть светлую одежду, потому что она поглощает меньше тепла, чем одежда тёмных тонов. Автомобиль тёмного цвета нагревается на солнце гораздо быстрее, чем стоящий с ним рядом автомобиль, имеющий светлую окраску.

Это свойство веществ по-разному поглощать и излучать тепло используется при создании систем ночного видения, систем самонаведения ракет на цель и др.

Определение: Термодинамика - наука о закономерностях превращения энергии .

В термодинамике широко используется понятие термодинамической системы .

Определение: термодинамической системой называется совокупность материальных тел, взаимодействующих, как между собой, так и с окружающей средой . Все тела находящиеся за пределами границ рассматриваемой системы называются окружающей средой .

Поскольку одно и тоже тело, одно и тоже вещество при разных условиях может находиться в разных состояниях, (пример: ледvводаvпар, одно вещество при разной температуре) вводятся, для удобства, характеристики состояния вещества - так называемые параметры состояния .

Перечислим основные параметры состояния вещества:

Температура тел - определяет направление возможного самопроизвольного перехода тепла между телами .

В настоящее время в мире существует несколько температурных шкал и единиц измерения температуры. Наиболее распространенная в Европе шкала Цельсия где нулевая температура v температура замерзания воды при атмосферном давлении, а температура кипения воды при атмосферном давлении принята за 100 градусов Цельсия (ºС). В Северной Америке используется шкала Фаренгейта. Для термодинамических расчетов очень удобна абсолютная шкала или шкала Кельвина. За ноль в этой шкале принята температура абсолютного нуля, при этой температуре прекращается всякое тепловое движение в веществе. Численно один градус шкалы Кельвина равен одному градусу шкалы Цельсия.

Температура, выраженная по абсолютной шкале, называется абсолютной температурой .

Соотношение для перехода от градусов Цельсия к градусам Кельвина:

T [K] = t [º C] + 273.15

T-температура в Кельвинах;

t v температура в градусах Цельсия.

Давление - представляет собой силу, действующею по нормали к поверхности тела и отнесенную к единице площади этой поверхности .

Для измерения давления применяются различные единицы измерения. В стандартной системе измерения СИ единицей служит Паскаль (Па).

Соотношение между единицами:

1 бар = 10 5 Па

1 кг/см 2 (атмосфера) = 9.806710 4 Па

1мм рт. ст (миллиметр ртутного столба) = 133 Па

1 мм вод. ст. (миллиметр водного столба) = 9.8067 Па

Плотность - отношение массы вещества к объему занимаемому эти веществом .

Удельный объем - величина обратная плотности т.е. отношения объема занятого веществом к его массе .

Определение: Если в термодинамической системе меняется хотя бы один из параметров любого входящего в систему тела, то в системе происходит термодинамический процесс .

Основные термодинамические параметры состояния Р, V, Т однородного тела зависят один от другого и взаимно связаны уравнением состояния:

Для идеального газа уравнение состояния записывается в виде:

P - давление

v - удельный объем

T - температура

R - газовая постоянная (у каждого газа свое значение)

Если известно уравнение состояния, то для определения состояния простейших систем достаточно знать две независимые переменные из 3-х

Р = f1 (v, т); v = f2 (Р, Т); Т = f3 (v, Р)

Термодинамические процессы часто изображаются на графиках состояния, где по осям отложены параметры состояния. Точки, на плоскости такого графика, соответствуют определенному состоянию системы, линии на графике соответствуют термодинамическим процессам, переводящим систему из одного состояния в другое.

Рассмотрим термодинамическую систему, состоящую из одного тела v какого либо газа в сосуде с поршнем, причем сосуд и поршень в данном случае является внешней средой. Пусть, для примера, происходит нагрев газа в сосуде, возможны два случая:

1) Если поршень зафиксирован и объем не меняется, то произойдет повышение давления в сосуде. Такой процесс называется изохорным (v=const), идущий при постоянном объеме;

Изохорные процессы в P - T координатах:

v 1 >v 2 >v 3

2) Если поршень свободен, то нагреваемый газ будет расширяться, при постоянном давлении такой процесс называется изобарическим (P=const), идущим при постоянном давлении.

Изобарные процессы в v - T координатах

P 1 >P 2 >P 3

Если, перемещая поршень, изменять объем газа в сосуде то, температура газа тоже будет изменяться, однако можно охлаждая сосуд при сжатии газа и нагревая при расширении можно достичь того, что температура будет постоянной при изменениях объема и давления, такой процесс называется изотермическим (Т=const).

Изотермические процессы в P-v координатах

Процесс, при котором отсутствует теплообмен между системой и окружающей средой, называется адиабатным , при этом количество теплоты в системе остается постоянными (Q=const). В реальной жизни адиабатных процессов не существует поскольку полностью изолировать систему от окружающей среды не возможно. Однако часто происходят процессы, при которых теплообменном с окружающей средой очень мал, например, быстрое сжатие газа в сосуде поршнем, когда тепло не успевает отводиться за счет нагрева поршня и сосуда.

Примерный график адиабатного процесса в P - v координатах

Определение: Круговой процесс (Цикл) - это совокупность процессов, возвращающих систему в первоначальное состояние . Число отдельных процессов может быть любым в цикле.

Понятие кругового процесса является для нас ключевым в термодинамике, поскольку работа АЭС основана на паро-водяном цикле, другими словами мы можем рассматривать испарение воды а активной зоне (АЗ), вращение паром ротора турбины, конденсацию пара и поступление воды в АЗ как некий замкнутый термодинамический процесс или цикл.

Теплота и работа .

Тела, участвующие в процессе, обмениваются между собой энергией. Энергия одних тел увеличивается, других - уменьшается. Передача энергии от одного тела к другому происходит 2-мя способами:

Первый способ передачи энергии при непосредственном контакте тел, имеющих различную температуру, путем обмена кинетической энергии между молекулами соприкасающихся тел (или лучистым переносом при помощи электромагнитных волн).

Энергия передается от более нагретого тела к менее нагретому.

Энергия кинетического движения молекул называется тепловой, поэтому такой способ передачи энергии называется передача энергии в форме теплоты. Количество энергии, полученной телом в форме теплоты, называется подведенной теплотой (сообщенной), а количество энергии, отданное телом в форме теплоты - отведенной теплотой (отнятой).

Обычное обозначение теплоты Q, размерность Дж. В практических расчетах важное значение приобретает отношение теплоты к массе - удельная теплота обозначается q размерность Дж/кг.

Подведенная теплота - положительна, отведенная - отрицательна.

Второй способ передачи энергии связан с наличием силовых полей или внешнего давления. Для передачи энергии этим способом тело должно либо передвигаться в силовом поле, либо изменять свой объем под действием внешнего давления.

Этот способ называется передачей энергии в форме работы .

Если в качестве примера тела рассматривать газ в сосуде с поршнем то в случае приложения внешней силы к поршню происходит сжатие газа - работа совершается над телом, а в случае расширения газа в сосуде работу, перемещение поршня, совершает само тело (газ).

Количество энергии, полученное телом в форме работы называется совершенной над телом работой, а отданная - затраченной телом работой .

Количество энергии в форме работы обычно обозначается L размерность Дж. Удельная работа - отношение работы к массе тела обозначается l размерность - Дж/кг.

Определение: Рабочие тело - определенное количество вещества, которое, участвуя в термодинамическом цикле, совершает полезную работу .

Рабочим телом в реакторной установке РБМК является вода, которая после испарения в активной зоне в виде пара совершает работу в турбине, вращая ротор.

Определение: Передача энергии в термодинамическом процессе от одного тела к другому, связанная с изменением объема рабочего тела, с перемещением его во внешнем пространстве или с изменением его положения называется работой процесса .

В термодинамике изучают самые общие законы и физические процессы преобразований внутренней энергии. При этом считается, что любое материальное тело имеет тепловую энергию $U$, которая зависит от его температур.

Перед тем, как рассмотреть основные термодинамические формулы необходимо дать определение термодинамике.

Определение 1

Термодинамика - это обширный раздел физики, который исследует и описывает процессы, происходящие в системах, а также их состояния.

Указанное научное направление опирается на обобщенные факты, которые были получены опытным путем. Происходящие в термодинамических концепциях явления описываются посредством использования макроскопических величин.

В их список входят такие параметры, как:

  • давление;
  • температура;
  • концентрация;
  • энергия;
  • объем.

К отдельным молекулам данные параметры неприменимы, а сводятся к детальному описанию системы в общем ее виде. Много решений, которые основаны на термодинамических законах, можно встретить в сфере электроэнергетики и тепловой техники. Что и свидетельствует о понимании фазовых переходов, химических процессов и явлений переноса. В некотором роде термодинамика тесно “сотрудничает” с квантовой динамикой.

Уравнение идеального газа в термодинамике

Рисунок 1. Работа в термодинамике. Автор24 - интернет-биржа студенческих работ

Определение 2

Идеальный газ – это некая идеализация, такая же, как и материальная точка.

Молекулы такого элемента являются материальными точками, а соударения частиц – абсолютно упругие и постоянные. В задачах по термодинамике реальные газы зачастую принимаются за идеальные. Так гораздо легче составлять формулы, и не нужно иметь дела с огромным количеством новых величин в уравнениях.

Итак, молекулы идеального газа движутся, а вот чтобы узнать с какой скоростью и массой, необходимо использовать уравнение состояния идеального газа, или формулу Клапейрона-Менделеева: $PV = \frac{m}{M}RT$. Здесь $m$ – масса исследуемого газа, $M$ – его изначальная молекулярная масса, $R$ – универсальная постоянная, равная 8,3144598 Дж/(моль*кг).

В этом аспекте массу идеального газа также можно вычислить, как произведение объема и плотности $m = pV$. Существует некая связь между средней кинетической энергией $E$ и давлением газа. Эта взаимосвязь называется в физике основным уравнением молекулярно-кинетической теории и имеет вид: $p = \frac{2}{3}nE$, где $n$ – концентрация движущихся молекул по отношению к общему объему, $E$ – коэффициент средней кинетической энергии.

Первое начало термодинамики. Формулы для изопроцессов

Рисунок 2. Уравнение состояния идеального газа. Автор24 - интернет-биржа студенческих работ

Первый термодинамический закон гласит: количество внутренней теплоты, переданное газу, идёт только на изменение общей энергии газа $U$ и на совершение веществом работы $A$. Формула первого начала термодинамики записывается так: $Q = ΔU + A$.

как известно, с газом в системе всегда что-то происходит, ведь его можно сжать или нагреть. В данном случае необходимо рассмотреть такие процессы, которые протекают при одном стабильном параметре. Первое начало термодинамики в изотермическом случае, который протекает при постоянной температуре, задействует закон Бойля-Мариотта.

В результате изотермического процесса давление газа обратно пропорционально его изначальному объёму: $Q = A.$

Изохорный – наблюдается при постоянном объеме. Для этого явление применим закон Шарля, согласно которому, давление прямо пропорционально общей температуре. В изохорном процессе все подведенное к газу тепло идет на изменение его внутренней энергии и записывается в таком виде: $Q = ΔA.$

Изобарный процесс – происходит при постоянном давлении. Закон Гей-Люссака предполагает, что при неизменном давлении идеального газа его начальный объём прямо пропорционален итоговой температуре. При изобарном процессе тепло идет на совершение газом работы и на изменение внутреннего энергетического потенциала: $Q = \Delta U+p\Delta V.$

Формула теплоемкости и главная формула КПД в термодинамике

Замечание 1

Удельная теплоемкость в термодинамической системе всегда равна количеству теплоты, которое выделяется для нагревания одного килограмма действующего вещества на один градус Цельсия.

Уравнение теплоемкости записывается таким образом: $c = \frac{Q}{m\Delta t}$. Помимо указанного параметра, существует и молярная теплоемкость, которая работает при постоянном объеме и давлении.

Ее действия видно в следующей формуле: $C_v = \frac {i}{2}R$ где $i$ – количество степеней свободы молекул газа.

Тепловая машина, в самом простейшем случае, состоит из холодильника, нагревателя и рабочего материального тела. Нагреватель изначально сообщает тепло физическому веществу и совершает определенную работу, а затем постепенно охлаждается холодильником, и все повторяется по кругу. Типичным примером тепловой машины выступает двигатель внутреннего сгорания.

Коэффициент полезного действия теплового устройства вычисляется по формуле: $n = \frac {Q_h-Q_x }{Q_h }.$

При изучении основ и уравнений термодинамики следует понять, что на сегодняшний день существует два метода описания физических процессов, происходящих в макроскопических материальных телах: статистический и термодинамический.

Методы термодинамики и ее формулы позволяет раскрыть и описать смысл экспериментальных закономерностей в виде закона Менделеева-Клапейрона. Важно понять, что в термодинамических концепциях, в отличие от систем молекулярной физики, не изучаются конкретные взаимодействия, происходящие с определенными молекулами или атомами, а рассматривается постоянные взаимопревращения и связь разнообразных видов теплоты, энергии и работы.

Уравнение состояния и его функции

Рисунок 4. Термодинамические уравнения состояния. Автор24 - интернет-биржа студенческих работ

При исследовании макросостояний применяются функции состояния, которые предполагают показатель, демонстрирующий определённые состояния термодинамического равновесия, независящий от предыстории концепции и метода её перехода в абсолютное состояние.

Основными функциями состояния при грамотном построении термодинамики являются:

  • внутренняя энергия;
  • энтропия;
  • температура;
  • термодинамические потенциалы.

Однако функции состояния в термодинамики не являются полностью независимыми, и для однородной системы любой термодинамический принцип может быть записан как выражение двух самостоятельных переменных. Такие функциональные взаимосвязи называются уравнениями общего состояния.

На сегодняшний день различают такие виды уравнений:

  • термическое уравнение состояние - определяющее связь между давлением, температурой и объёмом;
  • калорическое уравнение - выражающее внутренний энергетический потенциал, как функцию от объёма и температуры;
  • каноническое уравнение состояние - записываемое в качестве термодинамического потенциала в соответствующих переменных.

Знание уравнения состояния очень важно для использования на практике общих принципов термодинамики. Для каждой конкретной термодинамической концепции такие выражения определяются из опыта или способами статистической механики, и в пределах термодинамики оно считается заданным при изначальном определении системы.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта