Главная » Съедобные грибы » Инженерная графика! Лекции. История кафедры РК1 «Инженерная графика

Инженерная графика! Лекции. История кафедры РК1 «Инженерная графика

для студентов заочной формы обучения

(технические специальности)

Учебное пособие

Курган 2006

УДК 744 (075.8)

ББК 30.11 я7

Полибза Т.Т., Карпова И.Е., Иванов В.В.Краткий курс по инженерной графике для студентов заочной формы обучения (технические специальности): Учебное пособие.-Курган: Изд-во Курганского гос. университета, 2006. – 88 с.

Учебное пособие предназначено, в первую очередь, в помощь студентам заочной формы обучения. В пособии рассмотрены правила выполнения чертежей в соответствии с ЕСКД, основы проекционного черчения, основные положения машиностроительного черчения.

Материал, изложенный в пособии, соответствует обязательному минимуму федерального компонента по курсу инженерной графики для большинства технических специальностей.

Рис. 103, Библ. 6 назв.

Печатается по решению редакционно-издательского совета Курганского государственного университета

Рецензенты:

Кафедра «Архитектура и графика» Курганской государственной сельскохозяйственной академии;

Главный конструктор ООО «КАВЗ» В.В. Колотыгин;

Генеральный директор, главный конструктор ООО «Специальное конструкторское бюро машиностроения» А.И. Никонов

ISBN 5 – 86328 – 208-8

© Курганский государственный университет. 2006

ВВЕДЕНИЕ

Изучение инженерной графики необходимо для приобретения знаний и навыков, позволяющих составлять и читать технические чертежи, развивать пространственное воображение. Умение составлять и читать чертежи основывается на знании метода построения изображения, приемов решения различных позиционных задач, изучаемых студентами в курсе «Начертательная геометрия», а также на знании ряда условностей, принятых в техническом черчении.

Учебный материал в пособии изложен в той последовательности, в которой изучают курс инженерной графики студенты очной формы обучения. Для студента заочной формы обучения основной формой работы является самостоятельное изучение материала по учебникам и учебным пособиям, а также соответствующим ГОСТам. Список литературы по данному курсу приведен в конце пособия.

Изучение курса инженерной графики начинается со стандартов, относящихся к оформлению чертежей: шрифты, масштабы, линии чертежа, штриховка, нанесение размеров, условное обозначение материалов в разрезах и сечениях.

В машиностроении широко применяют детали, имеющие различные резьбы, используемые как для неподвижного соединения деталей, так и для передачи заданного перемещения одной детали относительно другой. Изображение и обозначение различных видов резьб рассматривается во второй главе.

Основным конструкторским документом при изготовлении детали является её чертеж. Выполнить чертеж с соблюдением правил Единой Системы Конструкторской Документации (ЕСКД), нанесением размеров, заданным значением шероховатости поверхности поможет изучение третьей главы пособия.

Изготовленные на производстве детали соединяются между собой для выполнения определенных функций. Правила изображения соединений, условности и упрощения, применяемые при их изображении, рассматриваются в четвертой главе.

Чтобы собрать из отдельных деталей узел, необходимо иметь перечень этих деталей, знать, как детали располагаются в узле, как взаимодействуют между собой. Для этого выполняются сборочный чертеж и спецификация. Правила построения сборочного чертежа, нанесения на нем размеров, номеров позиций, а также правила заполнения спецификации рассматриваются в пятой главе.

Обратной задачей является выполнение рабочих чертежей по чертежу сборочной единицы – деталирование. Выполнение деталирования имеет большое учебное значение. С его помощью студент проверяет свое умение читать чертежи и знание материала по всему курсу инженерной графики.

ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ

Форматы

Формат – размеры листа конструкторского документа, ограниченного внешней рамкой.

В таблице 1.1 приведены размеры основных форматов и их обозначения.

Таблица 1.1

Формат А0 А1 А2 А3 А4
Размеры 841х1189 594х841 420х594 297х420 210х297

Для выполнения работ используются, в основном, форматы А4 - 210х297 мм и АЗ - 297х420 мм. ГОСТ 2.301-68 устанавливает расположение внутренней рамки (выполняется сплошной толстой основной линией), основной надписи и дополнительной графы (рисунок 1.1).

Рисунок 1.1

Основная надпись на формате А4 располагается вдоль короткой стороны листа, в то время как у других форматов - вдоль вертикальной или горизонтальной стороны листа. С левой стороны формата внутренняя рамка образует поле для подшивки шириной 20 мм, со всех других сторон она удалена от внешней рамки (выполненной тонкой сплошной линией) на 5 мм. Формат выбирается таким, чтобы на нем можно было рационально разместить всю необходимую информацию об изделии. Принято считать нормально заполненным формат, если информация занимает около 75% его поля. В правом нижнем углу формата, примыкая к сторонам внутренней рамки, располагается основная надпись (рисунок 1.2 и рисунок 1.3).

Рисунок 1.2

Рисунок 1.3

Если основная надпись располагается на чертеже детали, то в ней указывается:

· наименование детали (графа 1);

· обозначение чертежа, совпадающее с обозначением детали (графа 2);

· материал детали (графа 3);

· литера, присвоенная данному документу (графа 4);

· масса детали (графа 5);

· масштаб чертежа (графа 6);

· другие основные данные, относящиеся к изделию и к чертежу.

Рисунок 1.2 содержит изображение основной надписи для первых листов чертежей и схем. Вторые и последующие листы конструкторских документов имеют упрощенную форму основной надписи, приведенную на рисунке 1.3.

Помимо основной надписи на учебных чертежах следует помещать одну дополнительную графу к основной надписи (рисунок 1.4), в которой помещается обозначение документа, причем запись производится в зависимости от того, вдоль какой стороны расположена на данном чертеже основная надпись: если по длинной стороне - то дополнительная графа располагается, как показано на рисунке 1.4 а, если по короткой - то, как на рисунке 1.4 б.

Рисунок 1.4

Масштабы

Изображения на чертежах предпочтительно выполнять в натуральную величину, стремясь к наибольшей их наглядности. Однако способ выполнения изображений, величина и степень сложности изображаемого изделия и его элементов, а также свойства человеческого восприятия заставляют отступать от этого правила.

ГОСТ 2.302-68 «Масштабы» устанавливает два ряда масштабов: масштабы уменьшения и масштабы увеличения. Масштаб записывается в виде отношения, показывающего, во сколько раз больше или меньше линейные размеры изображения соответствующих размеров изображаемого изделия. Натуральная величина изображений условно записывается отношение М 1:1. В таблице 1.2 приведены стандартные значения масштабов.

Правила применения масштабов

1. Масштаб применяется лишь тогда, когда изображение не может быть выполнено в натуральную величину.

2. Масштаб увеличения, как исключение, применяется и в тех случаях, когда для нанесения размеров не хватает места (выносные элементы).

3. Следует избегать применения масштаба увеличения для всех изображений на чертеже, если можно обойтись увеличением одного или нескольких. Главное изображение предпочтительно оставлять выполненным в натуральную величину.

Таблица 1.2

Стандартные значения масштабов

Линии

Изображения, размеры и знаки на чертеже выполняются линиями. ГОСТ 2.303-68 устанавливает начертание линий и их основные назначения.

Линии видимого контура, видимые линии четких переходов (пересечений) поверхностей выполняются сплошной толстой основной линией. Толщина s этой линии на чертеже зависит от величины и сложности изображения, размера чертежа. Для линий чертежа рекомендуется выбирать величину s в пределах 0,8-1,4 мм. Все другие линии чертежа выполняют вспомогательные функции и выполняются в два раза меньшей толщины (кроме разомкнутой и утолщенной штрихпунктирной). Если изображения выполняются в разных масштабах на одном чертеже, то толщина основной линии может меняться. Соответственно меняется толщина и вспомогательных линий.

Сплошная тонкая линия применяется:

  • при вычерчивании контуров наложенных сечений;
  • при нанесении размеров, штриховки;
  • при изображении плавных переходов;
  • при вычерчивании линий-выносок и полок.

Сплошная волнистая линия применяется при:

  • вычерчивании линий обрыва;
  • для разграничения вида и разреза.

Штриховая линия показывает линии невидимого контура.

Штрихпунктирная тонкая используется для построения осевых и центровых линий.

Разомкнутая линия определяет положение секущей плоскости. Толщина ее принимается от s до 1 1 / 2 s . На рисунке 1.5 приведены начертания неко-

торых линий, где 1 - сплошная толстая основная; 2 - сплошная тонкая; 3 - сплошная волнистая; 4 - штриховая; 5 - штрихпунктирная; 6 - разомкнутая; 7 - сплошная тонкая с изломами.

Рисунок 1.5

Чертежные шрифты

Наносимые на чертежи и другие конструкторские документы шрифты выполняются по ГОСТу 2.304-81. Размер шрифта h определяется высотой прописных букв в мм. Ряд значений h установлен стандартом:

(1,8) 2,5 3,5 5,0 7,0 10,0 14,0 20,0

C конкретными начертаниями букв и цифр следует знакомиться по стандарту, справочникам, плакатам. На рисунке 1.6 показано использование вспомогательной сетки.

ВВЕДЕНИЕ 6

^ РАЗДЕЛ 1. ОФОРМЛЕНИЕ ЧЕРТЕЖЕЙ 6

1.1. Виды изделий и их структура 6

1.2. Виды и комплектность конструкторских документов 7

1.3. Стадии разработки конструкторской документации 9

1.4. Основные надписи 10

1.5. Форматы 11

1.6. Масштабы 11

1.7. Линии чертежа 12

1.8. Шрифты чертежные 13

1.9. Штриховка 14

^ РАЗДЕЛ 2. ИЗОБРАЖЕНИЯ 15

2.1. Виды 15

2.2. Сечения 17

2.3. Обозначение сечений 18

2.4. Выполнение сечений 19

2.5. Разрезы 19

2.6. Обозначение простых разрезов 21

2.7. Выполнение простых разрезов 21

2.8. Выполнение сложных разрезов 21

^ РАЗДЕЛ 3. УСЛОВНЫЕ ГРАФИЧЕСКИЕ ИЗОБРАЖЕНИЯ НА ЧЕРТЕЖАХ 23

3.1. Условности и упрощения пpи выполнении изобpажений 23

3.2 . Выбор необходимого количества изображений 24

3.3. Компоновка изображений на поле чертежа 25

3.4. Изображение на чертеже линий пересечения и перехода 26

3.5. Построение линий пересечения и перехода 27

^ РАЗДЕЛ 4. НАНЕСЕНИЕ РАЗМЕРОВ 28

4.1. Основные виды механической обработки деталей 28

4.2. Краткие сведения о базах в машиностроении 29

4.3. Система простановки размеров 29

4.4. Методы простановки размеров 31

4.5. Чертеж вала 31

4.6. Конструктивные элементы деталей 32

4.7. Резьбовые проточки 35

4.8. Литейные базы, базы механической обработки 36

4.9. Нанесение размеров на чертежах литых деталей 37

^ РАЗДЕЛ 5. АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ 37

5.1. Виды аксонометpических пpоекций 37

5.2. Аксономертрические проекции плоских фигур 41

5.3. Аксонометрические проекции 3-x мерных тел 44

^ РАЗДЕЛ 6. РЕЗЬБЫ, РЕЗЬБОВЫЕ ИЗДЕЛИЯ И СОЕДИНЕНИЯ 47

6.1. Геометрическая форма и основные параметры резьбы 47

6.2. Назначение резьб и стандарты 50

6.3. Изображение резьбы 51

6.4. Обозначение резьб 53

6.5. Изображение резьбовых изделий и соединений 54

6.6. Обозначение стандартных резьбовых изделий 60

^ РАЗДЕЛ 7. РАЗЪЕМНЫЕ СОЕДИНЕНИЯ 62

7.1. Hеподвижные pазьемные соединения 62

7.2. Соединение болтом 62

7.3. Соединение шпилькой 63

7.4. Соединение винтом 64

7.5. Соединение труб 65

7.6. Подвижные разъемные соединения 65

7.7. Шпоночные соединения 66

7.8. Соединения шлицевые 66

^ РАЗДЕЛ 8. НЕРАЗЪЕМНЫЕ СОЕДИНЕНИЯ, ЗУБЧАТЫЕ ПЕРЕДАЧИ 67

8.1. Изобpажения и обозначения сваpных швов 67

8.2. Зубчатые и червячные передачи 69

8.3. Условные изображения зубчатых колес 73

8.4. Чертеж цилиндрической зубчатой передачи 74

^ РАЗДЕЛ 9. ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ 75

9.1. Нормирование шероховатости поверхности 75

9.2. Параметры шероховатости поверхностей 76

9.3. Выбор параметров шероховатости поверхности 77

9.4. Пример нормирования шероховатости 77

9.5. Знаки для обозначения шероховатости 79

9.6. Правила обозначения шероховатости 80

^ РАЗДЕЛ 10. ЭСКИЗЫ 84

10.1. Эскиз детали. Тpебования к эскизу 84

10.2. Последовательность выполнения эскизов 85

10.3. Общие требования к простаноске размеров 87

10.4. Приемы обмера деталей 88

10.5. Шероховатость поверхностей и ее обозначение 89

10.6. Материалы в машиностроении 92

^ РАЗДЕЛ 11. СБОРОЧНЫЙ ЧЕРТЕЖ 101

11.1. Опpеделение сбоpочного чеpтежа 101

11.2. Требования к сборочному чертежу 102

11.3. Последовательность выполнения сборочного чертежа 102

11.4. Нанесение номеров позиций 104

11.5. Спецификация сборочного чертежа 105

11.6. Условности и упрощения на сборочных чертежах 107

^ РАЗДЕЛ 12. ДЕТАЛИРОВАНИЕ ЧЕРТЕЖЕЙ 108

12.1. Чтение чертежа общего вида 108

12.2. Выполнение чертежей деталей 109

12.3. Чтение чертежа “Клапан напорный” 110

12.4. Последовательность выполнения чертежа корпуса 112

ОСНОВНЫЕ ВОПРОСЫ для тестирования по дисциплине

Методические указания для подготовки к входному компьютерному тестированию

по ИНЖЕНЕРНОЙ ГРАФИКЕ

(дисциплина)

для специальностей:

1-36 01 01 «Технология машиностроения»

1-36 01 03 «Технологическое оборудование машиностроительного производства»

1-53 01 01 «Автоматизация технологических процессов и производств»

1-74 06 01 «Техническое обеспечение процессов сельскохозяйственного производства»

1 курс,1-2 семестр

(номер курса, номер семестра)

ФЗО и

3 курс 1-2 семестр ФНО

(название факультета)

ЭОП -1 КУРС -1 семестр ФЗО = ЭОП -3 КУРС 1 семестр ФНО

ИСТ- 1 КУРС – 1 семестр = ИСТ -3 курс ФНО

Барановичи 2012

ВВЕДЕНИЕ

ТЕМАТИЧЕСКИЙ ПЛАН.

№ п/п Наименование раздела, темы
Раздел I «Начертательная геометрия и основы геометрического построения».
1. Тема 1.1. Введение в предмет начертательной геометрии и образование проекционного чертежа
2.
3.
4. Тема 1.4. Взаимное положение прямой и плоскости, двух плоскостей
5. Тема 1.5.Преобразование чертежа заменой плоскостей проекций, вращением и плоскопараллельным перемещением
6. Тема 1.6. Поверхности - образование, изображение на чертеже, сечения плоскостями
7. Тема 1.7. Пересечение поверхностей
Раздел II «Проекционное черчение»
8. Тема 2.1. Общие правила оформления чертежей, обзор стандартов ЕСКД
9. Тема 2.2. Геометрические построения
10. Тема 2.3. Основные правила выполнения чертежей
11. Тема 2.4. Нанесение размеров (ГОСТ 2.307-68)
12. Тема 2.5. Аксонометрические проекции с аксонометрическим разрезом (ГОСТ 2.317-69)

Раздел I «Начертательная геометрия»

Тема 1.1. Введение в предмет начертательной геометрии и образование проекционного чертежа

Начертательная геометрия - основа инженерного образования; предмет начертательной геометрии;

метод проецирования; центральное и параллельное проецирование и их свойства; прямоугольное (ортогональное) проецирование;

метод Монжа (историческая справка); точка в системе двух и трёх плоскостей проекций; ортогональные проекции точки и система прямоугольных координат (система координат Декарта).



Тема 1.2. Проекции отрезка прямой линии, положение прямой относительно плоскостей проекций, взаимное положение двух прямых

положение прямой относительно плоскостей проекций (прямые общего и частного положений и их проекции); точка на прямой;

взаимное положение прямых: изображение начертеже параллельных, пересекающихся и скрещивающихся прямых; конкурирующие точки на скрещивающихся прямых (правило конкурирующих точек при определении видимости точек).

Тема 1.3. Проекции плоскости, положение плоскости относительно плоскостей проекций, характерные линии плоскости, проецирование прямого угла

задание плоскости на чертеже различными способами; следы плоскости; точка и прямая в плоскости (построение их недостающих проекций); линии уровня плоскости;

положение плоскости относительно плоскостей проекций (плоскости общего и частного положений);

собирательное свойство проецирующих плоскостей;

проекции плоских фигур; теорема о проецировании прямого угла.

Тема 1.4. Взаимное положение прямой и плоскости, двух плоскостей

параллельность прямой и плоскости, двух плоскостей;

пересечение прямой и плоскости, двух плоскостей, когда один из пересекающихся элементов занимает проецирующее положение, и алгоритмы построения проекций точки пересечения прямой и плоскости.

Тема 1.5. Преобразование чертежа заменой плоскостей проекций, вращением и плоскопараллельным перемещением

цель и способы преобразования;

метод замены плоскостей проекций (замена одной и двух плоскостей проекций; четыре основные задачи преобразования чертежа, решаемые методом замены плоскостей проекций);

метод вращения (вращение вокруг проецирующих прямых - ось вращения, центр вращения, радиус вращения, плоскость вращения);

плоскопараллельное перемещение.

Тема 1.6. Поверхности - образование, изображение на чертеже, сечения плоскостями

Общие сведения о гранных и кривых поверхностях;

образование, образующая, направляющая; задание и изображение поверхности на чертеже;

проекции поверхностей (частные случаи):

многогранники (наклонные и правильные прямые - призма и пирамида), их сечения проецирующими плоскостями;

поверхности вращения: образующая и ось вращения поверхности, очерк поверхности; характерные линии на поверхности вращения (параллели, экватор, горло, линии меридиональных сечений); примеры поверхностей вращения (прямой цилиндр, конус, сфера, тор); характерные линии сечений поверхностей вращения (цилиндра, конуса, сферы); проекции поверхностей вращения со срезами проеци­рующими плоскостями;

винтовые поверхности (прямой и косой геликоиды, точка на поверхности геликоида, сечение геликоида проецирующей плоскостью);

касательные линии и плоскости (общий алгоритм построения касательных плоскостей к кривым поверхностям);

пересечение прямой общего положения с многогранниками и поверхностями вращения;

Тема 1.7. Пересечение поверхностей

понятие линии пересечения; общий алгоритм построения линии пересечения;

четыре общих случая пересечения поверхностей (на частных примерах, когда одна или обе поверхности являются проецирующими);

построение линии пересечения поверхностей способом вспомогательных секущих плоскостей уровня;

соосные поверхности; построение линии пересечения поверхностей способом вспомогательных секущих концентрических и эксцентрических сфер;

теорема о пересечении поверхностей второго порядка; теорема Монжа; характер изменения линии пересечения поверхностей 2-х цилиндров в зависимости от соотношения их диаметров;

Раздел II «Проекционное черчение»

Тема 2.1. Общие правила оформления чертежей, обзор стандартов ЕСКД

Основные сведения о единых правилах выполнения и оформления чертежей и других технических документов в соответствии ЕСКД как комплексе государственных стандартов; назначение и распространение стандартов, их состав, классификация и обозначение (ГОСТ 2.001-70);

форматы (ГОСТ 2.301-68) и оформление чертёжных листов; основные надписи (ГОСТ

2.104-68) и заполнение их граф; масштабы (ГОСТ 2.302-68); линии (ГОСТ 2.303-68); шрифты чертёжные (ГОСТ 2.304-81); нанесение размеров (ГОСТ 2.307-68).

Тема 2.2. Геометрические Построения

Порядок построения параллельных и взаимно перпендикулярных прямых; деление отрезка прямой; построение углов и их деление; построение плоских многоугольных фигур; определение центра дуги окружности; деление окружности на равные части; построение правильных вписанных и описанных в окружность многоугольников; сопряжения: правила выполнения сопряжений различных геометрических элементов, наиболее часто встречающихся в очертаниях изображений предметов на чертежах (двух пересекающихся прямых; двух окружностей или дуг касательной прямой; двух окружностей - внутреннее ивнешнее касание; касательной к двум окружностям; окружности с прямой линией);

построение уклона и конусности; обозначение уклонов и конусностей;

построение касательных прямых к окружности, овалов, спиральных и лекальных кривых (эллипс, парабола, гипербола, эвольвента, циклоида и др.).

Тема 2.3. Основные правила выполнения чертежей

Изображения - виды, разрезы, сечения (ГОСТ 2.305-68):

основные положения и определения; названия видов; дополнительные и местные виды и их расположение, обозначение и надписание видов; соотношение размеров стрелок, указывающих направление взгляда при обозначении вида; типы разрезов - горизонтальные, вертикальные (фронтальные и профильные); обозначение и надписание разрезов, их расположение; местные разрезы; соединение части вида с частью разреза, разделяющая их линия; условности и упрощения на изображениях; сечения вынесенные и наложенные, их расположение и обозначение; сложные разрезы (ломанные и ступенчатые); порядок применения, правила выполнения, обозначение секущих плоскостей на чертеже.

Обозначения графические материалов и правила их нанесения на чертежах(ГОСТ 2.306-68):

штриховка сечений (графическое обозначение материалов, в том числе неметаллических непрозрачных и светопрозрачных).

Тема 2.4. Нанесение размеров (ГОСТ 2.307-68)

общие положения; общие требования к нанесению размеров; нанесение линейных размеров; нанесение размера диаметра поверхностей вращения; нанесение размеров радиусов дуг окружностей; нанесение угловых размеров; нанесение размеров призматической поверхности, основанием которой является квадрат; нанесение размеров фасок на призматические поверхности; особенности нанесения размеров отверстий (образмеривание расположения отверстий); основные понятия о базах в машиностроении и нанесение размеров от баз.

Тема 2.5. Аксонометрические проекции с аксонометрическим разрезом (ГОСТ 2.317-69)

прямоугольные (изометрическая и диметрическая) и косоугольные проекции (фронтальная и горизонтальная изометрические и фронтальная диметрическая); положение аксонометрических осей, приведенные коэффициенты искажений по осям; изображение окружностей, положение осей эллипсов, размеры большой и малой осей эллипсов; нанесение штриховки на аксонометрическом разрезе.

КАФЕДРА МЕХАНИКИ И ГРАФИКИ

Л.А. Козлова

ИНЖЕНЕРНАЯ ГРАФИКА

Учебное пособие

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ»

КАФЕДРА МЕХАНИКИ И ГРАФИКИ

Л.А. Козлова

ИНЖЕНЕРНАЯ ГРАФИКА

Учебное пособие

Учебное пособие предназначено для студентов всех специальностей,

изучающих курс

«Инженерная компьютерная графика».

АННОТАЦИЯ

Пособие содержит теоретические основы начертательной геометрии и инженерной графики, примеры решения геометрических задач и построение графических проекций. Учебное пособие предназначено для всех специаль-

ностей изучающих курс «Инженерная графика»

Введение………………………………………………………………………… 5

1 Основы начертательной геометрии…………………………………………. 7

1.1 Символика………………………………………………………….......... 7

1.2 Центральное проецирование………………………………………….. . 8

1.3 Параллельное проецирование………………………………………… 9

1.4 Прямоугольное (ортогональное) проецирование…………………… 10

1.5 Проецирование точки…………………………………………………... 12

1.6 Проецирование прямых общего положения………………………...... 15

1.7 Деление отрезка в заданном отношении……………………………… 16

1.8 Следы прямой…………………………………………………………... 16

1.9 Метод прямоугольного треугольника…………………………………. 17

1.10 Проецирование прямых частного положения……………………….. 18

1.11 Взаимное положение точки и прямой……………………………....... 20

1.12 Взаимное положение прямых………………………………………….. 20

1.13 Определение видимости гранного тела……………………………….. 25

1.14 Плоскость ……………………………………………………………… 25

1.15 Точка и прямая в плоскости………………………………………….. 28

1.16 Взаимное положение прямой и плоскости, плоскостей……………. 34

1.17 Способы преобразования комплексного чертежа…………………… 45

1.17 Многогранники………………………………………………………… 50

1.18 Тела вращения…………………………………………………………. 53

2 Основные правила оформления чертежей………………………………… 60

2.1 Единая система конструкторской документации. Стандарты ЕСКД. 60

2.2 Форматы………………………………………………………………… 60

2.3 Масштабы……………………………………………………………… 61

2.4 Линии…………………………………………………………………… 63

2.5 Шрифты чертежные…………………………………………………… 64

2.6 Изображения на технических чертежах……………………………… 66

2.7 Графические обозначение материалов в сечениях………………….. 78

2.8 Нанесение размеров…………………………………………………... 81

2.9 Наглядные аксонометрические изображения……………………….. 92 3 Деталирование……………………………………………………………… 97

3.1 Содержание и объем работы…………………………………………… 98

3.2 Чтение сборочного чертежа……………………………………………. 97

З.3 Пример чтения чертежа……………………………………………….. .99

3.4 Чертежи деталей………………………………………………………. 103

3.5 Выбор и нанесение размеров…………………………………………. 111

3.6 Заполнение основной надписи…………………………………………118

3.7 Определение размеров детали по ее изображению с использованием графика масштабов…………………………………………………….

4 Соединения………………………………………………………………… 119

4.1 Резьбы…………………………………………………………………. 120

4.1 Резьбовые соединения………………………………………………… 123

4.2 Расчет винтового соединения……………………………………....... 123

Введение

В число дисциплин, составляющих основу инженерного образования, входит "Инженерная графика".

Инженерная графикаэто условное название учебной дисциплины, включающей в себя основы начертательной геометрии и основы специального вида технического черчения.

Начертательная геометрия – наука, изучающая закономерности изображения пространственных форм на плоскости и решения пространственных задач протекционно-графическими методами.

Исторически методы изображения возникли еще в первобытном мире.

В начале развития появился рисунок, потом буква – письменность. Вехи развития графики: наскальный рисунок, творение великих художников эпохи возражения.

Однако формирование научной теории изображения началось в 17 веке, когда возникло учение об оптике. В 1636 году геометр Жирар Дизарг дал стройную теорию изображений в перспективе.

В дальнейшем развитии чертежа огромную роль сыграли французский математик и инженер Гаспар Монж (1746-1818).Заслуга Г. Монжа в том, что он обобщил имеющиеся данные о построении плоского чертежа и создал самостоятельную научную дисциплину под названием "Начертательная геометрия" (1798 год). Г. Монж говорил: начертательная геометрия преследует следующую цель: на чертеже, имеющем два измерения с точностью изобразить тела трех измерений. С этой точки зрения эта геометрия должна быть необходима как для инженера, составляющего проект, так и для того, кто по этим проектам доложен работать.

Метрическая (измерительная) геометрия, созданная, как известно, трудами Евклида, Архимеда и других математиков древности, выросла из потребностей землемерия и мореплавания.

Всестороннее и глубокое научно-теоретическое обоснование начертательная геометрия получила только после рождения геометрии на псевдосфере. Создал его великий русский геометр Лобачевский (1793-1856г.).

В России начертательную геометрию стали изучать с 1810 года в институте корпуса инженеров путей сообщения в Петербурге.

Начертательная геометрия является разделом геометрии, изучающим пространственные формы по их проекциям на плоскости. Ее основными элементами являются:

1. Создание метода изображения

2. Разработка способов решения позиционных и метрических задач при помощи их изображения.

Начертательная геометрия является связующим звеном между математикой, техническим черчением и другими предметами. Дает возможность построения геометрических форм на плоскости и по плоскому изображению представить форму изделия.

Студенты при изучении курса начертательной геометрии наряду с освоением теоретических положений приобретают навыки точного графического решения пространственных задач метрического и позиционного характера. Умение найти более короткий путь решения графической задачи формирует общую инженерную культуру молодого специалиста.

Изучение начертательной геометрии позволяет:

1. Научиться составлять чертежи, т.е. изучать способы графического изображения существующих и создаваемых предметов.

3. Приобрести навыки в решении пространственных задач на проекционном чертеже.

4. Развить пространственное и логическое мышление.

Инженерная графика является тем фундаментом, на котором в дальнейшем будут основываться все технические проекты науки и техники, и которая дает возможность студенту, а затем инженеру выполнять конструкторскую работу и изучать техническую литературу, насыщенную чертежами.

Прочесть или составить чертежи можно лишь в том случае, если известны приемы и правила его составления. Одна категория правил имеет в основе строго определенные приемы изображения, имеющие силу методов, другая категория – это многочисленные, часто не связанные между собой условности, принятые при составлении чертежей и обусловленные ГОСТами.

ГОСТы – это государственные общесоюзные стандарты, комплекс которых составляет Единую систему конструкторских документов, принятых в России. Основное назначение стандартов ЕСКД заключается в установлении на всех предприятиях России единых правил выполнения, оформления и обращения конструкторской документации.

Теоретической основой черчения является начертательная геометрия. Основной целью начертательной геометрии является умение изображать всевозможные сочетания геометрических форм на плоскости, а так же умение производить исследования и их измерения, допуская преобразование изображений. Изображения, построенные по правилам начертательной геометрии, позволяют мысленно представить форму предметов и их взаимное расположение в пространстве, определить их размеры, исследовать геометрические свойства, присущие изображаемому предмету. Изучение начертательной геометрии способствует развитию пространственного воображения, необходимое инженеру для глубокого понимания технического чертежа, для возможности создания новых технических объектов. Без такого понимания чертежа немыслимо никакое творчество. В любой области техники, в многогранной инженерной деятельности человека чертежи являются единственными и незаменимыми средствами выражения технических идей.

Начертательная геометрия является одной из дисциплин, составляющих основу инженерного образования.

Т.о., предмет "Инженерная графика" складывается из двух частей:

1. Рассмотрения основ проецирования геометрических образов по курсу начертательной геометрии и

2. Изучения законов и правил выполнения чертежей по курсу технического черчения.

1. ОСНОВЫ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

1.1 Символика

совпадают

касательные

принадлежат, являются эле-

перпендикулярны

скрещивание

конгруэнтны

пересечение множеств

параллельны

отображаются

прямой угол

отрицание знака

включает, содержит

A, B, C, D... - точки

Плоскости

Проекции точек

Следы плоскостей

В основе начертательной геометрии лежит метод проекций.

Правила построения изображений, излагаемые в начертательной геометрии, основаны на методе проекций. Всякое правильное изображение предметов на плоскости (например, лист бумаги, кран монитора) является проекцией его на эту плоскость.

Правильным мы называем изображение, построенное в соответствии с законами геометрической оптики, действующими в реальном мире. Т.о., проекцией являются: технический рисунок, фотография, технический чертеж, тень, падающая от предмета, изображение на сетчатке глаза и т.д. Существуют изображения, выполненные с отклонением от этих законов. Таковыми, например, являются рисунки первобытных людей, детские рисунки, картины художников различных нереалистических направлений и т.д. Такие изображения не являются проекциями и к ним не могут быть применены методы геометрического исследования.

Латинская основа слова "проекция" означает "бросание вперед".

Начертательная геометрия рассматривает несколько видов проецирования. Основными являются центральное и параллельное проецирование.

1.2 Центральное проецирование

Для получения центральных проекций необходимо задаться плоскостью проекций H и центром проекцийS.

Центр проекций действует как точечный источник света, испуская проецирующие лучи. Точки пересечения проецирующих лучей с плоскостью проекций H называются проекциями (рис. 1.1). Проекций не получается, когда центр проецирования лежит в данной плоскости или проецирующие лучи параллельны плоскости проекций.

Свойства центрального проецирования:

1. Каждая точка пространства проецируется на данную плоскость проекций в единственную проекцию.

2. В то же время каждая точка на плоскости проекций может быть проекцией множества точек, если они находятся на одном проецирующем луче

3. Прямая, не проходящая через центр проецирования, проецируется прямой (проецирующая прямая – точкой).

4. Плоская (двумерная) фигура, не принадлежащая проецирующей плоскости, проецируется двумерной фигурой (фигуры, принадлежащие проецирующей плоскости, проецируются вместе с ней в виде прямой).

5. Трехмерная фигура отображается двумерной.

Глаз, фотоаппарат являются примерами этой системы изображения. Одна центральная проекция точки не дает возможность судить о положении самой Точки в пространстве, и поэтому в техническом черчении это проецирование

почти не применяется. Для определения положения точки при данном способе необходимо иметь две ее центральные проекции, полученные из двух различных центров (рис. 1.2). Центральные проекции применяют для изображения предметов в перспективе. Изображения в центральных проекциях наглядны, но для технического черчения неудобны.

1.3 Параллельное проецирование

Параллельное проецирование – частный случай центрального проецирования, когда центр проецирования перемещен в несобственную точку, т.е. в бесконечность. При таком положении центра проекций все проецирующие прямые будут параллельны между собой (рис. 1.3). В связи с параллельностью проецирующих прямых рассматриваемый способ называется параллельным, а полученные с его помощью проекции – параллельными проекциями. Аппарат параллельного проецирования полностью определяется положением плоскости проецирования (H ) и направлением проецирования.

Свойства параллельного проецирования:

1. При параллельном проецировании сохраняются все свойства центрального проецирования, а также возникают новые:

2. Для определения положения точки в пространстве необходимо иметь две ее параллельные проекции, полученные при двух различных направлениях проецирования (рис.1.4).

3. Параллельные проекции взаимно параллельных прямых параллельны, а отношение длин отрезков таких прямых равно отношению длин их проекций.

4. Если длина отрезка прямой делится точкой в каком-либо отношении, то и длина проекции отрезка делится проекцией этой точки в том же отношении (рис 1.15).

5. Плоская фигура, параллельная плоскости проекций, проецируется при параллельном проецировании на эту плоскость в такую же фигуру.

Параллельное проецирование, как и центральное, при одном центре проецирования, также не обеспечивает обратимости чертежа.

Применяя приемы параллельного проецирования точки и линии, можно строить параллельные проекции поверхности и тела.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта