Главная » Маринование грибов » Значение фотосинтеза в жизни. Фотосинтез растений

Значение фотосинтеза в жизни. Фотосинтез растений

Фотосинтез – единственный процесс в биосфере, ведущий к увеличению ее свободной энергии за счет внешнего источника. Запасенная в продуктах фотосинтеза энергия – основной источник энергии для человечества.

Ежегодно в результате фотосинтеза на Земле образуется 150 млрд. тонн органического вещества и выделяется около 200 млн. тонн свободного кислорода.

Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез, поддерживает современный состав атмосферы, необходимый для жизни на Земле. Фотосинтез препятствует увеличению концентрации СО 2 , предотвращая перегрев Земли вследствие так называемого «парникового эффекта».

Поскольку зеленые растения представляют собой непосредственную или опосредованную базу питания всех других гетеротрофных организмов, фотосинтез удовлетворяет потребность в пище всего живого на нашей планете. Он – важнейшая основа сельского и лесного хозяйства. Хотя возможности воздействия на него еще не велики, но все же и они, в какой то мере используются. При повышении концентрации углекислого газа в воздухе до 0,1% (против 0,3% в естественной атмосфере) удалось, например, повысить урожайность огурцов и томатов втрое.

Квадратный метр поверхности листьев в течение одного часа продуцирует около одного грамма сахара; это значит, что все растения, по приблизительной оценке, изымают из атмосферы от 100 до 200 млрд. тонн С в год. Около 60% этого количества поглощают леса, занимающие 30% непокрытой льдами поверхности суши, 32% - окультуренные земли, а оставшиеся 8% - растения степей и пустынных мест, а также городов и поселков.

Зеленое растение способно не только использовать углекислый газ и создавать сахар, но и превращать азотные соединения, и соединения серы в вещества, слагающие его тело. Через корневую систему растение получает растворенные в почвенной воде ионы нитратов и перерабатывает их в своих клетках в аминокислоты – основные компоненты всех белковых соединений. Компоненты жиров также возникают из соединений, образующихся в процессах обмена веществ и энергии. Из жирных кислот и глицерина возникают жиры и масла, которые служат для растения, главным образом, запасными веществами. В семенах приблизительно 80% всех растений, в качестве богатого энергией запасного вещества, содержатся жиры. Получение семян, жиров и масел играет важную роль в сельскохозяйственной и пищевой промышленности.

СПИСОК ЛИТЕРАТУРЫ:

    Айкхорн П. и др. «Современная ботаника», стр. 95-99.

    Артемов А. «Энциклопедия БИОЛОГИЯ», 1995, стр. 200-203.

    Коган В. Л. и др. «Биология», 1984, стр. 160-161.

    Медведева В. «Ботаника», 1980, стр. 128-131.

    Питерман И. и др. «Интересная ли ботаника?», 1979, стр.19-20.

    Пенкин П. «Физиология растений», 1975, стр.69.

    Челобитько Г. и др. «Ботаника», 1990, стр.79, 102-103.

Процесс фотосинтеза является одним из важнейших биологических процессов, протекающих в природе, ведь именно благодаря ему происходит образование органических веществ из углекислого газа и воды под действием света, именно это явление и называют фотосинтезом. И что самое важное, в процессе фотосинтеза происходит выделение , жизненно необходимого для существования жизни на нашей удивительной планете.

История открытия фотосинтеза

История открытия явления фотосинтеза уходит своими корнями на четыре века в прошлое, когда в далеком 1600 году некий бельгийский ученый Ян Ван Гельмонт поставил не сложный эксперимент. Он поместил веточку ивы (предварительно записав ее начальный вес) в мешок, в котором также находилось 80 кг земли. А затем на протяжении пяти лет растение поливалось исключительно водой. Каким же было удивление ученого, когда по прошествии пяти лет вес растения увеличился на 60 кг, при том, что масса земли уменьшилась всего лишь на 50 грамм, откуда взялась столь внушительная прибавка в весе, так и оставалось для ученого загадкой.

Следующий важный и интересный эксперимент, ставший преддверием к открытию фотосинтеза, был поставлен английским ученым Джозефом Пристли в 1771 году (любопытно, что по роду своей профессии мистер Пристли был священником англиканской церкви, но в историю вошел именно как выдающийся ученый). Что же сделал мистер Пристли? Он поместил мышь под колпак и через пять дней та умерла. Затем он снова поместил еще одну мышь под колпак, но в этот раз вместе с мышкой под колпаком была веточка мяты и в результате мышь осталась живой. Полученный результат навел ученого на мысль, о том, что существует некий процесс, противоположный дыханию. Еще одним важным выводом этого эксперимента стало открытие кислорода, как жизненно необходимого всем живим существам (первая мышка умерла от его отсутствия, вторая же выжила, благодаря веточке мяты, которая в процессе фотосинтеза как раз создала кислород).

Так был установлен факт, что зеленые части растений способны выделять кислород. Затем уже в 1782 году швейцарский ученый Жан Сенебье доказал, что углекислый газ под воздействием света разлагается в зеленых растений – фактически была открыта еще одна сторона фотосинтеза. Затем еще через 5 лет французский ученый Жак Бусенго обнаружил, что поглощение растениями воды происходит и при синтезе органических веществ.

И финальным аккордом в череде научных открытий связанных с явлением фотосинтеза стало открытие немецкого ботаника Юлиуса Сакса, которому в 1864 году удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции 1:1.

Значение фотосинтеза в жизни человека

Если представить образно, то лист любого растения можно сравнить с маленькой лабораторией, окна которой выходят на солнечную сторону. В этой самой лаборатории идет образование органических веществ и кислорода, являющегося основой для существования органической жизни на Земле. Ведь без кислорода и фотосинтеза на Земле просто бы не существовало жизни.

Но если фотосинтез столь важен для жизни и выделения кислорода, то как живут люди (да и не только люди), например в пустыне, где минимум зеленых растений, или например, в индустриальном городе, где деревья редкость. Дело в том, что на долю наземных растений приходится всего 20% выделяемого в атмосферу кислорода, остальные же 80% выделяются морскими и океанскими водорослями, недаром ведь мировой океан порой называю «легкими нашей планеты».

Формула фотосинтеза

Общую формулу фотосинтеза можно записать следующим образом:

Вода + Углекислый газ + Свет > Углеводы + Кислород

А вот такой вид имеет формула химической реакции фотосинтеза

6СО 2 + 6Н 2 О = С6Н 12 О 6 + 6О 2

Значение фотосинтеза для растений

А теперь попробуем ответить на вопрос, для чего нужен фотосинтез растениям. В действительности обеспечение кислородом атмосферы нашей планеты, далеко не единственная причина протекания фотосинтеза, этот биологический процесс жизненно необходим не только людям и животным, но и самим растениям, ведь органические вещества, которые образуются в ходе фотосинтеза, составляют основу жизнедеятельности растений.

Как происходит фотосинтез

Главным двигателем фотосинтеза является хлорофилл – специальный пигмент, содержащийся в клетках растений, который помимо всего прочего отвечает за зеленую окрасу листьев деревьев и прочих растений. Хлорофилл представляет собой сложное органическое соединение, обладающее к тому же важным свойством – способностью к поглощению солнечного света. Поглощая его, именно хлорофилл приводит в действие ту маленькую биохимическую лабораторию, содержащуюся в каждом маленьком листочке, в каждой травине и каждой водоросли. Далее происходит фотосинтеза (формулу смотрите выше) в ходе которой и происходит преображение воды и углекислого газа в необходимые растениям углеводы и необходимый всему живому кислород. Механизмы фотосинтеза являются гениальным творением природы.

Фазы фотосинтеза

Также процесс фотосинтеза состоит из двух стадий: светлой и темновой. И ниже мы детально напишем о каждой из них.

Световая фаза фотосинтеза

Эта фаза осуществляется на тилакойдов. Что же такое эти тиалакойды? Тилакойды это структуры, находящиеся внутри хлоропластов и ограниченные мембраной.

Порядок процессов световой фазы фотосинтеза выглядит так:

  • Свет попадает на молекулу хлорофилла, поглощается зеленым пигментом, чем приводит его в возбужденное состояние. Электрон, который входит в эту молекулу переходит на более высокий уровень и берет участие в процессе синтеза.
  • Идет расщепление воды, во время которого протоны, под действием электронов преобразуются в атомы водорода, которые впоследствии расходуются на синтез углеводов.
  • На последнем этапе световой фазы фотосинтеза происходит синтез АТФ (Аденозинтрифосфат). АТФ представляет собой органическое вещество, играющее роль своего рода аккумулятора энергии в биологических процессах.

Темновая фаза фотосинтеза

Эта фаза фотосинтеза протекает в стромах хлоропластов. Именно в ее ходе происходит выделение кислорода, а также синтез глюкозы. Можно подумать исходя из названия, что темновая фаза фотосинтеза происходит исключительно в темное время суток. На самом деле это не так, синтез глюкозы происходит круглосуточно, просто на этом этапе энергия света больше не расходуется и попросту она не нужна.

Фотосинтез, видео

И в завершение интересное образовательное видео про фотосинтез.

Значение фотосинтеза в природе . Отметим следствия фотосинтеза, важные для существования жизни на Земле и для человека: «консервирование» солнечной энергии; образование свободного кислорода; образование разнообразных органических соединений; извлечение из атмосферы углекислого газа.

Солнечный луч — «мимолетный гость нашей планеты» (В. Л. Комаров) - производит какую-то работу только в момент падения, затем рассеивается бесследно и бесполезно для живых существ. Однако часть энергии солнечного луча, упавшего на зеленое растение, усваивается хлорофиллом и используется в процессе фотосинтеза. При этом световая энергия превращается в потенциальную химическую энергию органических веществ — продуктов фотосинтеза. Такая форма энергии устойчива и относительно неподвижна. Она сохраняется до момента распада органических соединений, т. е. неопределенно долго. При полном окислении одной граммолекулы глюкозы выделяется столько же энергии, сколько поглощается при ее образовании — 690 ккал. Таким образом, зеленые растения, используя солнечную энергию в процессе фотосинтеза, запасают ее «впрок». Сущность этого явления хорошо вскрывает образное выражение К.А. Тимирязева, назвавшего растения «консервами солнечных лучей».

Органические вещества сохраняются при некоторых условиях очень долго, иногда многие миллионы лет. При их окислении выделяется и может быть использована энергия солнечных лучей, падавших на Землю в те далекие времена. Тепловая энергия, выделяющаяся при сгорании нефти, угля, торфа, древесины, - все это энергия солнца, усвоенная и преобразованная зелеными растениями.

Источником энергии в животном организме служит пища, которая также содержит в себе «консервированную» энергию Солнца. Жизнь на Земле только от Солнца. А растения — «это те каналы, по которым энергия Солнца вливается в органический мир Земли» (К. А, Тимирязев).

В изучении фотосинтеза, именно его энергетической стороны, огромную роль сыграл выдающийся русский ученый К.А. Тимирязев (1843—1920). Он первым показал, что закон сохранения энергии имеет место и в органическом мире. В те времена это утверждение имело огромное философское и практическое значение. Тимирязеву принадлежит лучшее в мировой литературе популярное изложение вопроса о космической роли зеленых растений.

Один из продуктов фотосинтеза — свободный кислород, необходимый для дыхания почти всех живых существ, В природе имеется и бескислородный (анаэробный) тип дыхания, но намного менее продуктивный: при использовании равных количеств дыхательного материала свободной энергии получается в несколько раз меньше, так как органическое вещество окисляется не до конца. Поэтому понятно, что кислородное (аэробное) дыхание обеспечивает более высокий жизненный уровень, быстрый рост, интенсивное размножение, широкое расселение вида, т. е. все те явления, которые характеризуют биологический прогресс.

Предполагается, что почти весь кислород в атмосфере биологического происхождения. В ранние периоды существования Земли атмосфера планеты имела восстановленный характер. Она состояла из водорода, сероводорода, аммиака, метана. С появлением растений и, следовательно, кислорода и кислородного дыхания органический мир поднялся на новую, более высокую ступень и его эволюция пошла гораздо быстрее. Следовательно, зеленые растения имеют не только сиюминутное значение: выделяя кислород, поддерживают жизнь. Они в известной мере определили характер эволюции органического мира.

Важным следствием фотосинтеза является образование органических соединений. Растения синтезируют углеводы, белки, жиры в огромном разнообразии видов. Эти вещества служат пищей для человека и животных и сырьем для промышленности. Растения образуют каучук, гуттаперчу, эфирные масла, смолы, дубильные вещества, алкалоиды и т, п. Продукты переработки растительного сырья — это ткани, бумага, красители, лекарственные и взрывчатые вещества, искусственное волокно, строительные материалы и многое другое.

Масштаб фотосинтеза огромен. Ежегодно поглощается растениями 15,6-10 10 тонн углекислого газа (1/16 часть мирового запаса) и 220 млрд. тонн воды. Количество органического вещества на Земле составляет 10 14 тонн, причем масса растений относится к массе животных как 2200:1. В этом смысле (как созидатели органического вещества) имеют значение и водные растения, водоросли, населяющие океан, органическая продукция которых в десятки раз превышает продукцию наземных растений.

Фотосинтезом называют процесс, результатом которого является образование и выделение кислорода клетками растений и некоторыми видами бактерий.

Основное понятие

Фотосинтез - это не что иное, как цепочка уникальных физико-химических реакций. В чем же он заключается? Зеленые растения, а также некоторые бактерии поглощают солнечные лучи и преобразовывают их в электромагнитную энергию. Конечным результатом фотосинтеза является энергия химических связей разнообразных органических соединений.

В растении, которое осветили солнечные лучи, в определенной последовательности происходят окислительно-восстановительные реакции. Вода и водород, представляющие собой доноров-восстановителей, перемещаются в виде электронов к акцептору-окислителю (углекислому газу и ацетату). В результате образуются восстановленные соединения углеводов, а также кислород, который и выделяют растения.

История изучения фотосинтеза

На протяжении многих тысячелетий человек был убежден в том, что питание растения происходит по его корневой системе через почву. В начале шестнадцатого века голландским натуралистом Яном Ван Гельмонтом был проведен эксперимент с выращиванием растения в горшке. После взвешивания почвы до посадки и после того как растение достигло определенных размеров, им был сделан вывод о том, что все представители флоры получают питательные вещества в основном из воды. Этой теории придерживались ученые в течение двух последующих столетий.

Неожиданное для всех, но правильное предположение о питании растений было сделано в 1771 г. химиком из Англии Джозефом Пристли. Поставленные им опыты убедительно доказали, что растения способны очистить воздух, который ранее был не пригоден для дыхания человека. Несколько позже был сделан вывод о том, данные процессы невозможны без участия солнечного света. Ученые выяснили, что зеленые листочки растений не просто превращают полученный ими углекислый газ в кислород. Без этого процесса невозможна их жизнь. В совокупности с водой и минеральными солями углекислый газ служит пищей растениям. В этом заключено основное значение фотосинтеза для всех представителей флоры.

Роль кислорода для жизни на Земле

Опыты, которые были проведены английским химиком Пристли, помогли человечеству объяснить, почему воздух на нашей планете остается пригодным для дыхания. Ведь жизнь поддерживается, несмотря на существование огромного количества живых организмов и горение бесчисленного количества огней.

Возникновение жизни на Земле миллиарды лет назад было попросту невозможно. Атмосфера нашей планеты не содержала в себе свободного кислорода. Все изменилось с появлением растений. Весь находящийся сегодня в атмосфере кислород - это результат фотосинтеза, происходящего в зеленых листьях. Данный процесс изменил облик Земли и дал толчок к развитию жизни. Это бесценное значение фотосинтеза было до конца осознано человечеством лишь в конце 18 века.

Не является преувеличением утверждение, что само существование людей на нашей планете зависит от того, каково состояние растительного мира. Значение фотосинтеза заключено в его ведущей роли для протекания различных биосферных процессов. В глобальных масштабах эта удивительная физико-химическая реакция приводит к образованию органических веществ из неорганических.

Классификация процессов фотосинтеза

В зеленом листе происходит три важных реакции. Они и представляют собой фотосинтез. Таблица, в которую заносят данные реакции, применяется при изучении биологии. В ее строки вносят:

Фотосинтез;
- газообмен;
- испарение воды.

Те физико-химические реакции, которые происходят в растении при свете дня, позволяют зеленым листикам выделять двуокись углерода и кислород. В темное время суток - только первый из этих двух компонентов.

Синтез хлорофилла в некоторых растениях происходит даже при слабом и рассеянном освещении.

Основные этапы

Различают две фазы фотосинтеза, которые тесно связаны между собой. На первом этапе энергия лучей света преобразуется в высокоэнергетические соединения АТФ и универсальные восстановители НАДФН. Эти два элемента являются первичными продуктами фотосинтеза.

На втором (темновом) этапе полученные АТФ и НАДФН используются для фиксации углекислоты вплоть до ее восстановления в углеводы. Две фазы фотосинтеза имеют различия не только во времени. Они происходят и в различном пространстве. Тому, кто изучает по биологии тему "фотосинтез", таблица с точным указанием характеристик двух фаз поможет в более точном понимании процесса.

Механизм выработки кислорода

После поглощения растениями углекислого газа в них происходит синтез питательных веществ. Данный процесс осуществляется в зеленых пигментах, называемых хлорофиллами, под воздействием солнечных лучей. Основными составляющими этой удивительной реакции являются:

Свет;
- хлоропласты;
- вода;
- углекислый газ;
- температура.

Последовательность фотосинтеза

Выработка растениями кислорода осуществляется поэтапно. Основными стадиями фотосинтеза являются следующие:

Поглощение света хлорофиллами;
- разделение хлоропластами (внутриклеточными органоидами зеленого пигмента) полученной из почвы воды на кислород и водород;
- перемещение одной части кислорода в атмосферу, а другой - для осуществления дыхательного процесса растениями;
- образование молекул сахара в белковых гранулах (пиреноидах) растений;
- производство крахмалов, витаминов, жиров и т.д. в результате смешивания сахара с азотом.

Несмотря на то, что для осуществления фотосинтеза необходим солнечный свет, данная реакция способна протекать и при искусственном освещении.

Роль растительного мира для Земли

Основные процессы, происходящие в зеленом листе, уже достаточно полно изучила наука биология. Значение фотосинтеза для биосферы огромно. Это единственная реакция, приводящая к росту количества свободной энергии.

В процессе фотосинтеза каждый год происходит образование ста пятидесяти миллиардов тонн вещества органического типа. Кроме того, за указанный период растениями выделяется практически 200 млн. тонн кислорода. В связи с этим можно утверждать, что роль фотосинтеза огромна для всего человечества, так как данный процесс служит основным источником энергии на Земле.

В процессе уникальной физико-химической реакции происходит круговорот углерода, кислорода, а также многих других элементов. Из этого вытекает еще одно немаловажное значение фотосинтеза в природе. Данной реакцией поддерживается определенный состав атмосферы, при котором возможна жизнь на Земле.

Процесс, происходящий в растениях, ограничивает количество углекислого газа, не позволяя ему скапливаться в увеличенных концентрациях. Это также немаловажное значение фотосинтеза. На Земле благодаря зеленым растениям не создается так называемого парникового эффекта. Флора надежно защищает нашу планету от перегрева.

Растительный мир как основа питания

Немаловажна роль фотосинтеза для лесного и сельского хозяйства. Растительный мир является питательной базой для всех гетеротрофных организмов. Однако значение фотосинтеза кроется не только в поглощении зелеными листьями углекислого газа и получения такого готового продукта уникальной реакции, как сахар. Растения способны преобразовывать азотистые и серные соединения в вещества, из которых слагаются их тела.

Как же это происходит? Каково значение фотосинтеза в жизни растений? Данный процесс осуществляется посредством получения растением ионов нитратов. Эти элементы находятся в почвенной воде. В растение они попадают благодаря корневой системе. Клеточки зеленого организма перерабатывают ионы нитратов в аминокислоты, из которых слагаются белковые цепочки. В процессе фотосинтеза образуются и компоненты жиров. Они для растений являются важными запасными веществами. Так, в семенах многих плодов находится питательное масло. Этот продукт важен и для человека, так как находит применение в пищевой и сельскохозяйственной промышленности.

Роль фотосинтеза в получении урожая

В мировой практике работы сельскохозяйственных предприятий широко используются результаты изучения основных закономерностей развития и роста растений. Как известно, основой формирования урожая является фотосинтез. Его интенсивность, в свою очередь, зависит от водного режима культур, а также от их минерального питания. Каким же образом человек добивается увеличения плотности посевов и размеров листьев для того, чтобы растение максимально использовало энергию Солнца и забирало углекислый газ из атмосферы? Для этого оптимизируются условия минерального питания и водоснабжения сельскохозяйственных культур.

Научно доказано, что урожайность зависит от площади зеленых листьев, а также от интенсивности и длительности протекающих в них процессов. Но в то же время увеличение плотности посевов приводит к затенению листьев. К ним не может пробиться солнечный свет, и из-за ухудшения вентиляции воздушных масс в малых объемах поступает углекислый газ. В итоге происходит снижение активности процесса фотосинтеза и уменьшается продуктивность растений.

Роль фотосинтеза для биосферы

По самым приблизительным подсчетам, только автотрофные растения, обитающие в водах Мирового океана, ежегодно превращают от 20 до 155 млрд. тонн углерода в органическое вещество. И это при том, что энергия солнечных лучей используется ими лишь на 0,11%. Что касается наземных растений, то они ежегодно поглощают от 16 до 24 млрд. тонн углерода. Все эти данные убедительно говорят о том, насколько велико значение фотосинтеза в природе. Только в результате данной реакции атмосфера восполняется необходимым для жизни молекулярным кислородом, который необходим для горения, дыхания и разнообразной производственной деятельности. Некоторые ученые полагают, что в случае повышения содержания углекислого газа в атмосфере происходит увеличение скорости фотосинтеза. При этом атмосфера пополняется недостающим кислородом.

Космическая роль фотосинтеза

Зеленые растения являются посредниками между нашей планетой и Солнцем. Они улавливают энергию небесного светила и обеспечивают возможность существования жизни на нашей планете.

Фотосинтез представляет собой процесс, о котором можно говорить в космических масштабах, так как он в свое время способствовал преображению образа нашей планеты. Благодаря реакции, проходящей в зеленых листьях, энергия солнечных лучей не рассеивается в пространстве. Она переходит в химическую энергию вновь образованных органических веществ.

Человеческому обществу продукты фотосинтеза нужны не только для пищи, но и для осуществления хозяйственной деятельности.

Однако человечеству важны не только те лучи солнца, которые падают на нашу Землю в настоящее время. Крайне необходимы для жизни и осуществления производственной деятельности те продукты фотосинтеза, которые были получены миллионы лет назад. Они находятся в недрах планеты в виде пластов каменного угля, горючего газа и нефти, торфяных месторождений.

Синтезируемые в процессе фотосинтеза сахара почти сразу преобразуются в высокополимерные соединения - крахмал, накопленный в виде крахмальных зерен в хлоропластах и лейкопластах; одновременно часть сахаров выделяется из пластид и перемещается по растению в другие места. Сахар, преобразовавшийся в крахмал, тем самым на некоторое время выходит из дальнейших метаболических реакций; однако крахмал может вновь расщепляться до сахара, который окисляется и при этом обеспечивает клетку необходимой энергией

Когда лучи соответствующей длины волны поглощаются хлоропластом, двуокись углерода химически восстанавливается до сахаров, а газоподобный кислород выделяется в объеме, равным восстановленному СО2. Эти изменения противоположны по направлению изменениям, которые происходят в процессе дыхания. Таким образом, важная роль растений в балансе природы связана и с тем, что они возвращают кислород в атмосферу, который необходим для других организмов.

Обозначивши формулой (СН2О) элементарную единицу молекулы углевода (молекула глюкозы С6Н12О6 построена из шести таких единиц), мы можем записать общее выражение фотосинтеза:

Суммарное уравнение фотосинтеза в свое время предложил Ж-Б. Буссенго. Этот процесс В. Пфеффер в 1887 году назвал фотосинтезом.

В 1842 году Ю. Майер сформулировал закон сохранения и преобразования энергии. Не забыл он и зеленые растения. Он писал, что природа поставила своей задачей перехватить приходящий на Землю свет и преобразовать эту подвижнейшую из сил в твердую форму, сложив ее в запас. Для достижения этой цели она покрыла земную кору растениями. Однако ученые того времени не обратили внимания на это высказывание.

Экспериментальное доказательство о том, что процесс фотосинтеза подчиняется закону сохранения и преобразования энергии сделал К. А. Тимирязев в 1867 г. Он показал, что интенсивней всего фотосинтез происходит в тех лучах, которые максимально поглощаются специальным пигментом - хлорофиллом. Поглощенная хлорофиллом энергия света дальше используется на образование органического вещества в растении и выделении О2.

Следовательно, фотосинтез - это процесс, связанный с накоплением света в растении, который собирается в органических веществах. Одновременно К. А. Тимирязев доказал ошибочность взглядов В. Пфеффера, Ю. Сакса и Г. Дрепера. Последние считали, что фотосинтез интенсивней всего идет в самых ярких для человеческого глаза желтых лучах, а не в тех, которые поглощаются хлорофиллом.

Таким образом, суммарное выражение фотосинтеза отражает суть процесса, который сводится к тому, что на свету в зеленом растении из очень окисленных веществ - углекислого газа и воды - синтезируются органические вещества и выделяется молекулярный О2. В ходе этого синтеза происходит преобразование лучистой энергии в энергию химических связей органических веществ.

Все компоненты системы, принимающие участие в фотосинтезе, содержат кислород, поэтому приведенное уравнение не говорит откуда берется выделяемый при фотосинтезе кислород: из СО2 или Н2О. На протяжении многих лет биологи считали, что световая энергия тратится на расщепление молекулы СО2 и перенос атома С на Н2О с образованием (СН2О). Однако наблюдение за фотосинтезирующими организмами пошатнули эти представления.

Биохимический путь у фотосинтезирующих микроорганизмах аналогичен соответствующим процессам у высших растений, но все же немного отличается от них. Так у бактерий имеется только одна пигментная система, а не две. Кроме того, бактерии отличаются от зеленых растений и по природе своих хлорофиллов. Они содержат бактериохлорофилл и (или) хлоробиумхлорофилл (chlorobium - хлорофилл). Фотосинтез у бактерий отличается и по природе световой стадии. У некоторых бактерий восстановитель образуется за счет части молекул АТФ, синтезируемых в световой фазе, при этом запускается обратный перенос электронов по дыхательной цепи (или по фотосинтетической цепи переноса электронов, в которой включены некоторые компоненты дыхательной цепи). У других бактерий восстановитель восстанавливается аналогично растениям, с той только разницей, что в качестве конечного источника электронов используется не вода, а другие доноры электронов. Кроме того, фотосинтезирующие бактерии не выделяют О2 в качестве конечного продукта.

Например, фотосинтезирующие пурпурные бактерии используют при фотосинтезе не Н2О, а Н2S, и в качестве побочного продукта фотосинтеза, выделяют не кислород, а серу.

Во многих местах зеленого шара важным природным источником серы служат отложения серы, образовавшиеся именно таким путем. Как видно, эта сера может происходить только с Н2S, разлагаемого в процессе фотосинтеза. Аналогичным путем ведут себя некоторые водоросли, которых можно «приучить» использовать вместо воды газоподобный водород Н2 для восстановления СО2 до (СН2О), т. е. до уровня углевода:

Известно, что в обоих случаях световая энергия растрачивается на разложение (фотолиз) донора водорода, а восстановительная сила, генерируемая таким путем, используется для преобразования СО2 в (СН2О).

Фотосинтез происходит и в тех многочисленных организмах, которые хоть и содержат хлорофилл, но не имеют зеленого цвета, потому что их цвет определяется присутствием других пигментов, маскирующих хлорофилл, например, бурые или красные водоросли.

Если у разных организмов существует какой либо общий механизм, то приведенные данные позволяют предполагать, что у высших растений световая энергия расходуется на разложение воды. Убедится в том, что мысль верна смогли тогда, когда биохимики начали использовать для изучения фотосинтеза Н2О или СО2, меченные тяжелыми изотопами кислорода (18О). В этих опытах было показано, что выделяющийся О2 всегда соответствует по своему изотопному состоянию кислороду, который содержится в воде, а не а СО2. Вообще, фотолиз воды - это ключ ко всему процессу фотосинтеза, так как на этом этапе световая энергия используется для выполнения химической работы.

В молекуле кислорода, выделяемой при фотосинтезе у высших растений, содержится два атома О, а в молекуле воды - только один, а это значит, что в реакции должны участвовать две молекулы воды. Чтобы получить сбалансированное уравнение, которое бы правильно отражало механизм суммарной реакции, мы должны ввести в обе части этого уравнения еще по одной молекуле воды. Когда вода будет содержать 18О, то мы получим

Если мы пометили при помощи 18О СО2, тогда уравнение принимает следующий вид

Выделяемый при фотосинтезе кислород образуется из вступающей в реакцию воды, образующиеся же молекулы воды, отличаются от тех двух молекул, которые принимают участие в фотосинтезе.

Световая энергия используется на разложение воды. При этом выделяется кислород и образуется «водород» (или восстановительная сила), которая тратится

  • 1) на восстановление СО2 до конечного продукта фотосинтеза (СН2О).
  • 2) на образование новой молекулы воды.

Суммарное выражение фотосинтеза сыграло большую роль в развитии физиологии растений. Оно помогло ученым определить место фотосинтеза в жизни самих растений и существовании жизни на всей планете. Фотосинтез имеет большое значение и для самого растения. Образование органов, их рост тесно связаны с фотосинтезом. В периоды наиболее активного роста дневные приросты сухого вещества достигают от 100 до 500 кг на 1 га. При этом растение должно ассимилировать от 200 до 500 кг СО2, 1-2 кг азота, 0,25-0,5 кг фосфора, 2-4 кг калия, 2-4 кг других элементов и испарить до 1 000 л воды.

Лучистая энергия от солнца до Земли доходит в форме электромагнитных колебаний разной длинной волны. Около 40-45 % излучаемой солнцем энергии приходится на область от 380 до 720 нм. Эта часть спектра воспринимается как видимый свет. Тут располагаются известные цвета: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный.

Пигменты хлоропластов поглощают видимый свет, поэтому эта область была названа физиологически активной радиацией (ФАР). К ФАР со стороны более коротких волн прилегает ультрафиолетовая радиация, а со стороны более длинных - инфракрасная. Инфракрасные лучи не принимают участия в фотосинтезе, но принимают участие в регулировании других процессов жизнедеятельности растений. Коротковолновая радиация (ультрафиолетовая, г-лучи, космические лучи), как показано, играют большую роль в мутагенезе растений, в изменении их наследственности.

Энергия, запасенная в процессе фотосинтеза за год, приблизительно в 100 раз больше энергии, образуемой при сгорании каменного угля, который добывается во всем мире за это время. Эта энергия используется для образования органического вещества из неорганического. Каждый год в процессе фотосинтеза растения образуют 155 млрд. т сухого органического вещества.

Органические вещества, которые используют люди, животные, сначала образуются в зеленом листе. Большая часть той энергии, которая используется человеком в различных областях производства - это энергия солнца, преобразованная в зеленом листе и запасенная в каменном угле, нефти, древесине.

Для образования такого большого количества органического вещества растения поглощают на протяжении года 200 млрд. т СО2 и выделяют 145 млрд. т кислорода. Весь кислород атмосферы образовался в процессе фотосинтеза. Таким образом, процессы дыхания и горения смогли произойти только после возникновения фотосинтезирующих организмов.

Изучение фотосинтеза и раскрытие его механизмов является одной из наиболее важных и интересных задач физиологии растений. Во-первых, детальное изучение синтеза органических веществ в зеленом растении - один из путей решения проблемы питания в мире. Так как 95 % массы растения образуется в процессе фотосинтеза, то необходима теоретическая основа для увеличения урожая. Во-вторых, детальное изучение химизма фотосинтеза и строения фотосинтетического аппарата на молекулярном уровне открывают путь для моделирования фотосинтеза, и организации производства органических веществ в искусственных условиях. В-третьих, изучение процесса разложения воды зелеными растениями с помощью света и моделирование этого процесса в искусственных условиях позволит человечеству получать водород и использовать его в качестве экологически чистого топлива, что поможет решить энергетическую проблему.

Особая роль в этом отношении принадлежит зеленым растениям, роль, которую К. А. Тимирязев назвал Космической. Она заключается в том, что «зеленое зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия солнца, а с другого берут начало все проявления жизни на Земле»

Ежегодно на Землю поступает огромное количество энергии солнца (1,26- 1024 кал) , 42% которой отражается в мировое пространство. Используя часть энергии солнечных лучей, зеленые растения утилизируют углекислый газ воздуха в качестве источника углерода в процессе синтеза органических веществ. Но зеленое растение не только получает для себя пищу из неорганической природы, оно, по словам Тимирязева, является посредником между небом и Землей. Энергия, полу­ченная от солнечного луча, аккумулируется в растении и в этом виде вместе с накопленным в его теле органическим веществом поступает в организм других растений или животных, питающихся растительной пищей. Последние в свою очередь служат пищей для других гетеротрофных организмов.

Выделяемый в процессе фотосинтеза кислород оказывается необходимым для жизни всех аэробных организмов, которые в процессе дыхания поглощают его из воздуха, одновременно выделяя углекислый газ. Такое постоянное поступление углекислого газа в атмосферу имеет колоссальное значение в круговороте веществ. По приблизительным подсчетам, растительный покров земного шара ежегодно ассимилирует из углекислого газа свыше 140 млрд. т углерода, что примерно составляет 3 г на гектар. Всего в атмосфере содержится около двух тысяч биллионов килограммов углекислого газа, которого не хватило бы и на100 лет, если бы он не поступал в атмосферу и гидросферу в процессе жизнедеятельности организмов.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта