Главная » Несъедобные грибы » Космические батареи. Солнечные батареи в небе, на воде и в космосе

Космические батареи. Солнечные батареи в небе, на воде и в космосе

Любой космический аппарат, особенно предназначенный для длительной миссии, должен быть оснащен собственным источником энергии. В настоящее время широко используются солнечные батареи, фотовольтаические элементы и термоэлектрогенераторы. Однако им на смену уже скоро могут прийти наноспутники, оснащенные электродинамическими тросовыми системами.

Покорение глубокого космоса

Отправляясь в дальнее путешествие на машине, одним из важных аспектов будет постоянное слежение за наличием бензина. Конечно, необходимо тщательно просчитать маршрут, но базовая схема такова: как только его количество подходит к концу, нужно сделать остановку у ближайшей заправочной станции, запастись топливом и ехать дальше. До следующей заправки.

Ракеты и космические аппараты в этом ничем не отличаются от автомобилей – им тоже нужно топливо. Но есть одно «но» – заправок в космосе еще никто не построил. Что делать, если аппарат не просто нужно вывести на орбиту Земли, а совершить действительно длительное путешествие, за пределы Солнечной системы?

Сколько стоит отправить посылку в космос?

Если вы когда-нибудь зададитесь такой целью, вариантов решения проблемы на самом деле немного. Во-первых, можно пожертвовать всевозможным оборудованием на борту и отправить в космос действительно большой запас горючего. Скорее, это даже скорее просто будет гигантский летающий резервуар с топливом – настолько много его понадобится.

Сомневаемся, что вам такой способ придется по вкусу – каждый дополнительный килограмм веса при запуске ракеты обойдется вам очень и очень дорого. Если быть точнее, около десяти тысяч евро. Космические аппараты «Вояджер-1» и «Вояджер-2», относящиеся к так называемым «deep space probes» – космическим станциям, исследующим глубокий космос – бороздят Солнечную систему уже сорок лет. При всем желании отправить достаточно топлива для столь серьезных миссий у вас никак не получится по элементарным экономическим причинам. Да и о научной пользе от такого запуска говорить не придется, если от оборудования вроде камер, приемников и передатчиков информации придется по максимуму отказаться.

«Что значит, вы не были на Альфе Центавра?»

Технологии дозаправки в космосе действительно существуют, и в целом используются уже достаточно давно. Топливо доставляется на орбитальные космические станции и даже на отдельные спутники, хотя это сделать уже гораздо сложнее. В любом случае, речь идет именно об объектах, которые находятся на орбите Земли. Как только вы собираетесь преодолеть притяжение родной планеты и отправиться в глубокий космос, ни о какой дозаправке не может быть и речи. Космические заправочные станции – все еще удел научной фантастики, в реальности это и технологически и экономически сложно и крайне невыгодно. И клиентов будет немного.

Остается последний, третий вариант, в котором «каждый сам за себя»: вы каким-то образом вырабатываете энергию на борту своего космического аппарата самостоятельно.

Наследие Эйнштейна

На спутниках, находящихся на низких околоземных орбитах, имеющих высоту над поверхностью планеты в диапазоне от 160 км до 2000 км, или на геосинхронных орбитах, когда период обращения спутника вокруг Земли равен суткам, используются солнечные батареи. Их работа основана на фотовольтаическом (его еще называют фотогальваническим) эффекте, за счет которого при попадании света на некоторые вещества вырабатывается электрический ток.

Фотогальванические решетки имеют мощность от 100 ватт до 300 киловатт и являются относительно недорогим источником энергии с минимальными правилами безопасности при использовании.

Вездесущая радиация

Впервые фотовольтаическая энергия была использована 17 марта 1958 года, когда был запущен спутник «Авангард-1» с шестью солнечными панелями на борту. Они проработали более шести лет, вырабатывая 1 ватт мощности. При этом эффективность этих батарей, то есть отношение вырабатываемой энергии к тому количеству, которое в итоге реально может использоваться для питания приборов, была всего 10 %.

Фотогальванические ячейки необходимо устанавливать таким образом, чтобы покрыть максимальную возможную часть поверхности спутника. Требуется постоянно следить за их положением относительно Солнца – желательно всегда оставаться перпендикулярно падающему излучению, поскольку таким образом вырабатываемый ток будет наибольшим.

Также важно рассчитать, чтобы за время нахождения на Солнце спутник успел накопить достаточно энергии: 40-45% от всего времени путешествия по орбите аппарат находится в тени Земли и вырабатывать ток не может. В целом, на эффективность работы батарей влияет множество факторов, таких как зависимость от температуры, расстояние до светила, деградация электроники под действием постоянного излучения – их все необходимо не забывать принимать в рассмотрение при выборе конкретного типа фотовольтаических ячеек.

Тепло нашего Солнца

В космических аппаратах используются два типа приборов, преобразующих тепло в электроэнергию: статические и динамические. В основе статических термоэлектрогенераторов обычно лежит радиоактивный источник. В динамических термоэлектрогенераторах, активно внедряемых в спутниковых системах GPS, используют щелочные электрохимические ячейки.

В основе данного способа получения энергии лежит эффект Зеебека. Он проявляется, когда соединяются два различных материала, при этом еще и находящиеся при разных температурах. Из-за этих разностей возникает поток электронов из более горячего конца к менее горячему – мы получаем электрический ток. Само устройство для получения энергии называется термоэлементом или термопарой.

У эффекта Зеебека существует и обратное явление, эффект Пельтье, в котором при пропускании электрического тока через сплав двух проводников или полупроводников в одну сторону место соединения нагревается, а в другую – охлаждается. Эффект Пельтье используется в космосе для охлаждения электронного оборудования: из-за отсутствия конвекции в вакууме это оказывается довольно проблематичной задачей.

Для использования эффектов Зеебека и Пельтье, разумеется, необходим источник тепла. Для этого специалисты NASA разработали стандартизированный радиоизотопный термоэлектрический генератор, работающий на плутонии-238 с периодом полураспада 87.7 лет. На данный момент 41 подобный генератор используется на 23 космических аппаратах, мощностью от 2 до 300 ватт. Принципиальный минус использования радиоактивных изотопов – возможность загрязнения окружающей среды, если запуск миссии пройдет неудачно.

Когда не работает GPS – во всем виноват SAMTEC

Более эффективными должны стать динамические электрогенераторы. Их главное отличие от статических состоит в способе превращения механической энергии в электрическую. Если в термоэлектрических элементах тепло напрямую превращается в электричество, то в электрохимических концентрационных элементах для этих целей используется энергия расширения паров натрия.

В спутниках GPS нового поколения были внедрены термоэлектрические преобразователи типа Solar AMTEC (solar alkali metal thermal-to electric conversion – преобразователь тепловой энергии солнца в электрическую на основе щелочных металлов), или, сокращенно SAMTEC.

В генераторах SAMTEC приемник солнечной радиации нагревает резервуар с жидким натрием, который испаряется. Пары натрия пропускаются через специальную мембрану, отделяющую газ высокого давления (температурой 800-1000 о С) от газа низкого давления (температурой 200-300 о С). Из-за разницы давления положительно заряженные ионы натрия скапливаются с одной стороны фильтра, а отрицательно заряженные электроны – с другой. Создаваемая разность потенциалов может генерировать электрический ток в подключенной внешней цепи.

Эффективность ячеек SAMTEC составляет 15-40%, при этом срок действия – 10-12 лет без понижения производительности в условиях постоянного облучения в космосе. Вырабатываемая мощность может варьироваться от нескольких ватт до киловатт.

Космические нити

Космический трос – тонкий металлический канат, прикрепленный к орбитальному или суборбитальному космическому аппарату – ракете, спутнику или космической станции. Длина космических тросов варьируется от нескольких метров до десятков километров (мировой рекорд – чуть более 32 километров). Тросы изготавливаются из особо прочных материалов, выдерживающих гигантские нагрузки.

Космические тросовые системы делятся на две категории – механические и электродинамические. Тросы первой категории используются, в частности, для обмена скоростями и соединения различных космических аппаратов между собой для движения как одно целое.

Для электродинамических тросовых систем используются специальные материалы, не только прочные, но и проводящие электрический ток (обычно алюминий или медь). При движении таких тросов в магнитном поле Земли, на свободные заряды в металлах действует электродвижущая сила, создающая электрический ток. Также вклад в данные процесс дают области ионизованного газа с различными плотностями и свойствами, присутствующие в космосе и наличие ионосферы у самой Земли.

Численные симуляции, подтвержденные экспериментально, показали, что для большого спутника электродинамический трос длиной десять километров может вырабатывать среднюю мощность в 1 киловатт с эффективностью превращения энергии 70-80%. Трос такой длины из алюминия будет весить всего 8 килограмм, что ничтожно по сравнению с весом среднего орбитального аппарата.

Нанокорабль

Космические генераторы разрабатываются и изучаются уже многие десятилетия. Они хорошо описаны с теоретический точки зрения, и подвергаются самым экстремальным земным условиям – но при этом развитие «внеземных» источников энергии идет гораздо медленнее, чем их земных собратьев. Удивительным образом, покорение космоса, идущее в авангарде технологий, оказывается весьма и весьма консервативной областью, в которой внедрение новых разработок происходит редко из-за множества рисков и экономических причин.

Однако мы находимся на заре развития совершенно новой области – наноспутников, и даже спутников гораздо меньшего размера. Они могут служить базой для космических тросовых систем и, запуская в космос сразу множество таких устройств, у нас получится вырабатывать гораздо больше электроэнергии. Возможно, именно им предстоит произвести революцию в области генерации энергии в космосе, расширить технологические возможности космических аппаратов и увеличить время их работы.

Это фотоэлектрические преобразователи - полупроводниковые устройства, преобразующие солнечную энергию в постоянный электрический ток. Проще говоря, это основные элементы устройства, которое мы называем «солнечными батареями». С помощью таких батарей на космических орбитах работают искусственные спутники Земли. Делают такие батареи у нас в Краснодаре - на заводе «Сатурн». Руководство завода пригласило автора этого блога посмотреть на производственный процесс и рассказать о нем у себя в дневнике.

1. Предприятие в Краснодаре входит в структуру Федерального космического агентства, но владеет «Сатурном» компания «Очаково», которая в буквальном смысле спасла это производство в 90-е годы. Владельцы «Очаково» выкупили контрольный пакет акций, который чуть было не ушел к американцам. «Очаково» вложила сюда большие средства, закупила современное оборудование, сумела удержать специалистов и теперь «Сатурн» - один из двух лидеров на российском рынке производства солнечных и аккумуляторных батарей для нужд космической отрасли - гражданской и военной. Вся прибыль, которую получает «Сатурн», остается здесь, в Краснодаре, и идет на развитие производственной базы.

2. Итак, всё начинается здесь - на участке т.н. газофазной эпитаксии. В этом помещении стоит газовый реактор, в котором на подложке из германия в течение трех часов выращивается кристаллический слой, который будет служить основой для будущего фотоэлемента. Стоимость такой установки - около трех миллионов евро.

3. После этого подложке предстоит пройти еще долгий путь: на обе стороны фотоэлемента нанесут электрические контакты (причем, на рабочей стороне контакт будет иметь «рисунок-гребенку», размеры которой тщательно рассчитываются, чтобы обеспечить максимальное прохождение солнечного света), на подложке появится просветляющее покрытие и т.д. - всего более двух десятков технологических операций на различных установках, прежде чем фотоэлемент станет основой солнечной батареи.

4. Вот, например, установка фотолитографии. Здесь на фотоэлементах формируются «рисунки» электрических контактов. Машина производит все операции автоматически, по заданной программе. Здесь и свет соответствующий, который не вредит светочувствительному слою фотоэлемента - как раньше, в эпоху аналоговой фотографии, мы пользовались «красными» лампами.

5. В вакууме установки напыления с помощью электронного луча наносятся электрические контакты и диэлектрики, а также наносятся просветляющие покрытия (они увеличивают ток, вырабатываемый фотоэлементом на 30%).

6. Ну вот, фотоэлемент готов и можно приступать к сборке солнечной батареи. К поверхности фотоэлемента припаиваются шины, чтобы потом соединить их друг с другом, а на них наклеивается защитное стекло, без которого в космосе, в условиях радиации, фотоэлемент может не выдержать нагрузок. И, хотя толщина стекла всего 0,12 мм, батарея с такими фотоэлементами будет долго работать на орбите (на высоких орбитах больше пятнадцати лет).

7. Электрическое соединение фотоэлементов между собой осуществляется серебряными контактами (их называют шинками) толщиной всего 0,02 мм.

8. Чтобы получить нужное напряжение в сети, вырабатываемое солнечной батареей, фотоэлементы соединяются последовательно. Вот так выглядит секция последовательно соединенных фотоэлементов (фотоэлектрических преобразователей - так правильно).

9. Наконец, солнечная батарея собрана. Здесь показана только часть батареи – панель в формате макета. Таких панелей на спутнике может быть до восьми, в зависимости от того, какая нужна мощность. На современных спутниках связи она достигает 10 кВт. Такие панели будут смонтированы на спутнике, в космосе они раскроются, как крылья и с их помощью мы будем смотреть спутниковое телевидение, пользоваться спутниковым интернетом, навигационными системами (спутники «Глонасс» используют краснодарские солнечные батареи).

10. Когда космический аппарат освещается Солнцем, вырабатываемая солнечной батареей электроэнергия питает системы аппарата, а избыток энергии запасается в аккумуляторной батарее. Когда космический аппарат находится в тени от Земли, аппаратом используется электроэнергия, запасенная в аккумуляторной батарее. Никель-водородная батарея, обладая высокой энергоемкостью (60 Вт ч/кг) и практически неисчерпаемым ресурсом, широко используется на космических аппаратах. Производство таких батарей - еще одна часть работы завода «Сатурн». На этом снимке сборку никель-водородной аккумуляторной батареи производит кавалер медали ордена «За заслуги перед Отечеством» II степени Анатолий Дмитриевич Панин.

11. Участок сборки никель-водородных аккумуляторов. Начинка аккумулятора подготавливается к размещению в корпусе. Начинка - это положительные и отрицательные электроды, разделённые сепараторной бумагой - в них и происходит преобразование и накопление энергии.

12. Установка для электронно-лучевой сварки в вакууме с помощью которой изготавливается корпус аккумулятора из тонкого металла.

13. Участок цеха, где корпуса и детали аккумуляторов испытываются на воздействие повышенного давления. В связи с тем, что накопление энергии в аккумуляторе сопровождается образованием водорода, и давление внутри аккумулятора повышается, испытания на герметичность - неотъемлемая часть процесса изготовления аккумуляторов.

14. Корпус никель-водородного аккумулятора - очень важная деталь всего устройства, работающего в космосе. Корпус рассчитан на давление 60 кг·с/см 2 , при испытаниях разрыв произошел при давлении 148 кг·с/см 2 .

15. Проверенные на прочность аккумуляторы заправляют электролитом и водородом, после чего они готовы к работе.

16. Корпус никель-водородной аккумуляторной батареи изготавливается из специального сплава металлов и должен быть механически прочным, легким и обладать высокой теплопроводностью. Аккумуляторы устанавливаются в ячейки и между собой не соприкасаются.

17. Аккумуляторы и собранные из них батареи подвергаются электрическим испытаниям на установках собственного производства. В космосе уже невозможно будет ничего поправить и заменить, поэтому здесь тщательно испытывают каждое изделие.

18. Вся космическая техника подвергается испытаниям на механические воздействия с помощью вибрационных стендов, которые имитируют нагрузки при выведении космического аппарата на орбиту.

19. В целом завод «Сатурн» произвел самое благоприятное впечатление. Производство хорошо организовано, цеха чистые и светлые, народ работает квалифицированный, общаться с такими специалистами - одно удовольствие и очень интересно человеку, хоть в какой-то степени интересующемуся нашим космосом. Уезжал с «Сатурна» в отличном настроении - всегда приятно посмотреть у нас на место, где не занимаются пустой болтовней и не перекладывают бумажки, а делают настоящее, серьезное дело, успешно конкурируют с такими же производителями в других странах. Побольше бы в России такого.

  • Фантастические электростанции

Не секрет, что в русле постоянной борьбы за более продуктивную, экологическую и дешевую энергию, человечество, все чаще, прибегает к помощи альтернативных источников получения драгоценной энергии. Во многих странах, достаточно обширное количество жителей определили для себя необходимостью использование для снабжения жилища электроэнергией.

Часть из них пришли к такому выводу благодаря трудным расчетам по экономии материальных средств, а некоторых сделать такой ответственный шаг вынудили обстоятельства, одно из которых труднодоступное географическое положение, обуславливающее отсутствие надежных коммуникаций. Но не только в таких труднодоступных местах нужны солнечные батареи. Существуют рубежи намного отдаленнее, нежели край земли - это космос. Солнечная батарея в космосе является единственным источником выработки необходимого количества электроэнергии.

Основы космической солнечной энергетики

Идея применять солнечные батареи в космосе впервые появилась больше полувека назад, во время первых запусков искусственных спутников земли. В тот период, в СССР, профессор и специалист в области физики, особенно в сфере электричества - Николай Степанович Лидоренко, обосновал необходимость применения бесконечных источников энергии на космических аппаратах. Такой энергией могла быть только энергия солнца, которая добывалась с помощью солнечных модулей.

В настоящее время все космические станции функционируют исключительно за счет солнечной энергии.

Большим помощником в этом деле является сам космос, так как солнечные лучи, так необходимые для процесса фотосинтеза в , в избытке имеются в космическом пространстве, и нет никаких помех для их потребления.

Минусом использования солнечных батарей на околоземной орбите, может служить влияние радиации на материал изготовления фотопласти н. Благодаря такому негативному влияния происходит изменение структуры солнечных элементов, что влечет снижение выработки электроэнергии.

Фантастические электростанции

В научных лабораториях всей земли, в настоящее время, происходит схожая задача - поиск бесплатной электроэнергии от солнца. Только не в масштабах отдельного дома или города, а в размерах всей планеты. Суть этой работы состоит в том, чтобы создать огромные по своим размерам, а соответственно и выработкам энергии, солнечные модули.

Площадь таких модулей огромна и размещение их на поверхности земли повлечет много трудностей, таких как:

  • значительные и свободные площади для установки приемников света,
  • влияние метеоусловий на и КПД модулей,
  • затраты на обслуживание и чистку солнечных панелей.

Все эти отрицательные аспекты исключают установку подобного монументального сооружения на земле. Но выход есть. Заключается он в установке гигантских солнечных модулей на околоземной орбите. При воплощении в жизнь такой идеи, человечество получает солнечный источник энергии, который всегда находится под воздействием солнечных лучей, никогда не потребует чистки от снега, и самое главное не будет занимать полезное пространство на земле.

Конечно же, тот, кто первым для космоса, станет в будущем диктовать свои условия в мировой энергетике. Не секрет, что, запасы полезных ископаемых на нашей земле не просто не бесконечен, а наоборот с каждым днем напоминает о том, что скоро человечеству придется переходить на альтернативные источники в принудительном порядке. Именно поэтому, разработки космических солнечных модулей на земной орбите стоит в списке первоочередных задач энергетиков и специалистов, проектирующих электростанции будущего.

Читайте также:

Проблемы размещения солнечных модулей на орбите земли

Трудности рождения таких электростанций, не только в установке, доставке и базировании солнечных модулей на околоземной орбите. Наибольшие проблемы вызывает передача, выработанной солнечными модулями, электрического тока потребителю, то есть на землю. Провода, конечно же, не протянешь, да и перевозить в контейнере не получится. Существуют почти нереальные технологии передачи энергии на расстояния без осязаемых материалов. Но такие технологии вызывают много противоречивых гипотез в научном мире.

Во первых , столь сильное излучение будет негативно влиять на обширную область приема сигнала, то есть будет происходить облучение значительного куска нашей планеты. А если таких космических станций со временем станет очень много? Это может привести к облучению всей поверхности планеты, результатом чего будут непредсказуемые последствия.

Во вторых негативным моментом может быть, частичное разрушение верхних слоев атмосферы и озонового слоя, в местах передачи энергии от электростанции к приемнику. Последствия такого рода, может предположить даже ребенок.

В довесок ко всему, существуют множество нюансов различного характера, увеличивающих отрицательные моменты, и отдаляющих момент запуска подобных устройств. Таких внештатных ситуаций может быть множество, от трудности ремонта панелей, в случае непредвиденной поломки или столкновения с космическим телом, до банальной проблемы - как утилизировать столь необычное сооружение, после окончания срока его эксплуатации.

Несмотря на все негативные моменты, деваться человечеству, как говориться, некуда. Солнечная энергия, на сегодняшний день, единственный источник энергии, который может в теории покрыть растущие потребности людей в электричестве. Ни один из существующих ныне источников энергии на земле, не может сравниться своими будущими перспективами с этим уникальным явлением.

Приблизительные сроки внедрения

Давно перестала быть теоретическим вопросом. На 2040 год уже намечен первый пуск электростанции на земную орбиту. Конечно, это только пробная модель, и она далека от тех глобальных сооружений, которые планируются построить в дальнейшем. Суть такого запуска - посмотреть на практике - как будет работать такая электростанция в рабочих условиях. Страна, которая взяла на себя столь нелегкую миссию - Япония. Предполагаемая площадь батарей, теоретически, должна составить около четырех квадратных километров.

Если эксперименты покажут, что такое явление как солнечная электростанция может существовать, то основное направление солнечной энергетики получит четкий путь по освоению подобных изобретений. Если экономический аспект, не сможет остановить все дело на начальном этапе. Дело в том, что по теоретическим подсчетам, для того, чтобы вывести на орбиту полноценную солнечную электростанцию, необходимо более двухсот запусков грузовых ракетоносителей. К сведению, стоимость одного запуска тяжелого грузовика, исходя из существующей статистики, составляет примерно 0,5 - 1 миллиард долларов. Арифметика проста, и результаты ее не утешительны.

Получающаяся сумма огромна, и она пойдет только на доставку разобранных элементов на орбиту, а необходимо еще собрать весь конструктор.

Подводя итог всему сказанному, можно отметить, что создание космической солнечной электростанции дело времени, но построить такую конструкцию под силу исключительно сверхдержавам, которые смогут осилить весь груз экономического бремени от реализации процесса.

Это фотоэлектрические преобразователи - полупроводниковые устройства, преобразующие солнечную энергию в постоянный электрический ток. Проще говоря, это основные элементы устройства, которое мы называем «солнечными батареями». С помощью таких батарей на космических орбитах работают искусственные спутники Земли. Делают такие батареи у нас в Краснодаре - на заводе «Сатурн». Руководство завода пригласило автора этого блога посмотреть на производственный процесс и рассказать о нем у себя в дневнике.


1. Предприятие в Краснодаре входит в структуру Федерального космического агентства, но владеет «Сатурном» компания «Очаково», которая в буквальном смысле спасла это производство в 90-е годы. Владельцы «Очаково» выкупили контрольный пакет акций, который чуть было не ушел к американцам. «Очаково» вложила сюда большие средства, закупила современное оборудование, сумела удержать специалистов и теперь «Сатурн» - один из двух лидеров на российском рынке производства солнечных и аккумуляторных батарей для нужд космической отрасли - гражданской и военной. Вся прибыль, которую получает «Сатурн», остается здесь, в Краснодаре, и идет на развитие производственной базы.

2. Итак, всё начинается здесь - на участке т.н. газофазной эпитаксии. В этом помещении стоит газовый реактор, в котором на подложке из германия в течение трех часов выращивается кристаллический слой, который будет служить основой для будущего фотоэлемента. Стоимость такой установки - около трех миллионов евро.

3. После этого подложке предстоит пройти еще долгий путь: на обе стороны фотоэлемента нанесут электрические контакты (причем, на рабочей стороне контакт будет иметь «рисунок-гребенку», размеры которой тщательно рассчитываются, чтобы обеспечить максимальное прохождение солнечного света), на подложке появится просветляющее покрытие и т.д. - всего более двух десятков технологических операций на различных установках, прежде чем фотоэлемент станет основой солнечной батареи.

4. Вот, например, установка фотолитографии. Здесь на фотоэлементах формируются «рисунки» электрических контактов. Машина производит все операции автоматически, по заданной программе. Здесь и свет соответствующий, который не вредит светочувствительному слою фотоэлемента - как раньше, в эпоху аналоговой фотографии, мы пользовались «красными» лампами.

5. В вакууме установки напыления с помощью электронного луча наносятся электрические контакты и диэлектрики, а также наносятся просветляющие покрытия (они увеличивают ток, вырабатываемый фотоэлементом на 30%).

6. Ну вот, фотоэлемент готов и можно приступать к сборке солнечной батареи. К поверхности фотоэлемента припаиваются шины, чтобы потом соединить их друг с другом, а на них наклеивается защитное стекло, без которого в космосе, в условиях радиации, фотоэлемент может не выдержать нагрузок. И, хотя толщина стекла всего 0,12 мм, батарея с такими фотоэлементами будет долго работать на орбите (на высоких орбитах больше пятнадцати лет).


6a

6b

7. Электрическое соединение фотоэлементов между собой осуществляется серебряными контактами (их называют шинками) толщиной всего 0,02 мм.

8. Чтобы получить нужное напряжение в сети, вырабатываемое солнечной батареей, фотоэлементы соединяются последовательно. Вот так выглядит секция последовательно соединенных фотоэлементов (фотоэлектрических преобразователей - так правильно).

9. Наконец, солнечная батарея собрана. Здесь показана только часть батареи – панель в формате макета. Таких панелей на спутнике может быть до восьми, в зависимости от того, какая нужна мощность. На современных спутниках связи она достигает 10 кВт. Такие панели будут смонтированы на спутнике, в космосе они раскроются, как крылья и с их помощью мы будем смотреть спутниковое телевидение, пользоваться спутниковым интернетом, навигационными системами (спутники «Глонасс» используют краснодарские солнечные батареи).

9a

10. Когда космический аппарат освещается Солнцем, вырабатываемая солнечной батареей электроэнергия питает системы аппарата, а избыток энергии запасается в аккумуляторной батарее. Когда космический аппарат находится в тени от Земли, аппаратом используется электроэнергия, запасенная в аккумуляторной батарее. Никель-водородная батарея, обладая высокой энергоемкостью (60 Вт ч/кг) и практически неисчерпаемым ресурсом, широко используется на космических аппаратах. Производство таких батарей - еще одна часть работы завода «Сатурн».

На этом снимке сборку никель-водородной аккумуляторной батареи производит кавалер медали ордена «За заслуги перед Отечеством» II степени Анатолий Дмитриевич Панин.

10a

11. Участок сборки никель-водородных аккумуляторов. Начинка аккумулятора подготавливается к размещению в корпусе. Начинка - это положительные и отрицательные электроды, разделённые сепараторной бумагой - в них и происходит преобразование и накопление энергии.

12. Установка для электронно-лучевой сварки в вакууме с помощью которой изготавливается корпус аккумулятора из тонкого металла.

13. Участок цеха, где корпуса и детали аккумуляторов испытываются на воздействие повышенного давления.
В связи с тем, что накопление энергии в аккумуляторе сопровождается образованием водорода, и давление внутри аккумулятора повышается, испытания на герметичность - неотъемлемая часть процесса изготовления аккумуляторов.

14. Корпус никель-водородного аккумулятора - очень важная деталь всего устройства, работающего в космосе. Корпус рассчитан на давление 60 кг·с/см 2 , при испытаниях разрыв произошел при давлении 148 кг·с/см 2 .

15. Проверенные на прочность аккумуляторы заправляют электролитом и водородом, после чего они готовы к работе.

16. Корпус никель-водородной аккумуляторной батареи изготавливается из специального сплава металлов и должен быть механически прочным, легким и обладать высокой теплопроводностью. Аккумуляторы устанавливаются в ячейки и между собой не соприкасаются.

17. Аккумуляторы и собранные из них батареи подвергаются электрическим испытаниям на установках собственного производства. В космосе уже невозможно будет ничего поправить и заменить, поэтому здесь тщательно испытывают каждое изделие.

17a

17b

18. Вся космическая техника подвергается испытаниям на механические воздействия с помощью вибрационных стендов, которые имитируют нагрузки при выведении космического аппарата на орбиту.

18a

19. В целом завод «Сатурн» произвел самое благоприятное впечатление. Производство хорошо организовано, цеха чистые и светлые, народ работает квалифицированный, общаться с такими специалистами - одно удовольствие и очень интересно человеку, хоть в какой-то степени интересующемуся нашим космосом. Уезжал с «Сатурна» в отличном настроении - всегда приятно посмотреть у нас на место, где не занимаются пустой болтовней и не перекладывают бумажки, а делают настоящее, серьезное дело, успешно конкурируют с такими же производителями в других странах. Побольше бы в России такого.


Фотографии: © drugoi

P.S. Блог вице-президента по маркетингу компании «Очаково»


Где будем размещать КСЭ? Вероятнее всего на ГСО. На других орбитах надо или приёмники по всей планете ставить, или кучу аккумуляторов с собой возить.

Не будем пока фантазировать, а разберёмся с имеющимися возможностями

РН «Ангара» с космодрома «Плесецк» донесёт до ГСО 3-4 тонны. Что можно в них засунуть? Очень приблизительно квадратов 100 панелей солнечных батарей. С постоянной направленностью на Солнце и КПД процентов 20 можно выжать по 300 Вт с квадрата. Предположим они будут деградировать по 5% в год (надеюсь никого не удивит, что солнечные панели в космосе портятся от радиации, микрометеоритов и пр.).
Давайте считать: (100*300*24*365*20)/2=2 628 000 000 Вт ч.
Чтобы осознать весь масштаб проблемы, пусть эти мегаватты без потерь добираются до Земли. Мощность внушает, но что если мы никуда не летим. В наличии 300 тонн керосина. Керосин почти бензин. Делает ещё одно допущение и берём обычный бензогенератор (200КВт за 50 литров в час).
200000*300000/50=1 200 000 000 Вт ч
Что получается: сливаем бензин с ракеты и уже получаем половину мощности.
Ещё полракеты занимает жидкий кислород. Хотел посчитать охлаждение и сжижение через теплоёмкость, но потом просто попалась цена в интернете 8200 рублей за тонну жидкого кислорода. Поскольку в себестоимости практически одно электричество получим (киловатт пусть будет 2 рубля):
300*8200*1000/2= 1 230 000 000 Вт ч
Опа, вторая половина. Уже КПД 0%. Это мы ещё ракету не считали.

А вот мы изобретём некий закидыватель полезных грузов на орбиту

То есть каким-то образом сообщим панелям кинетическую энергию в виде 10км/с:
3000*10000 2 /2 = 150000000000 Дж = 41 700 000 Вт ч
Вроде бы налицо КПД 5000%, но есть некоторые проблемы:
- достаточно высоко выбросить объект вряд ли получится, поэтому часть массы и энергии необходимо потратить на преодоление атмосферы;
- всё что выброшено с Земли по законам баллистики на Землю и вернётся, то есть ещё часть массы уйдёт на подъём перигея.
Пускай тонна ушла на теплозащиту. Посчитаем изменение орбиты:
ΔV=корень((3,986ּ10 14 /42000000)(1+2*6000000/(6000000+42000000)))=3441 м/с
Лучшие движки дают импульс 4500. Берём формулу Циолковского:
М конечная =2000/exp(4500/3500)=572 кг
А давайте возьмём электроракетные двигатели, импульс же раз в 10 больше и панели у нас есть. Да, но при имеющейся мощности панелей, тяга будет миллиньютоны, и на переход уйдут годы. А у нас до приземления всего пара часов.
В итоге: минус двигатель, баки, перегрузки - хорошо, если получим столько же.

А давайте поднимем панели на лифте

Идея в целом неплохая. Если просто поднять груз на высоту, то считаем изменение потенциальной энергии:
3000*9.81*36000000/3600 = 294 300 000 Вт ч
Как их сообщить грузу? Варианты передачи электричества:
- По самому лифту. Нетрудно представить потери и массу проводника длиной 36000 км. Сам бы лифт построить.
- Лазером – минус существенная часть массы на преобразование.
- Какое-то число панелей доставить традиционным способом и потом бесплатно поднять остальные на верёвочке. На мегаватт мощности надо 3 км 2 панелей. При этом на подъём груза понадобится две недели. Т.е. тот же мегаватт мы поднимем за год.

Прочие сложности

Свободно оперируя километрами панелей и эффективностью приёма солнечной энергии в космосе, редкие авторы рассказывают а как они собираются ориентировать панели на Солнце. ГСО стационарно только относительно Земли. Соответственно нужны механизмы, топливо.
Ещё нужны преобразователи, хранители, приёмники на Земле. Много ли потребителей у экватора? Высоковольтные линии через половину шарика. Если это всё помножить на не 100% вероятность выполнения задачи, спрашивается кому это вообще по силам?

Выводы:

- При существующих технологиях строить космическую солнечную энергостанцию нерентабельно.
- Даже, если поднять всё на космическом лифте, ко времени завершения строительства встанет вопрос как утилизировать выходящие из строя панели.
- Можно подогнать к Земле астероид и наделать панелей из него. Что-то мне подсказывает, что к тому времени как мы это сможем, уже не будет необходимости передавать энергию на Землю.

Однако дыма ведь без огня не бывает. И под кажущимися мирными намерениями могут скрываться совсем другие.
Например, строительство боевой космической станции на порядки проще и гораздо эффективнее:
- орбиту можно и нужно выбрать пониже;
- 100% попадание в приёмник необязательно;
- очень малое время от нажатия на кнопку пуск до поражения цели;
- отсутствие загрязнения местности.

Вот такие выводы. Возможно вычисления содержат ошибки. Традиционно предлагаю читателям их поправить.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта