Главная » Обработка грибов » Правила сложения вычитания умножения векторов. Некоторые характеристические свойства плоскости

Правила сложения вычитания умножения векторов. Некоторые характеристические свойства плоскости

От-ме-тим, что сло-же-ние век-то-ров про-из-во-дит-ся ана-ло-гич-но пла-ни-мет-рии, толь-ко все дей-ствия вы-пол-ня-ют-ся в про-стран-стве.

Итак, пусть за-да-ны два про-из-воль-ных век-то-ра в про-стран-стве (рис. 1):

Рис. 1. Про-из-воль-ные век-то-ры в про-стран-стве

Опре-де-лим, что же на-зы-ва-ет-ся сум-мой двух этих век-то-ров.

Точно так же, как в пла-ни-мет-рии, из любой удоб-ной точки, на-зо-вем ее точ-кой А, можно един-ствен-ным об-ра-зом от-ло-жить век-тор, рав-ный век-то-ру . На-пом-ним, что за-дан-ные век-то-ры, как и любые дру-гие, сво-бод-ны, важно лишь на-прав-ле-ние и длина, сам век-тор можно па-рал-лель-но пе-ре-но-сить в любое место как на плос-ко-сти, так и в про-стран-стве. Так, мы по-лу-чи-ли век-тор - в ре-зуль-та-те дей-ствия век-то-ра точка А пе-ре-ме-сти-лась в точку В. Те-перь из точки В от-кла-ды-ва-ем един-ствен-но воз-мож-ным об-ра-зом век-тор , по-лу-ча-ем век-тор - так, в ре-зуль-та-те дей-ствия век-то-ра точка В пе-ре-ме-сти-лась в точку С. В ре-зуль-та-те точка А пе-ре-ме-сти-лась в точку С, по-лу-чен век-тор , ко-то-рый и на-зы-ва-ет-ся сум-мой век-то-ров и (рис. 2).

Рис. 2. Сумма двух век-то-ров в про-стран-стве

Так, по-лу-че-но пра-ви-ло тре-уголь-ни-ка для сло-же-ния век-то-ров в про-стран-стве.

Пра-ви-ло тре-уголь-ни-ка

Из любой точки про-стран-ства (точка А) от-кла-ды-ва-ем пер-вый век-тор, из конца пер-во-го век-то-ра (точка В) от-кла-ды-ва-ем вто-рой век-тор и по-лу-ча-ем точку С. Век-тор, со-еди-ня-ю-щий на-ча-ло пер-во-го век-то-ра (точка А) и конец вто-ро-го (точка С), и будет ре-зуль-ти-ру-ю-щим.

От-ме-тим, что ре-зуль-тат сло-же-ния век-то-ров не за-ви-сит от вы-бо-ра на-чаль-ной точки, су-ще-ству-ет со-от-вет-ству-ю-щая тео-ре-ма, ко-то-рая это до-ка-зы-ва-ет на ос-но-ва-нии того, что из точки можно от-ло-жить век-тор, рав-ный за-дан-но-му, един-ствен-ным об-ра-зом.

Опре-де-ле-ние

Раз-но-стью двух век-то-ров на-зы-ва-ет-ся такой тре-тий век-тор, ко-то-рый, бу-дучи сло-жен-ным со вто-рым век-то-ром, даст пер-вый век-тор.

Вве-дем раз-ность век-то-ров и , для этого сло-жим век-тор с про-ти-во-по-лож-ным век-то-ром :

Итак, из про-из-воль-ной точки А от-кла-ды-ва-ем век-тор , по-лу-ча-ем точку В. Чтобы по-лу-чить век-тор мы стро-им век-тор, рав-ный век-то-ру по длине, но про-ти-во-на-прав-лен-ный. По-лу-чен-ный век-тор от-кла-ды-ва-ем из точки В - по-лу-ча-ем точку D. Век-тор и будет ис-ко-мым век-то-ром раз-но-сти.

Про-ил-лю-стри-ру-ем (рис. 3):

Рис. 3. Вы-чи-та-ние двух век-то-ров в про-стран-стве

По-стро-им на за-дан-ных век-то-рах и па-рал-ле-ло-грамм (рис. 4):

Рис. 4. Па-рал-ле-ло-грамм на двух за-дан-ных век-то-рах

Т. к. век-тор ; ана-ло-гич-но .

По пра-ви-лу тре-уголь-ни-ка:

Так, одна из диа-го-на-лей па-рал-ле-ло-грам-ма, по-стро-ен-но-го на двух век-то-рах, со-от-вет-ству-ет сумме этих век-то-ров.

Рас-смот-рим раз-ность век-то-ров. По пра-ви-лу тре-уголь-ни-ка:

Так, вто-рая диа-го-наль па-рал-ле-ло-грам-ма, по-стро-ен-но-го на двух век-то-рах, со-от-вет-ству-ет раз-но-сти этих век-то-ров.

Для сло-же-ния и вы-чи-та-ния несколь-ких век-то-ров при-ме-ня-ет-ся пра-ви-ло мно-го-уголь-ни-ка. Пусть за-да-ны век-то-ры и :

Рис. 5. Три век-то-ра в про-стран-стве

Необ-хо-ди-мо по-стро-ить век-тор .

Видим, что перед неко-то-ры-ми век-то-ра-ми стоят чис-лен-ные мно-жи-те-ли. На-пом-ним, что при умно-же-нии век-то-ра на число по-лу-ча-ем со-на-прав-лен-ный век-тор, длина ко-то-ро-го - это длина ис-ход-но-го век-то-ра, умно-жен-ная на за-дан-ное число. По-лу-чим век-то-ры и . Век-тор со-на-прав-лен с век-то-ром , длина его в три раза боль-ше. Век-тор про-ти-во-на-прав-лен век-то-ру , длина его в два раза боль-ше. Про-ил-лю-стри-ру-ем (рис. 6):

Рис. 6. Умно-же-ние век-то-ра на число

При-сту-па-ем к сло-же-нию. Из про-из-воль-ной точки А от-кла-ды-ва-ем по-лу-чен-ный век-тор - по-лу-ча-ем точку В. Из точки В от-кла-ды-ва-ем век-тор - по-лу-ча-ем точку С. Из точки С от-кла-ды-ва-ем век-тор - по-лу-ча-ем точку D. Со-глас-но пра-ви-лу мно-го-уголь-ни-ка, век-тор со-от-вет-ству-ет ис-ко-мо-му век-то-ру :

Рис. 7. Сло-же-ние век-то-ров по пра-ви-лу мно-го-уголь-ни-ка

За-да-ча 1:

Задан тет-ра-эдр ABCD (ри-су-нок 8). До-ка-зать:

Рис. 8. Тет-ра-эдр, за-да-ча 1

Ре-ше-ние:

По пра-ви-лу тре-уголь-ни-ка:


В этой статье мы рассмотрим операции, которые можно производить с векторами на плоскости и в пространстве. Далее мы перечислим свойства операций над векторами и обоснуем их с помощью геометрических простроений. Также покажем применение свойств операций над векторами при упрощении выражений, содержащих векторы.

Для более качественного усвоения материала рекомендуем освежить в памяти понятия, данные в статье векторы - основные определения .

Навигация по странице.

Операция сложения двух векторов - правило треугольника.

Покажем как происходит сложение двух векторов .

Сложение векторов и происходит так: от произвольной точки A откладывается вектор , равный , далее от точки B откладываеься вектор , равный , и вектор представляет собой сумму векторов и . Такой способ сложения двух векторов называется правилом треугольника .

Проиллюстрируем сложение не коллинеарных векторов на плоскости по правилу треугольника.

А на чертеже ниже показано сложение сонаправленных и противоположно направленных векторов.


Сложение нескольких векторов - правило многоугольника.

Основываясь на рассмотренной операции сложения двух векторов, мы можем сложить три вектора и более. В этом случае складываются первые два вектора, к полученному результату прибавляется третий вектор, к получившемуся прибавляется четвертый и так далее.

Сложение нескольких векторов выполняется следующим построением. От произвольной точки А плоскости или пространства откладывается вектор, равный первому слагаемому, от его конца откладывается вектор, равный второму слагаемому, от его конца откладывается третье слагаемое, и так далее. Пусть точка B - это конец последнего отложенного вектора. Суммой всех этих векторов будет вектор .

Сложение нескольких векторов на плоскости таким способом называется правилом многоугольника . Приведем иллюстрацию правила многоугольника.

Абсолютно аналогично производится сложение нескольких векторов в пространстве.

Операция умножения вектора на число.

Сейчас разберемся как происходит умножение вектора на число .

Умножение вектора на число k соответствует растяжению вектора в k раз при k > 1 или сжатию в раз при 0 < k < 1 , при k = 1 вектор остается прежним (для отрицательных k еще изменяется направление на противоположное). Если произвольный вектор умножить на ноль, то получим нулевой вектор. Произведение нулевого вектора и произвольного числа есть нулевой вектор.

К примеру, при умножении вектора на число 2 нам следует вдвое увеличить его длину и сохранить направление, а при умножении вектора на минус одну треть следует уменьшить его длину втрое и изменить направление на противоположное. Приведем для наглядности иллюстрацию этого случая.

Свойства операций над векторами.

Итак, мы определили операцию сложения векторов и операцию умножения вектора на число. При этом для любых векторов и произвольных действительных чисел можно при помощи геометрических построений обосновать следующие свойства операций над векторами . Некоторые из них очевидны.

Рассмотренные свойства дают нам возможность преобразовывать векторные выражения.

Свойства коммутативности и ассоциативности операции сложения векторов позволяют складывать векторы в произвольном порядке.

Операции вычитания векторов как таковой нет, так как разность векторов и есть сумма векторов и .

Учитывая рассмотренные свойства операций над векторами, мы можем в выражениях, содержащих суммы, разности векторов и произведения векторов на числа, выполнять преобразования так же как и в числовых выражениях.

Разберем на примере.

При обучении математике и физике в старших классах средней школы, а также в высших учебных заведениях постоянно приходится сталкиваться с понятием вектора . Учащиеся и студенты обязаны уметь проводить с векторами простейшие арифметические действия.

В статье будет показано, как умножать их на постоянные числа.

Основные понятия и определения

Чтобы в дальнейшем упростить работу со статьёй, введём некоторые формулировки и договорённости:

  1. Постоянная - любое обычное число, которое может принимать определённые фиксированные значения, быть положительным, отрицательным или нулевым. Обозначать будем латинской буквой С (от греческого слова constanta, то есть постоянная).
  2. Вектор - участок прямой, ограниченный двумя точками и имеющий заданное направление. Обозначать будем как (АВ). Причём точка, А является его началом, В - концом. Направление будем считать от точки, А к точке В. Допустима замена на (CD).
  3. Вектора называются параллельными (коллинеарными), если они лежат на коллинеарных прямых или на одной прямой.
  4. Нулевым вектором называется такой, у которого конец и начало совпадают. Называется нуль-вектор и обозначается (0).
  5. Координатами (АВ) называются числа, равные его протяжённости относительно каждой из оси координат в Декартовой системе. Они находятся вычитанием из координат конца вектора координат его начала. Знак минус перед этим числом означает, что вектор направлен против направления данной оси.
  6. Модулем (АВ) называется длина отрезка АВ.
  7. Квадратный корень из числа или выражения условимся обозначать латинским буквосочетанием SQRT.
  8. (АВ) с координатами (x; y; z) будем обозначать как (АВ) (x; y; z).

Рассмотрим, как умножить вектор на число:

Алгебраический и геометрический смысл действия

Любое математическое действие имеет некий смысл, причём в разных науках он различается. Рассмотрим, что нам даёт этот вид умножения:

  1. Геометрический смысл : (АВ)*С - это вектор, коллинеарный данному, модуль которого отличается в С раз от исходного, направление может совпадать или меняться на противоположное в зависимости от знака постоянной.
  2. Алгебраический смысл : (АВ) (x; y; z)*С - это новый (А1В1) с координатами равными (С*x; С*y; С*z).
  3. Физический смысл : уменьшение или увеличение в С раз силы действующей на тело или материальную точку.

Формулы умножения

При умножении проще всего использовать заранее заученные на память формулы, которые вполне можно применять по шаблону, выполняя действия буквально на полном автомате:

  • С*(АВ) (x; y; z) = (А1В1) (С*x; С*y; С*z).
  • 0*(АВ) = (0).

Для начала возьмём физическую задачу воздействия силы на материальную точку. Пусть на неё действует сила, описываемая (АВ) (57;63;28). Как изменится эта сила по координатам при её десятикратном увеличении?

Прежде всего следует отметить, что направление воздействия силы не изменится, а сама сила возрастёт десятикратно. При раскладке по координатам получим следующее:

10*(АВ) (57;63;28) = (А1В1) (10*57;10*63;10*28) = (А1В1) (570;630;280).

Вторую задачу возьмём аналогичную: как изменится сила, действующая на материальное тело, описываемая (АВ) (46;59;-43) при её увеличении в -0,5 раза.

Прежде всего заметим, что знак у постоянной отрицательный, следовательно, направление самой силы изменится на противоположное. Воспользуемся пунктом 2 вышеизложенных правил умножения, тогда сразу станет понятно, что численное выражение силы уменьшится вдвое. Проведём вычисления по шаблону:

0,5*(АВ) (46;59;-43) = (А1В1) (-0,5*46;-0,5*59;-0,5*(-43)) = (А1В1) (-23;-29,5;21,5).

Следует заметить, что приведённые выше задачи решались для векторов, размещённых в пространстве и имеющих три координаты. В случае плоскостного размещения количество координат уменьшается до двух, а в случае линейного - до одной. Рассмотрим математические примеры для этих случаев:

  • 33*(CD) (11;10) = (C1D1) (33*11;33*10) = (C1D1) (363;330).
  • -0,2*(АВ) (-0,3;25) = (А1В1) (-0,2*(-0,3); -0,2*25) = (А1В1) (0,06; -5).
  • 67*(CD) (2) = (C1D1) (67*2) = (C1D1) (134).
  • 0*(АВ) (65;-87) = (0).

Возможные действия с векторами

Не следует думать, что все возможные действия ограничиваются умножениям на число. Прежде всего можно определить длину (АВ) - модуль. Он будет равняться SQRT из суммы квадратов координат. Поясним это на примере:

  • модуль (АВ) (3;4) = SQRT (3 2 + 4 2) = SQRT (9 + 16) = SQRT25 = 5.

Кроме этого, из курса школьной математики и физики известно, что вектора можно слагать один с другим и вычитать друг из друга. При этом проводится сложение и вычитание соответствующих координат.

Наконец, высшая математика вводит понятия числового (скалярного) и векторного умножения двух векторов. В первом случае получится некое число, во втором - третий вектор, направленный перпендикулярно плоскости, содержащей два первых.

В данной статье приведены основы умножения вектора на число. Исходя из её материала, можно утверждать, что действие это простое и доступное любому школьнику с удовлетворительной успеваемостью. Рекомендуется изучить формулы и в своих вычислениях действовать по изложенному в тексте шаблону.

Пусть $\overrightarrow{a}$ и $\overrightarrow{b}$ - два вектора (рис.1, а).

Возьмем произвольную точку О и построим вектор $\overrightarrow{ОА} = \overrightarrow{a}$ . Затем от точки А отложим вектор $\overrightarrow{AB} = \overrightarrow{b}$. Вектор $\overrightarrow{OB}$, соединяющий начало первого слагаемого вектора с концом второго (рис.1, б), называется суммой этих векторов и обозначается $\overrightarrow{a} + \overrightarrow{b}$$ (правило треугольника ).

Ту же самую сумму векторов можно получить иным способом. Отложим от точки О векторы $\overrightarrow{ОА} = \overrightarrow{a} \,и\, \overrightarrow{ОС} = \overrightarrow{b} $ (рис.1, в). Построим на этих векторах как на сторонах параллелограмм ОABC. Вектор $\overrightarrow{ОВ}$, служащий диагональю этого параллелограмма, проведенной из вершины О, является, очевидно, суммой векторов $\overrightarrow{a} + \overrightarrow{b}$ {правило параллелограмма ). Из рисунка 1, в непосредственно следует, что сумма двух векторов обладает переместительным свойством: $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$

Действительно, каждый из векторов $\overrightarrow{a} + \overrightarrow{b} \,и\, = \overrightarrow{b} + \overrightarrow{a}$ равен одному и тому же вектору $\overrightarrow{OB}$ .

Пример 1. В треугольнике ABC АВ = 3, ВС = 4, ∠ В = 90°. Найти: $а)\,\ \overrightarrow{|АВ|} + \overrightarrow{|ВС|};\,\,\ б)\,\ |\overrightarrow{АВ} + \overrightarrow{ВС}|$ .

Решение

а) Имеем: $|\overrightarrow{АВ}| = АВ,\,\,\ |\overrightarrow{ВС}| = ВС$ и, значит, $|\overrightarrow{АВ}| + |\overrightarrow{BC}| = 7$ .

б) Так как $\overrightarrow{AB} + \overrightarrow{ВС} = \overrightarrow{АС} \,\,\,\, то\,\, |\overrightarrow{АВ} + \overrightarrow{ВС}| = |\overrightarrow{АС}| = АС$ .

Теперь, применяя теорему Пифагора, находим $$ AC = \sqrt{AB^2 + BC^2} = \sqrt{9 + 16} = 5 \\ т.е.\, |\overrightarrow{АВ} + \overrightarrow{ВС}| = 5. $$

Понятие суммы векторов можно обобщить на случай любого конечного числа слагаемых векторов.

Пусть, например, даны три вектора $\overrightarrow{a}, \overrightarrow{b} \,и\, \overrightarrow{c}$ (рис.2).

Построив сначала сумму векторов $\overrightarrow{a} + \overrightarrow{b}$ , а затем прибавив к этой сумме вектор $\overrightarrow{c}$, получим вектор $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$ . На рисунке 2 $$ \overrightarrow{ОА} = \overrightarrow{a}\,; \overrightarrow{АВ} = b\,; \overrightarrow{ОВ} = \overrightarrow{a} + \overrightarrow{b}\,; \overrightarrow{BC} = \overrightarrow{c} \\ и \\ \overrightarrow{ОС} = \overrightarrow{ОВ} + \overrightarrow{ВС} = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} $$ Из рисунка 2 видно, что тот же вектор $\overrightarrow{ОС}$ мы получим, если к вектору $\overrightarrow{ОА} = \overrightarrow{a}$ прибавим вектор $\overrightarrow{АВ} = \overrightarrow{b} + \overrightarrow{c}$ . Таким образом, $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ , т. е. сумма векторов обладает сочетательным свойством. Поэтому сумму трех векторов $\overrightarrow{a}\,\,\overrightarrow{b}\,\,\overrightarrow{c}$ записывают просто $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ .

Разностью двух векторов $\overrightarrow{a} \,и\, \overrightarrow{b}$ называется третий вектор $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}$ , сумма которого с вычитаемым вектором $\overrightarrow{b}$ дает вектор $\overrightarrow{a}$. Таким образом, если $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}\,\, то\, \overrightarrow{c} + \overrightarrow{b} = \overrightarrow{a}$ .

Из определения суммы двух векторов вытекает правило построения вектора-разности (рис.3).

Откладываем векторы $\overrightarrow{ОА} = \overrightarrow{a} \,и\, \overrightarrow{OB} = \overrightarrow{b}$ из общей точки О. Вектор $\overrightarrow{BA}$ , соединяющий концы уменьшаемого вектора $\overrightarrow{a}$ и вычитаемого вектора $\overrightarrow{b}$ и направленный от вычитаемого к уменьшаемому, является разностью $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}$ . Действительно, по правилу сложения векторов $\overrightarrow{ОВ} + \overrightarrow{ВА} = \overrightarrow{ОА} \text{ , или } \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{a}$ .

Пример 2. Сторона равностороннего треугольника ABC равна а. Найти: $а) |\overrightarrow{ВА} - \overrightarrow{ВС}|\,;\,\ б)\,\,\ |\overrightarrow{АВ} - \overrightarrow{АС}|$ .

Решение а) Так как $\overrightarrow{ВА} - \overrightarrow{ВС} = \overrightarrow{СА}\text{ , а }|\overrightarrow{СА}| = а\text{ , то }|\overrightarrow{ВА} - \overrightarrow{ВС}| = а$ .

б) Так как $\overrightarrow{АВ} - \overrightarrow{АС} = \overrightarrow{СВ}\text{ , а }|\overrightarrow{СВ}| = а\text{ , то }|\overrightarrow{АВ} - \overrightarrow{АС}| = а$ .

Произведением вектора $\overrightarrow{a}$(обозначается $=\lambda\overrightarrow{a}$ или $\overrightarrow{a}\lambda$) на действительное число $\lambda$ называется вектор $\overrightarrow{b}$, коллинеарный вектору $\overrightarrow{a}$, имеющий длину, равную $|\lambda||\overrightarrow{a}|$, и то же направление, что и вектор $\overrightarrow{a}$, если $\lambda > 0$ , и направление, противоположное направлению вектора $\overrightarrow{a}$, если $\lambda < 0$ . Так, например, $2\overrightarrow{a}$ есть вектор, имеющий то же направление, что и вектор $\overrightarrow{a}$ , а длину, вдвое большую, чем вектор $\overrightarrow{a}$ (рис.4).

В случае, когда $\lambda = 0$ или $\overrightarrow{a} = 0$ , произведение $\lambda\overrightarrow{a}$ представляет собой нулевой вектор. Противоположный вектор $-\overrightarrow{a}$ можно рассматривать как результат умножения вектора $\overrightarrow{a}$ на $\lambda = -1$ (см. рис.4): $$ -\overrightarrow{a} = \ (-1)\overrightarrow{a} $$ Очевидно, что $\overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{0}$ .

Пример 3. Доказать, что если О, А, В и С - произвольные точки, то $\overrightarrow{ОА} + \overrightarrow{АВ} + \overrightarrow{ВС} + \overrightarrow{СО} = 0$ .

Решение. Сумма векторов $\overrightarrow{ОА} + \overrightarrow{АВ} + \overrightarrow{СВ} = \overrightarrow{ОС}$ , вектор $\overrightarrow{CO}$ - противоположный вектору $\overrightarrow{ОС}$ . Поэтому $\overrightarrow{ОС} + \overrightarrow{СО} = \overrightarrow{0}$ .

Пусть дан вектор $\overrightarrow{a}$. Рассмотрим единичный вектор $\overrightarrow{a_0}$ , коллинеарный вектору $\overrightarrow{a}$ и одинаково с ним направленный. Из определения умножения вектора на число следует, что $$ \overrightarrow{a} = |\overrightarrow{a}|\,\ \overrightarrow{a_0} $$ , т.е. каждый вектор равен произведению его модуля на единичный вектор того же направления. Далее из того же определения следует, что если $\overrightarrow{b} = \lambda\overrightarrow{a}$ , где $\overrightarrow{a}$ - ненулевой вектор, то векторы $\overrightarrow{a} \,и\, \overrightarrow{b}$ коллинеарны. Очевидно, что и обратно, из коллинеарности векторов $\overrightarrow{a} \,и\, \overrightarrow{b}$ следует, что $\overrightarrow{b} = \lambda\overrightarrow{a}$.

Пример 4. Длина вектора AB равна 3, длина вектора AC равна 5. Косинус угла между этими векторами равен 1/15. Найдите длину вектора AB + AC.

Видео-решение.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта