Главная » 2 Распространение и сезон сбора » Найти единичный вектор нормали прямой. Вектор нормали прямой (нормальный вектор)

Найти единичный вектор нормали прямой. Вектор нормали прямой (нормальный вектор)

Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.

Yandex.RTB R-A-339285-1

Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами. Для начала ознакомимся с понятием вектора прямой.

Определение 1

Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.

Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.

Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а 1 параллельные, а n → считается нормальным вектором прямой a , также считается нормальным вектором для прямой a 1 . Когда прямая а имеет прямой вектор, тогда вектор t · n → является ненулевым при любом значении параметра t , причем также является нормальным для прямой a .

Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.

Если задана плоскость О х у, то множеством векторов для О х является координатный вектор j → . Он считается ненулевым и принадлежащим координатной оси О у, перпендикулярной О х. Все множество нормальных векторов относительно О х можно записать, как t · j → , t ∈ R , t ≠ 0 .

Прямоугольная система O x y z имеет нормальный вектор i → , относящийся к прямой О z . Вектор j → также считается нормальным. Отсюда видно, что любой ненулевой вектор, расположенный в любой плоскости и перпендикулярный О z , считается нормальным для O z .

Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям прямой

При рассмотрении прямоугольной системы координат О х у выявим, что уравнение прямой на плоскости соответствует ей, а определение нормальных векторов производится по координатам. Если известно уравнение прямой, а необходимо найти координаты нормального вектора, тогда необходимо из уравнения A x + B y + C = 0 выявить коэффициенты, которые и соответствуют координатам нормального вектора заданной прямой.

Пример 1

Задана прямая вида 2 x + 7 y - 4 = 0 _, найти координаты нормального вектора.

Решение

По условию имеем, что прямая была задана общим уравнением, значит необходимо выписать коэффициенты, которые и являются координатами нормального вектора. Значит, координаты вектора имеют значение 2 , 7 .

Ответ: 2 , 7 .

Бывают случаи, когда A или В из уравнения равняется нулю. Рассмотрим решение такого задания на примере.

Пример 2

Указать нормальный вектор для заданной прямой y - 3 = 0 .

Решение

По условию нам дано общее уравнение прямой, значит запишем его таким образом 0 · x + 1 · y - 3 = 0 . Теперь отчетливо видим коэффициенты, которые и являются координатами нормального вектора. Значит, получаем, что координаты нормального вектора равны 0 , 1 .

Ответ: 0 , 1 .

Если дано уравнение в отрезках вида x a + y b = 1 или уравнение с угловым коэффициентом y = k · x + b , тогда необходимо приводить к общему уравнению прямой, где можно найти координаты нормального вектора данной прямой.

Пример 3

Найти координаты нормального вектора, если дано уравнение прямой x 1 3 - y = 1 .

Решение

Для начала необходимо перейти от уравнения в отрезках x 1 3 - y = 1 к уравнению общего вида. Тогда получим, что x 1 3 - y = 1 ⇔ 3 · x - 1 · y - 1 = 0 .

Отсюда видно, что координаты нормального вектора имеют значение 3 , - 1 .

Ответ: 3 , - 1 .

Если прямая определена каноническим уравнением прямой на плоскости x - x 1 a x = y - y 1 a y или параметрическим x = x 1 + a x · λ y = y 1 + a y · λ , тогда получение координат усложняется. По данным уравнениям видно, что координаты направляющего вектора будут a → = (a x , a y) . Возможность нахождения координат нормального вектора n → возможно, благодаря условию перпендикулярности векторов n → и a → .

Имеется возможность получения координат нормального вектора при помощи приведения канонического или параметрического уравнений прямой к общему. Тогда получим:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x · (y - y 1) ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 = 0

Для решения можно выбирать любой удобный способ.

Пример 4

Найти нормальный вектор заданной прямой x - 2 7 = y + 3 - 2 .

Решение

Из прямой x - 2 7 = y + 3 - 2 понятно, что направляющий вектор будет иметь координаты a → = (7 , - 2) . Нормальный вектор n → = (n x , n y) заданной прямой является перпендикулярным a → = (7 , - 2) .

Выясним, чему равно скалярное произведение. Для нахождения скалярного произведения векторов a → = (7 , - 2) и n → = (n x , n y) запишем a → , n → = 7 · n x - 2 · n y = 0 .

Значение n x – произвольное, следует найти n y . Если n x = 1 , отсюда получаем, что 7 · 1 - 2 · n y = 0 ⇔ n y = 7 2 .

Значит, нормальный вектор имеет координаты 1 , 7 2 .

Второй способ решения сводится к тому, что необходимо прийти к общему виду уравнения из канонического. Для этого преобразуем

x - 2 7 = y + 3 - 2 ⇔ 7 · (y + 3) = - 2 · (x - 2) ⇔ 2 x + 7 y - 4 + 7 3 = 0

Полученный результат координат нормального вектора равен 2 , 7 .

Ответ: 2 , 7 или 1 , 7 2 .

Пример 5

Указать координаты нормального вектора прямой x = 1 y = 2 - 3 · λ .

Решение

Для начала необходимо выполнить преобразование для перехода в общему виду прямой. Выполним:

x = 1 y = 2 - 3 · λ ⇔ x = 1 + 0 · λ y = 2 - 3 · λ ⇔ λ = x - 1 0 λ = y - 2 - 3 ⇔ x - 1 0 = y - 2 - 3 ⇔ ⇔ - 3 · (x - 1) = 0 · (y - 2) ⇔ - 3 · x + 0 · y + 3 = 0

Отсюда видно, что координаты нормального вектора равны - 3 , 0 .

Ответ: - 3 , 0 .

Рассмотрим способы для нахождения координат нормального вектора при уравнении прямой в пространстве, заданной прямоугольной системой координат О х у z .

Когда прямая задается при помощи уравнений пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда нормальный вектор плоскости относится к A 2 x + B 2 y + C 2 z + D 2 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда получаем запись векторов в виде n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) .

Когда прямая определена при помощи канонического уравнения пространства, имеющего вид x - x 1 a x = y - y 1 a y = z - z 1 a z или параметрического, имеющего вид x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , отсюда a x , a y и a z считаются координатами направляющего вектора заданной прямой. Любой ненулевой вектор может быть нормальным для данной прямой, причем являться перпендикулярным вектору a → = (a x , a y , a z) . Отсюда следует, что нахождение координат нормального с параметрическими и каноническими уравнениями производится при помощи координат вектора, который перпендикулярен заданному вектору a → = (a x , a y , a z) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Для того, чтобы использовать метод координат, надо хорошо знать формулы. Их три:

На первый взгляд, выглядит угрожающе, но достаточно немного практики - и все будет работать великолепно.

Задача. Найти косинус угла между векторами a = (4; 3; 0) и b = (0; 12; 5).

Решение. Поскольку координаты векторов нам даны, подставляем их в первую формулу:

Задача. Составить уравнение плоскости, проходящей через точки M = (2; 0; 1), N = (0; 1; 1) и K = (2; 1; 0), если известно, что она не проходит через начало координат.

Решение. Общее уравнение плоскости: Ax + By + Cz + D = 0, но, поскольку искомая плоскость не проходит через начало координат - точку (0; 0; 0) - то положим D = 1. Поскольку эта плоскость проходит через точки M, N и K, то координаты этих точек должны обращать уравнение в верное числовое равенство.

Подставим вместо x, y и z координаты точки M = (2; 0; 1). Имеем:
A · 2 + B · 0 + C · 1 + 1 = 0 ⇒ 2A + C + 1 = 0;

Аналогично, для точек N = (0; 1; 1) и K = (2; 1; 0) получим уравнения:
A · 0 + B · 1 + C · 1 + 1 = 0 ⇒ B + C + 1 = 0;
A · 2 + B · 1 + C · 0 + 1 = 0 ⇒ 2A + B + 1 = 0;

Итак, у нас есть три уравнения и три неизвестных. Составим и решим систему уравнений:

Получили, что уравнение плоскости имеет вид: − 0,25x − 0,5y − 0,5z + 1 = 0.

Задача. Плоскость задана уравнением 7x − 2y + 4z + 1 = 0. Найти координаты вектора, перпендикулярного данной плоскости.

Решение. Используя третью формулу, получаем n = (7; − 2; 4) - вот и все!

Вычисление координат векторов

А что, если в задаче нет векторов - есть только точки, лежащие на прямых, и требуется вычислить угол между этими прямыми? Все просто: зная координаты точек - начала и конца вектора - можно вычислить координаты самого вектора.

Чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.

Эта теорема одинаково работает и на плоскости, и в пространстве. Выражение «вычесть координаты» означает, что из координаты x одной точки вычитается координата x другой, затем то же самое надо сделать с координатами y и z. Вот несколько примеров:

Задача. В пространстве расположены три точки, заданные своими координатами: A = (1; 6; 3), B = (3; − 1; 7) и C = (− 4; 3; − 2). Найти координаты векторов AB, AC и BC.

Рассмотрим вектор AB: его начало находится в точке A, а конец - в точке B. Следовательно, чтобы найти его координаты, надо из координат точки B вычесть координаты точки A:
AB = (3 − 1; − 1 − 6; 7 − 3) = (2; − 7; 4).

Аналогично, начало вектора AC - все та же точка A, зато конец - точка C. Поэтому имеем:
AC = (− 4 − 1; 3 − 6; − 2 − 3) = (− 5; − 3; − 5).

Наконец, чтобы найти координаты вектора BC, надо из координат точки C вычесть координаты точки B:
BC = (− 4 − 3; 3 − (− 1); − 2 − 7) = (− 7; 4; − 9).

Ответ: AB = (2; − 7; 4); AC = (− 5; − 3; − 5); BC = (− 7; 4; − 9)

Обратите внимание на вычисление координат последнего вектора BC: очень многие ошибаются, когда работают с отрицательными числами. Это касается переменной y: у точки B координата y = − 1, а у точки C y = 3. Получаем именно 3 − (− 1) = 4, а не 3 − 1, как многие считают. Не допускайте таких глупых ошибок!

Вычисление направляющих векторов для прямых

Если вы внимательно прочитаете задачу C2, то с удивлением обнаружите, что никаких векторов там нет. Там только прямые да плоскости.

Для начала разберемся с прямыми. Здесь все просто: на любой прямой найдутся хотя бы две различные точки и, наоборот, любые две различные точки задают единственную прямую...

Кто-нибудь понял, что написано в предыдущем абзаце? Я и сам не понял, поэтому объясню проще: в задаче C2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим так называемый направляющий вектор для прямой:

Зачем нужен этот вектор? Дело в том, что угол между двумя прямыми - это угол между их направляющими векторами. Таким образом, мы переходим от непонятных прямых к конкретным векторам, координаты которых легко считаются. Насколько легко? Взгляните на примеры:

Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведены прямые AC и BD 1 . Найдите координаты направляющих векторов этих прямых.

Поскольку длина ребер куба в условии не указана, положим AB = 1. Введем систему координат с началом в точке A и осями x, y, z, направленными вдоль прямых AB, AD и AA 1 соответственно. Единичный отрезок равен AB = 1.

Теперь найдем координаты направляющего вектора для прямой AC. Нам потребуются две точки: A = (0; 0; 0) и C = (1; 1; 0). Отсюда получаем координаты вектора AC = (1 − 0; 1 − 0; 0 − 0) = (1; 1; 0) - это и есть направляющий вектор.

Теперь разберемся с прямой BD 1 . На ней также есть две точки: B = (1; 0; 0) и D 1 = (0; 1; 1). Получаем направляющий вектор BD 1 = (0 − 1; 1 − 0; 1 − 0) = (− 1; 1; 1).

Ответ: AC = (1; 1; 0); BD 1 = (− 1; 1; 1)

Задача. В правильной треугольной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, проведены прямые AB 1 и AC 1 . Найдите координаты направляющих векторов этих прямых.

Введем систему координат: начало в точке A, ось x совпадает с AB, ось z совпадает с AA 1 , ось y образует с осью x плоскость OXY, которая совпадает с плоскостью ABC.

Для начала разберемся с прямой AB 1 . Тут все просто: у нас есть точки A = (0; 0; 0) и B 1 = (1; 0; 1). Получаем направляющий вектор AB 1 = (1 − 0; 0 − 0; 1 − 0) = (1; 0; 1).

Теперь найдем направляющий вектор для AC 1 . Все то же самое - единственное отличие в том, что у точки C 1 иррациональные координаты. Итак, A = (0; 0; 0), поэтому имеем:

Ответ: AB 1 = (1; 0; 1);

Небольшое, но очень важное замечание насчет последнего примера. Если начало вектора совпадает с началом координат, вычисления резко упрощаются: координаты вектора просто равны координатам конца. К сожалению, это верно лишь для векторов. Например, при работе с плоскостями присутствие на них начала координат только усложняет выкладки.

Вычисление нормальных векторов для плоскостей

Нормальные векторы - это не те векторы, у которых все в порядке, или которые чувствуют себя хорошо. По определению, нормальный вектор (нормаль) к плоскости - это вектор, перпендикулярный данной плоскости.

Другими словами, нормаль - это вектор, перпендикулярный любому вектору в данной плоскости. Наверняка вы встречали такое определение - правда, вместо векторов речь шла о прямых. Однако чуть выше было показано, что в задаче C2 можно оперировать любым удобным объектом - хоть прямой, хоть вектором.

Еще раз напомню, что всякая плоскость задается в пространстве уравнением Ax + By + Cz + D = 0, где A, B, C и D - некоторые коэффициенты. Не умаляя общности решения, можно полагать D = 1, если плоскость не проходит через начало координат, или D = 0, если все-таки проходит. В любом случае, координаты нормального вектора к этой плоскости равны n = (A; B; C).

Итак, плоскость тоже можно успешно заменить вектором - той самой нормалью. Всякая плоскость задается в пространстве тремя точками. Как найти уравнение плоскости (а следовательно - и нормали), мы уже обсуждали в самом начале статьи. Однако этот процесс у многих вызывает проблемы, поэтому приведу еще парочку примеров:

Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведено сечение A 1 BC 1 . Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA 1 соответственно.

Поскольку плоскость не проходит через начало координат, ее уравнение выглядит так: Ax + By + Cz + 1 = 0, т.е. коэффициент D = 1. Поскольку эта плоскость проходит через точки A 1 , B и C 1 , то координаты этих точек обращают уравнение плоскости в верное числовое равенство.


A · 0 + B · 0 + C · 1 + 1 = 0 ⇒ C + 1 = 0 ⇒ C = − 1;

Аналогично, для точек B = (1; 0; 0) и C 1 = (1; 1; 1) получим уравнения:
A · 1 + B · 0 + C · 0 + 1 = 0 ⇒ A + 1 = 0 ⇒ A = − 1;
A · 1 + B · 1 + C · 1 + 1 = 0 ⇒ A + B + C + 1 = 0;

Но коэффициенты A = − 1 и C = − 1 нам уже известны, поэтому остается найти коэффициент B:
B = − 1 − A − C = − 1 + 1 + 1 = 1.

Получаем уравнение плоскости: − A + B − C + 1 = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; − 1).

Задача. В кубе ABCDA 1 B 1 C 1 D 1 проведено сечение AA 1 C 1 C. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA 1 соответственно.

В данном случае плоскость проходит через начало координат, поэтому коэффициент D = 0, а уравнение плоскости выглядит так: Ax + By + Cz = 0. Поскольку плоскость проходит через точки A 1 и C, координаты этих точек обращают уравнение плоскости в верное числовое равенство.

Подставим вместо x, y и z координаты точки A 1 = (0; 0; 1). Имеем:
A · 0 + B · 0 + C · 1 = 0 ⇒ C = 0;

Аналогично, для точки C = (1; 1; 0) получим уравнение:
A · 1 + B · 1 + C · 0 = 0 ⇒ A + B = 0 ⇒ A = − B;

Положим B = 1. Тогда A = − B = − 1, и уравнение всей плоскости имеет вид: − A + B = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; 0).

Вообще говоря, в приведенных задачах надо составлять систему уравнений и решать ее. Получится три уравнения и три переменных, но во втором случае одна из них будет свободной, т.е. принимать произвольные значения. Именно поэтому мы вправе положить B = 1 - без ущерба для общности решения и правильности ответа.

Очень часто в задаче C2 требуется работать с точками, которые делят отрезок пополам. Координаты таких точек легко считаются, если известны координаты концов отрезка.

Итак, пусть отрезок задан своими концами - точками A = (x a ; y a ; z a) и B = (x b ; y b ; z b). Тогда координаты середины отрезка - обозначим ее точкой H - можно найти по формуле:

Другими словами, координаты середины отрезка - это среднее арифметическое координат его концов.

Задача. Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Точка K - середина ребра A 1 B 1 . Найдите координаты этой точки.

Поскольку точка K - середина отрезка A 1 B 1 , ее координаты равных среднему арифметическому координат концов. Запишем координаты концов: A 1 = (0; 0; 1) и B 1 = (1; 0; 1). Теперь найдем координаты точки K:

Задача. Единичный куб ABCDA 1 B 1 C 1 D 1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA 1 соответственно, а начало координат совпадает с точкой A. Найдите координаты точки L, в которой пересекаются диагонали квадрата A 1 B 1 C 1 D 1 .

Из курса планиметрии известно, что точка пересечения диагоналей квадрата равноудалена от всех его вершин. В частности, A 1 L = C 1 L, т.е. точка L - это середина отрезка A 1 C 1 . Но A 1 = (0; 0; 1), C 1 = (1; 1; 1), поэтому имеем:

Ответ : L = (0,5; 0,5; 1)

Метод координат — весьма эффективный и универсальный способ нахождения любых углов или расстояний между стереометрическими объектами в пространстве. Если Ваш репетитор по математике имеет высокую квалификацию, то он должен это знать. В противном случае я бы советовал для «С» части сменить репетитора. Моя подготовка к ЕГЭ по математике С1-С6 обычно включает разбор основных алгоритмов и формул, описанных ниже.

Угол между прямыми а и b

Углом между прямыми в пространстве называется угол между любыми параллельными им пересекающимися прямыми. Этот угол равен углу между направляющими векторами данных прямых (или дополняет его до 180 град).

Какой алгоритм использует репетитор по математике для поиска угла?

1) Выбираем любые вектора и , имеющие направления прямых а и b (параллельные им).
2) Определяем координаты векторов и по соответствующим координатам их начал и концов (от координат конца вектора нужно отнять координаты начала).
3) Подставляем найденный координаты в формулу:
. Для нахождения самого угла, нужно найти арккосинус полученного результата.

Нормаль к плоскости

Нормалью к плоскости называется любой вектор, перпендикулярный к этой плоскости.
Как найти нормаль? Для поиска координат нормали достаточно узнать координаты любых трех точек M, N и K, лежащих в данной плоскости. По этим координатам находим координаты векторов и и требуем выполнения условий и . Приравнивая скалярные произведение векторов к нулю, составляем систему уравнений с тремя переменными, из которой можно найти координаты нормали.

Замечание репетитора по математике : Совсем не обязательно решать систему полностью, ибо достаточно подобрать хотя бы одну нормаль. Для этого можно подставить вместо какой-нибудь из ее неизвестных координат любое число (например единицу) и решить систему двух уравнений с оставшимися двумя неизвестными. Если она решений не имеет, то это значит, что в семействе нормалей нет той, у которой по выбранной переменной стоит единица. Тогда подставьте единицу вместо другой переменной (другой координаты) и решите новую систему. Если опять промахнетесь, то Ваша нормаль будет иметь единицу по последней координате, а сама она окажется параллельной какой-нибудь координатной плоскости (в таком случае ее легко найти и без системы).

Допустим, что нам заданы прямая и плоскость координатами направляющего вектора и нормали
Угол между прямой и плоскость вычисляется по следующей формуле:

Пусть и — две любые нормали к данным плоскостям. Тогда косинус угла между плоскостями равен модулю косинуса угла между нормалями:

Уравнение плоскости в пространстве

Точки, удовлетворяющие равенству образуют плоскость с нормалью . Коэффициент отвечает за величину отклонения (параллельного сдвига) между двумя плоскостями с одной и той же заданной нормалью . Для того, чтобы написать уравнение плоскости нужно сначала найти ее нормаль (как это описано выше), а затем подставить координаты любой точки плоскости вместе с координатами найденной нормали в уравнение и найти коэффициент .

Вектор нормали к поверхности в точке совпадает с нормалью к касательной плоскости в этой точке.

Вектор нормали к поверхности в данной точке - это единичный вектор , приложенный к данной точке и параллельный направлению нормали. Для каждой точки гладкой поверхности можно задать два нормальных вектора, отличающихся направлением. Если на поверхности можно задать непрерывное поле нормальных векторов, то говорят, что это поле задает ориентацию поверхности (то есть выделяет одну из сторон). Если этого сделать нельзя, поверхность называется неориентируемой .

Аналогично определяется вектор нормали к кривой в данной точке. Очевидно, что к кривой к данной точке можно приложить бесконечно много не параллельных векторов нормали (аналогично тому, как к поверхности можно приложить бесконечно много не параллельных касательных векторов). Среди них выбирают два, ортогональных друг к другу: вектор главной нормали, и вектор бинормали .

См. также

Литература

  • Погорелов А. И. Дифференциальная геометрия (6-е издание). М.: Наука, 1974 (djvu)

Wikimedia Foundation . 2010 .

Синонимы :
  • Битва при Треббии (1799)
  • Граммонит

Смотреть что такое "Нормаль" в других словарях:

    НОРМАЛЬ - (фр.). Перпендикуляр к касательной, проведенной к кривой, в данной точке, нормаль которой отыскивается. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НОРМАЛЬ перпендикулярная линия к касательной, проведенной к… … Словарь иностранных слов русского языка

    нормаль - и, ж. normale f. <лат. normalis. 1. мат. Перпендикуляр к касательной прямой или плоскости, проходящий через точку касания. БАС 1. Нормальная линия, или нормаль. В аналитической геометрии так называется прямая линия, перпендикулярная к… … Исторический словарь галлицизмов русского языка

    нормаль - перпендикуляр. Ant. параллель Словарь русских синонимов. нормаль сущ., кол во синонимов: 3 бинормаль (1) … Словарь синонимов

    НОРМАЛЬ - (от лат. normalis прямой) к кривой линии (поверхности) в данной ее точке прямая, проходящая через эту точку и перпендикулярная к касательной прямой (касательной плоскости) в этой точке …

    НОРМАЛЬ - устаревшее название стандарта … Большой Энциклопедический словарь

    НОРМАЛЬ - НОРМАЛЬ, нормали, жен. 1. Перпендикуляр к касательной прямой или плоскости, проходящий через точку касания (мат.). 2. Деталь установленного заводом образца (тех.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    нормаль - нормальный вертикальный стандартный реальный — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы нормальныйвертикальныйстандартныйреальный EN normal … Справочник технического переводчика

    нормаль - и; ж. [от лат. normalis прямолинейный] 1. Матем. Перпендикуляр к касательной прямой или плоскости, проходящей через точку касания. 2. Техн. Деталь установленного образца. * * * нормаль I (от лат. normalis прямой) к кривой линии (поверхности) в… … Энциклопедический словарь

    НОРМАЛЬ - (франц. normal нормаль, норма, от лат. normalis прямой) 1) Н. в стандарт и з а ц и и устаревшее назв. стандарта. 2) Н. в математике Н. к кривой (поверхности) в данной точке наз. прямую, проходящую через эту точку и перпендикулярную к касат.… … Большой энциклопедический политехнический словарь

    нормаль - normalė statusas T sritis fizika atitikmenys: angl. normal vok. Normale, f rus. нормаль, f pranc. normale, f … Fizikos terminų žodynas

Книги

  • Геометрия алгебраических уравнений, разрешимых в радикалах: С приложениями в численных методах и вычислительной геометрии , Кутищев Г.П.. В этой книге, на теоретическом уровне несколько выше школьного, очень подробно рассмотрены алгебраические уравнения, допускающие решение в элементарных операциях, или решение в радикалах. Эти…

А именно, о том, что вы видите в заголовке. По существу, это «пространственный аналог» задачи нахождения касательной и нормали к графику функции одной переменной, и поэтому никаких трудностей возникнуть не должно.

Начнём с базовых вопросов: ЧТО ТАКОЕ касательная плоскость и ЧТО ТАКОЕ нормаль? Многие осознают эти понятия на уровне интуиции. Самая простая модель, приходящая на ум – это шар, на котором лежит тонкая плоская картонка. Картонка расположена максимально близко к сфере и касается её в единственной точке. Кроме того, в точке касания она закреплена торчащей строго вверх иголкой.

В теории существует довольно остроумное определение касательной плоскости. Представьте произвольную поверхность и принадлежащую ей точку . Очевидно, что через точку проходит много пространственных линий , которые принадлежат данной поверхности. У кого какие ассоциации? =) …лично я представил осьминога. Предположим, что у каждой такой линии существует пространственная касательная в точке .

Определение 1 : касательная плоскость к поверхности в точке – это плоскость , содержащая касательные ко всем кривым, которые принадлежат данной поверхности и проходят через точку .

Определение 2 : нормаль к поверхности в точке – это прямая , проходящая через данную точку перпендикулярно касательной плоскости.

Просто и изящно. Кстати, чтобы вы не померли со скуки от простоты материала, чуть позже я поделюсь с вами одним изящным секретом, который позволяет РАЗ И НАВСЕГДА забыть о зубрёжке различных определений.

С рабочими формулами и алгоритмом решения познакомимся прямо на конкретном примере. В подавляющем большинстве задач требуется составить и уравнение касательной плоскости, и уравнения нормали:

Пример 1

Решение :если поверхность задана уравнением (т.е. неявно) , то уравнение касательной плоскости к данной поверхности в точке можно найти по следующей формуле:

Особое внимание обращаю на необычные частные производные – их не следует путать с частными производными неявно заданной функции (хотя поверхность задана неявно) . При нахождении этих производных нужно руководствоваться правилами дифференцирования функции трёх переменных , то есть, при дифференцировании по какой-либо переменной, две другие буквы считаются константами:

Не отходя от кассы, найдём частную производную в точке:

Аналогично:

Это был самый неприятный момент решения, в котором ошибка если не допускается, то постоянно мерещится. Тем не менее, здесь существует эффективный приём проверки, о котором я рассказывал на уроке Производная по направлению и градиент .

Все «ингредиенты» найдены и теперь дело за аккуратной подстановкой с дальнейшими упрощениями:

общее уравнение искомой касательной плоскости.

Настоятельно рекомендую проконтролировать и этот этап решения. Сначала нужно убедиться, что координаты точки касания действительно удовлетворяют найденному уравнению:

– верное равенство.

Теперь «снимаем» коэффициенты общего уравнения плоскости и проверяем их на предмет совпадения либо пропорциональности с соответствующими значениями . В данном случае пропорциональны. Как вы помните из курса аналитической геометрии , – это вектор нормали касательной плоскости, и он же – направляющий вектор нормальной прямой. Составим канонические уравнения нормали по точке и направляющему вектору :

В принципе, знаменатели можно сократить на «двойку», но особой надобности в этом нет

Ответ :

Уравнения не возбраняется обозначить какими-нибудь буквами, однако, опять же – зачем? Здесь и так предельно понятно, что к чему.

Следующие два примера для самостоятельного решения. Небольшая «математическая скороговорка»:

Пример 2

Найти уравнения касательной плоскости и нормали к поверхности в точке .

И задание, интересное с технической точки зрения:

Пример 3

Составить уравнения касательной плоскости и нормали к поверхности в точке

В точке .

Тут есть все шансы не только запутаться, но и столкнуться с трудностями при записи канонических уравнений прямой . А уравнения нормали, как вы, наверное, поняли, принято записывать именно в таком виде. Хотя, по причине забывчивости либо незнания некоторых нюансов более чем приемлема и параметрическая форма.

Примерные образцы чистового оформления решений в конце урока.

В любой ли точке поверхности существует касательная плоскость? В общем случае, конечно же, нет. Классический пример – это коническая поверхность и точка – касательные в этой точке непосредственно образуют коническую поверхность, и, разумеется, не лежат в одной плоскости. В неладах легко убедиться и аналитически: .

Другим источником проблем является факт несуществования какой-либо частной производной в точке. Однако это ещё не значит, что в данной точке нет единой касательной плоскости.

Но то была, скорее, научно-популярная, нежели практически значимая информация, и мы возвращаемся к делам насущным:

Как составить уравнения касательной плоскости и нормали в точке,
если поверхность задана явной функцией ?

Перепишем её в неявном виде :

И по тем же принципам найдём частные производные:

Таким образом, формула касательной плоскости трансформируется в следующее уравнение:

И соответственно, канонические уравнения нормали:

Как нетрудно догадаться, – это уже «настоящие» частные производные функции двух переменных в точке , которые мы привыкли обозначать буквой «зет» и находили 100500 раз.

Заметьте, что в данной статье достаточно запомнить самую первую формулу, из которой в случае необходимости легко вывести всё остальное (понятно, обладая базовым уровнем подготовки) . Именно такой подход следует использовать в ходе изучения точных наук, т.е. из минимума информации надо стремиться «вытаскивать» максимум выводов и следствий. «Соображаловка» и уже имеющиеся знания в помощь! Этот принцип полезен ещё и тем, что с большой вероятностью спасёт в критической ситуации, когда вы знаете очень мало.

Отработаем «модифицированные» формулы парой примеров:

Пример 4

Составить уравнения касательной плоскости и нормали к поверхности в точке .

Небольшая тут накладка получилась с обозначениями – теперь буква обозначает точку плоскости , но что поделать – такая уж популярная буква….

Решение : уравнение искомой касательной плоскости составим по формуле:

Вычислим значение функции в точке :

Вычислим частные производные 1-го порядка в данной точке:

Таким образом:

аккуратно, не спешим:

Запишем канонические уравнения нормали в точке :

Ответ :

И заключительный пример для самостоятельного решения:

Пример 5

Составить уравнения касательной плоскости и нормали к поверхности в точке .

Заключительный – потому, что фактически все технические моменты я разъяснил и добавить особо нечего. Даже сами функции, предлагаемые в данном задании, унылы и однообразны – почти гарантированно на практике вам попадётся «многочлен», и в этом смысле Пример №2 с экспонентой смотрится «белой вороной». Кстати, гораздо вероятнее встретить поверхность, заданную уравнением и это ещё одна причина, по которой функция вошла в статью «вторым номером».

И напоследок обещанный секрет: так как же избежать зубрёжки определений? (я, конечно, не имею в виду ситуацию, когда студент что-то лихорадочно зубрит перед экзаменом)

Определение любого понятия/явления/объекта, прежде всего, даёт ответ на следующий вопрос: ЧТО ЭТО ТАКОЕ? (кто/такая/ такой/такие) . Осознанно отвечая на данный вопрос, вы должны постараться отразить существенные признаки, однозначно идентифицирующие то или иное понятие/явление/объект. Да, поначалу это получается несколько косноязычно, неточно и избыточно (препод поправит =)), но со временем развивается вполне достойная научная речь.

Потренируйтесь на самых отвлечённых объектах, например, ответьте на вопрос: кто такой Чебурашка? Не так-то всё просто;-) Это «сказочный персонаж с большими ушами, глазами и коричневой шерстью»? Далеко и очень далеко от определения – мало ли существует персонажей с такими характеристиками…. А вот это уже гораздо ближе к определению: «Чебурашка – это персонаж, придуманный писателем Эдуардом Успенским в 1966 г, который …(перечисление основных отличительных признаков. Обратите внимание, как грамотно начата



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта