Главная » Маринование грибов » Какой наименьший общий знаменатель. Общий знаменатель, определение, примеры

Какой наименьший общий знаменатель. Общий знаменатель, определение, примеры

Этот метод имеет смысл, если степень многочлена не ниже второй. При этом общим множителем может быть не только двучлен первой степени, но и более высоких степеней.

Чтобы найти общий множитель слагаемых многочлена, необходимо выполнить ряд преобразований. Простейший двучлен или одночлен, который можно вынести за скобки, будет одним из корней многочлена. Очевидно, что в случае, когда многочлен не имеет свободного члена, будет неизвестное в первой степени – многочлена, равный 0.

Более сложным для поиска общего множителя является случай, когда свободный член не равен нулю. Тогда применимы способы простого подбора или группировки. Например, пусть все корни многочлена рациональные, при этом все коэффициенты многочлена – целые числа:y^4 + 3·y³ – y² – 9·y – 18.

Выпишите все целочисленные делители свободного члена. Если у многочлена есть рациональные корни, то они находятся среди них. В результате подбора получаются корни 2 и -3. Значит, общими множителями этого многочлена будут двучлены (y - 2) и (y + 3).

Метод вынесения общего множителя является одним из составляющих разложения на множители. Описанный выше способ применим, если коэффициент при старшей степени равен 1. Если это не так, то сначала необходимо выполнить ряд преобразований. Например:2y³ + 19·y² + 41·y + 15.

Выполните замену вида t = 2³·y³. Для этого умножьте все коэффициенты многочлена на 4:2³·y³ + 19·2²·y² + 82·2·y + 60. После замены: t³ + 19·t² + 82·t + 60. Теперь для поиска общего множителя применим вышеописанный способ.

Кроме того, эффективным методом поиска общего множителя является элементов многочлена. Особенно он полезен, когда первый способ не , т.е. у многочлена нет рациональных корней. Однако группировки не всегда очевидной. Например:У многочлена y^4 + 4·y³ – y² – 8·y – 2 нет целых корней.

Воспользуйтесь группировкой:y^4 + 4·y³ – y² – 8·y – 2 = y^4 + 4·y³ – 2·y² + y² – 8·y – 2 = (y^4 – 2·y²) + (4·y³ – 8·y) + y² – 2 = (y² - 2)*(y² + 4·y + 1).Общий множитель элементов этого многочлена (y² - 2).

Умножение и деление, точно так же, как сложение и вычитание, являются основными арифметическими действиями. Не научившись решать примеры на умножение и деление, человек столкнется со множеством трудностей не только при изучении более сложных разделов математики, но даже и в самых обычных житейских делах. Умножение и деление тесно связаны между собой, и неизвестные компоненты примеров и задач на одно из этих действий вычисляются с помощью другого действия. При этом необходимо четко понимать, что при решении примеров абсолютно все равно, какие именно предметы вы делите или умножаете.

Вам понадобится

  • - таблица умножения;
  • - калькулятор или лист бумаги и карандаш.

Инструкция

Запишите нужный вам пример. Обозначьте неизвестный множитель как х. Пример может выглядеть, например, так: a*x=b. Вместо множителя а и произведения b в примере могут стоять любые или цифры. Вспомните основное умножения: от перемены мест множителей произведение не меняется. Так что неизвестный множитель х может стоять абсолютно в любом месте.

Для того чтобы найти неизвестный множитель в примере, где сомножителей всего два, необходимо просто разделить произведение на известный множитель . То есть делается это следующим образом: х=b/a. Если вам сложно оперировать абстрактными величинами, попробуйте представить эту задачу в виде конкретных предметов. Вы , у вас всего яблок и сколько их будет есть, но не знаете, по сколько яблок достанется каждому. Например, у вас 5 членов семьи, а яблок получилось 15. Количество яблок, предназначенное каждому, обозначьте как x. Тогда уравнение будет выглядеть так: 5(яблок)*х=15(яблок). Неизвестный множитель находится тем же самым способом, что и в уравнении с буквами, то есть 15 яблок разделите на пятерых членов семьи, в итоге получится, что каждый из них съел по 3 яблока.

Тем же самым способом находится неизвестный множитель при количестве сомножителей. Например, пример выглядит как a*b*c*x*=d. По идее, найти сомножитель можно и так же, как в более постом примере: x=d/a*b*c. Но можно привести уравнение и к более простому виду, обозначив произведение известных сомножителей -нибудь другой буквой - например, m. Найдите, чему равняется m, перемножив числа a,b и с: m=a*b*c. Тогда весь пример можно представить как m*x=d, а неизвестная величина будет равна x=d/m.

Если известный множитель и произведение представляют собой дроби, пример решается точно так же, как и с . Но в этом случае необходимо помнить действий . При умножении дробей числители и знаменатели их перемножаются. При делении дробей числитель делимого умножается на знаменатель делителя, а знаменатель делимого - на числитель делителя. То есть в этом случае пример будет выглядеть так: a/b*x=c/d. Для того чтобы найти неизвестную величину, нужно произведение разделить на известный множитель . То есть x=a/b:c/d =a*d/b*c.

Видео по теме

Обратите внимание

При решении примеров с дробями дробь известного сомножителя можно просто перевернуть и выполнять действие как умножение дробей.

Многочлен - это сумма одночленов. Одночлен же - это произведение нескольких сомножителей, которые являются числом или буквой. Степень неизвестной - это количество ее перемножений на саму себя.

Инструкция

Приведите , если этого еще не сделано. Подобные одночлены - это одночлены одинакового вида, то есть одночлены с одинаковыми неизвестными одинаковой степени.

Возьмите, например, многочлен 2*y²*x³+4*y*x+5*x²+3-y²*x³+6*y²*y²-6*y²*y². В этом многочлене две неизвестных - x и y.

Соедините подобные одночлены. Одночлены со второй степенью y и третьей степенью x придут к виду y²*x³, а одночлены с четвертой степенью y сократятся. Получится y²*x³+4*y*x+5*x²+3-y²*x³.

Примите за главную неизвестную букву y. Найдите максимальную степень при неизвестной y. Это одночлен y²*x³ и, соответственно, степень 2.

Сделайте вывод. Степень многочлена 2*y²*x³+4*y*x+5*x²+3-y²*x³+6*y²*y²-6*y²*y² по x равна трем, а по y равна двум.

Найдите степень многочлена √x+5*y по y. Она равна максимальной степени y, то есть единице.

Найдите степень многочлена √x+5*y по x. Неизвестная x находится , значит ее степень будет дробью. Так как корень квадратный, то степень x равна 1/2.

Сделайте вывод. Для многочлена √x+5*y степень по x равна 1/2, а степень по y равна 1.

Видео по теме

Упрощение алгебраических выражений требуется во многих разделах математики, в том числе при решении уравнений высших степеней, дифференцировании и интегрировании. При этом используется несколько методов, включая разложение на множители. Чтобы применить этот способ, нужно найти и вынести общий множитель за скобки .

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется приведением к общему знаменателю. А искомые числа, «выравнивающие» знаменатели, называются дополнительными множителями.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6 . Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Приведение дробей к наименьшему общему знаменателю, правило, примеры, решения.

Материал этой статьи объясняет, как найти наименьший общий знаменатель и как привести дроби к общему знаменателю .

Сначала даны определения общего знаменателя дробей и наименьшего общего знаменателя, а также показано, как найти общий знаменатель дробей. Дальше приведено правило приведения дробей к общему знаменателю и рассмотрены примеры применения этого правила. В заключение разобраны примеры приведения трех и большего количества дробей к общему знаменателю.

Что называют приведением дробей к общему знаменателю?

Если обыкновенные дроби имеют равные знаменатели, то про эти дроби говорят, что они приведены к общему знаменателю .

Так дроби 45/76 и 143/76 приведены к общему знаменателю 76, а дроби 1/3, 3/3, 17/3 и 1 000/3 приведены к общему знаменателю 3.

Если же знаменатели дробей не равны, то такие дроби всегда можно привести к общему знаменателю, умножив их числитель и знаменатель на определенные дополнительные множители.

Например, обыкновенные дроби 2/5 и 7/4 при помощи дополнительных множителей 4 и 5 соответственно приводятся к общему знаменателю 20. Действительно, умножив числитель и знаменатель дроби 2/5 на 4, получим дробь 8/20, а, умножив числитель и знаменатель дроби 7/4 на 5, придем к дроби 35/20 (смотрите приведение дробей к новому знаменателю).

Теперь мы можем сказать, что такое приведение дробей к общему знаменателю. Приведение дробей к общему знаменателю – это умножение числителей и знаменателей данных дробей на такие дополнительные множители, что в результате получаются дроби с одинаковыми знаменателями.

К началу страницы

Общий знаменатель, определение, примеры

Теперь пришло время дать определение общего знаменателя дробей.

Иными словами, общим знаменателем некоторого набора обыкновенных дробей является любое натуральное число, которое делится на все знаменатели данных дробей.

Из озвученного определения следует, что данный набор дробей имеет бесконечно много общих знаменателей, так как существует бесконечное множество общих кратных всех знаменателей исходного набора дробей.

Определение общего знаменателя дробей позволяет находить общие знаменатели данных дробей. Пусть, к примеру, даны дроби 1/4 и 5/6, их знаменатели равны 4 и 6 соответственно.

Положительными общими кратными чисел 4 и 6 являются числа 12, 24, 36, 48, … Любое из этих чисел является общим знаменателем дробей 1/4 и 5/6.

Для закрепления материала рассмотрим решение следующего примера.

Можно ли дроби 2/3, 23/6 и 7/12 привести к общему знаменателю 150?

Для ответа на поставленный вопрос нам нужно выяснить, является ли число 150 общим кратным знаменателей 3, 6 и 12. Для этого проверим, делится ли 150 нацело на каждое из этих чисел (при необходимости смотрите правила и примеры деления натуральных чисел, а также правила и примеры деления натуральных чисел с остатком): 150:3=50, 150:6=25, 150:12=12 (ост.

Итак, 150 не делится нацело на 12, следовательно, 150 не является общим кратным чисел 3, 6 и 12. Следовательно, число 150 не может быть общим знаменателем исходных дробей.

К началу страницы

Наименьший общий знаменатель, как его найти?

В множестве чисел, являющихся общими знаменателями данных дробей, существует наименьшее натуральное число, которое называют наименьшим общим знаменателем.

Сформулируем определение наименьшего общего знаменателя данных дробей.

Осталось разобраться с вопросом, как найти наименьший общий делитель.

Так как наименьшее общее кратное является наименьшим положительным общим делителем данного набора чисел, то НОК знаменателей данных дробей представляет собой наименьший общий знаменатель данных дробей.

Таким образом, нахождение наименьшего общего знаменателя дробей сводится к нахождению НОК знаменателей этих дробей.

Разберем решение примера.

Найдите наименьший общий знаменатель дробей 3/10 и 277/28.

Знаменатели данных дробей равны 10 и 28. Искомый наименьший общий знаменатель находится как НОК чисел 10 и 28. В нашем случае легко найти НОК с помощью разложения чисел на простые множители: так как 10=2·5, а 28=2·2·7, то НОК(15, 28)=2·2·5·7=140.

К началу страницы

Как привести дроби к общему знаменателю? Правило, примеры, решения

Обычно обыкновенные дроби приводят к наименьшему общему знаменателю.

Сейчас мы запишем правило, которое объясняет, как привести дроби к наименьшему общему знаменателю.

Правило приведения дробей к наименьшему общему знаменателю состоит из трех шагов:

  • Во-первых, находится наименьший общий знаменатель дробей.
  • Во-вторых, для каждой дроби вычисляется дополнительный множитель, для чего наименьший общий знаменатель делится на знаменатель каждой дроби.
  • В-третьих, числитель и знаменатель каждой дроби умножается на ее дополнительный множитель.

Применим озвученное правило к решению следующего примера.

Приведите дроби 5/14 и 7/18 к наименьшему общему знаменателю.

Выполним все шаги алгоритма приведения дробей к наименьшему общему знаменателю.

Сначала находим наименьший общий знаменатель, который равен наименьшему общему кратному чисел 14 и 18. Так как 14=2·7 и 18=2·3·3, то НОК(14, 18)=2·3·3·7=126.

Теперь вычисляем дополнительные множители, с помощью которых дроби 5/14 и 7/18 будут приведены к знаменателю 126. Для дроби 5/14 дополнительный множитель равен 126:14=9, а для дроби 7/18 дополнительный множитель равен 126:18=7.

Осталось умножить числители и знаменатели дробей 5/14 и 7/18 на дополнительные множители 9 и 7 соответственно.

Имеем и .

Итак, приведение дробей 5/14 и 7/18 к наименьшему общему знаменателю завершено.

В итоге получились дроби 45/126 и 49/126.

К началу страницы

Приведение к наименьшему общему знаменателю трех и более дробей

Правило из предыдущего пункта позволяет приводить к наименьшему общему знаменателю не только две дроби, но и три дроби, и большее их количество.

Рассмотрим решение примера.

Приведите четыре обыкновенных дроби 3/2, 5/6, 3/8 и 17/18 к наименьшему общему знаменателю.

Наименьший общий знаменатель данных дробей равен наименьшему общему кратному чисел 2, 6, 8 и 18. Для нахождения НОК(2, 6, 8, 18) воспользуемся информацией из раздела нахождение НОК трех и большего количества чисел.

Получаем НОК(2, 6)=6, НОК(6, 8)=24, наконец, НОК(24, 18)=72, поэтому, НОК(2, 6, 8, 18)=72. Таким образом, наименьший общий знаменатель равен 72.

Теперь вычисляем дополнительные множители. Для дроби 3/2 дополнительный множитель равен 72:2=36, для дроби 5/6 он равен 72:6=12, для дроби 3/8 дополнительный множитель есть 72:8=9, а для дроби 17/18 он равен 72:18=4.

Приведение дробей к общему знаменателю

Остался последний шаг в приведении исходных дробей к наименьшему общему знаменателю: .

К началу страницы

Общий знаменатель – это любое положительное общее кратное всех знаменателей данных дробей.

Наименьший общий знаменатель – это наименьшее число, из всех общих знаменателей данных дробей.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика: учебник для 5 кл. общеобразовательных учреждений.
  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.

Общий знаменатель обычных дробей

Если обычные фракции имеют одинаковые знаменатели, то эти фракции имеют общий знаменатель. К примеру,

они имеют общий знаменатель.

Общий знаменатель Это число, которое является знаменателем для двух или более регулярных дробей.

Фракции с разными знаменателями можно свести к общему знаменателю.

Предоставление фракций общему знаменателю

Предоставление фракций общему знаменателю Является ли замена этих фракций разными знаменателями тех же фракций с теми же знаменателями?

Фракции можно просто привести к общему знаменателю или наименьшему общему знаменателю.

Самый маленький общий знаменатель Это наименьший общий знаменатель этих дробей.

Общий знаменатель фракций в Интернете

Чтобы дать фракции наименьшему общему знаменателю, вам нужно:

  1. Если возможно, выполните сокращение фракции.
  2. Найдите наименьшие общие каталоги этих дробей. NOC станет их самым маленьким общим знаменателем.
  3. Разделите LCM на знаменатели этих дробей. Эта мера находит дополнительный фактор для каждой из этих фракций. Дополнительный коэффициент Является ли число, для которого необходимо умножить члены фракции, чтобы привести его к общему знаменателю?
  4. Умножьте числитель и знаменатель каждой фракции с дополнительным фактором.

Пример.

1) Найдите имена NOC этих фракций:

NOC (8, 12) = 24

2) Найдены дополнительные факторы:

24: 8 = 3 (для ) и 24: 12 = 2 (для )

3) Умножьте члены каждой фракции с дополнительным фактором:

Уменьшение общего знаменателя можно записать в более короткой форме, указывая на дополнительный коэффициент в дополнение к счетчику каждой фракции (верхний правый или верхний левый) и не записывая промежуточные вычисления:

Общий знаменатель можно уменьшить легче, умножив члены первой фракции со второй имманентной долей и членами второй фракции знаменателем первой.

Пример. Получить общий знаменатель фракций и :

В качестве общего знаменателя фракций можно взять произведение их знаменателей.

Уменьшение фракций до общего знаменателя используется для добавления, вычитания и сравнения дробей с разными знаменателями.

Калькулятор снижения до общего знаменателя

Этот калькулятор поможет вам довести обычные фракции до самого низкого общего знаменателя.

Просто введите две фракции и нажмите.

5.4.5. Примеры преобразования обычных дробей в наименьший общий знаменатель

Наименьшим общим знаменателем непрерывных дробей является наименьший общий знаменатель для этих дробей. (см. раздел «Поиск наименьшего общего кратного»: 5.3.5. Найдите наименьшее количество кратных (NOC) заданных номеров).

Чтобы уменьшить долю на наименьшем общем знаменателе, необходимо: 1) найти наименьшее общее кратное знаменателей этих дробей, и это будет наименьший общий знаменатель.

2) находит дополнительный коэффициент для каждой из фракций, для которых новый знаменатель распределяется с именем каждой фракции. 3) умножить числитель и знаменатель каждой фракции с дополнительным фактором.

Примеры. Чтобы уменьшить следующие фракции до самого низкого общего знаменателя.

Мы находим наименьший общий многозначный знаменатель: LCM (5; 4) = 20, так как 20 — наименьшее число, разделенное на 5 и 4.

Для первой доли найден дополнительный коэффициент 4 (20: 5 = 4). Для второй фракции имеется дополнительный коэффициент 5 (20: 4 = 5). Умножьте число и знаменатель первой фракции на 4, а счетчик и знаменатель второй части на 5.

20 ).

Наименьшим общим знаменателем для этих дробей является число 8, так как оно делится на 4 и внутри.

Для первой доли нет дополнительного фактора (или можно сказать, что он равен единице), второй фактор является дополнительным фактором 2 (8: 4 = 2). Умножьте числитель и знаменатель второй фракции на 2.

Онлайн калькулятор. Предоставление фракций общему знаменателю

Мы уменьшили эти дроби до наименьшего общего знаменателя (8-е место ).

Эти фракции не являются невыносимыми.

Первая фракция была уменьшена на 4, а вторая фракция была уменьшена на 2. (См. Примеры для сокращения обычных фракций: Карта сайта → 5.4.2.

Примеры сокращения обычных фракций). Находки НОК (16; 20) = 24· 5 = 16· 5 = 80. Дополнительным фактором для 1-й фракции является 5 (80: 16 = 5). Дополнительным фактором для второй фракции является 4 (80: 20 = 4).

Мы умножаем числитель и знаменатель первой фракции с 5, а счетчик и знаменатель второй фракции 4. Дробная информация была дана наименьшему общему знаменателю (80 ).

Найдите наименьший общий знаменатель NOx (5; 6 и 15) = NOK (5; 6 и 15) = 30. Дополнительным фактором для первой фракции является 6 (30: 5 = 6), является дополнительным фактором во второй части 5 (30: 6 = 5), является дополнительным фактором для третьей фракции 2 (30: 15 = 2).

Число и знаменатель первой фракции умножаются на 6, счетчик и знаменатель второй фракции с 5, счетчик и знаменатель третьей фракции с 2. Частичным данным был дан наименьший общий знаменатель30 ).

Страница 1 из 11

Наименьший общий знаменатель.

Что такое наименьший общий знаменатель?

Определение:
Наименьший общий знаменатель – это наименьшее положительное число кратное знаменателям данных дробей.

Как привести к наименьшему общему знаменателю? Чтобы ответить на этот вопрос рассмотрим пример:

Приведите дроби с разными знаменателями к наименьшему общему знаменателю.

Решение:
Чтобы найти наименьший общий знаменатель нужно найти наименьшее общее кратное (НОК) знаменателей этих дробей.

У первой дроби знаменатель равен 20 разложим его на простые множители.
20=2⋅5⋅2

Так же разложим и второй знаменатель дроби 14 на простые множители.
14=7⋅2

НОК(14,20)= 2⋅5⋅2⋅7=140

Ответ: наименьший общий знаменатель будет равен 140.

Как привести дробь к общему знаменателю?

Нужно первую дробь \(\frac{1}{20}\) домножить на 7, чтобы получить знаменатель 140.

\(\frac{1}{20}=\frac{1 \times 7}{20 \times 7}=\frac{7}{140}\)
А вторую дробь умножить на 10.

\(\frac{3}{14}=\frac{3 \times 10}{14 \times 10}=\frac{30}{140}\)

Правила или алгоритм приведения дробей к общему знаменателю.

Алгоритм приведения дробей к наименьшему общему знаменателю:

  1. Нужно разложить на простые множители знаменатели дробей.
  2. Нужно найти наименьшее общее кратное (НОК) для знаменателей данных дробей.
  3. Привести дроби к общему знаменателю, то есть умножить и числитель и знаменатель дроби на множитель.

Общий знаменатель для нескольких дробей.

Как найти общий знаменатель для нескольких дробей?

Рассмотрим пример:
Найдите наименьший общий знаменатель для дробей \(\frac{2}{11}, \frac{1}{15}, \frac{3}{22}\)

Решение:
Разложим знаменатели 11, 15 и 22 на простые множители.

Число 11 оно само по себе уже простое число, поэтому его расписывать не нужно.
Разложим число 15=5⋅3
Разложим число 22=11⋅2

Найдем наименьшее общее кратное (НОК) знаменателей 11, 15, и 22.
НОК(11, 15, 22)=11⋅2⋅5⋅3=330

Мы нашли наименьший общий знаменатель для данных дробей. Теперь приведем данные дроби \(\frac{2}{11}, \frac{1}{15}, \frac{3}{22}\) к общему знаменатели равному 330.

\(\begin{align}
\frac{2}{11}=\frac{2 \times 30}{11 \times 30}=\frac{60}{330} \\\\
\frac{1}{15}=\frac{1 \times 22}{15 \times 22}=\frac{22}{330} \\\\
\frac{3}{22}=\frac{3 \times 15}{22 \times 15}=\frac{60}{330} \\\\
\end{align}\)

Умножение «крест-накрест»

Метод общих делителей

Задача. Найдите значения выражений:

Задача. Найдите значения выражений:

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест».

Общий знаменатель дробей

Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Смотрите также:

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется. А искомые числа, «выравнивающие» знаменатели, называются.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

Задача. Найдите значения выражений:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6. Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку 24: 8 = 3; 24: 12 = 2. Это число намного меньше произведения 8 · 12 = 96.

Наименьшее число, которое делится на каждый из знаменателей, называется их (НОК).

Обозначение: наименьшее общее кратное чисел a и b обозначается НОК(a; b). Например, НОК(16; 24) = 48; НОК(8; 12) = 24.

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Как найти наименьший общий знаменатель

Найдите значения выражений:

Заметим, что 234 = 117 · 2; 351 = 117 · 3. Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 - общий. Поэтому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогично, 15 = 5 · 3; 20 = 5 · 4. Множители 3 и 4 взаимно просты, а множитель 5 - общий. Поэтому НОК(15; 20) = 5 · 3 · 4 = 60.

Теперь приведем дроби к общим знаменателям:

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

  1. Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
  2. Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, 234 · 3 = 702, следовательно, для первой дроби дополнительный множитель равен 3.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи - не предел!

Единственная проблема - как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.

Смотрите также:

Приведение дробей к общему знаменателю

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется. А искомые числа, «выравнивающие» знаменатели, называются.

Для чего вообще надо приводить дроби к общему знаменателю?

Общий знаменатель, понятие и определение.

Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

Задача. Найдите значения выражений:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6. Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку 24: 8 = 3; 24: 12 = 2. Это число намного меньше произведения 8 · 12 = 96.

Наименьшее число, которое делится на каждый из знаменателей, называется их (НОК).

Обозначение: наименьшее общее кратное чисел a и b обозначается НОК(a; b). Например, НОК(16; 24) = 48; НОК(8; 12) = 24.

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Задача. Найдите значения выражений:

Заметим, что 234 = 117 · 2; 351 = 117 · 3. Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 - общий. Поэтому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогично, 15 = 5 · 3; 20 = 5 · 4. Множители 3 и 4 взаимно просты, а множитель 5 - общий. Поэтому НОК(15; 20) = 5 · 3 · 4 = 60.

Теперь приведем дроби к общим знаменателям:

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

  1. Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
  2. Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, 234 · 3 = 702, следовательно, для первой дроби дополнительный множитель равен 3.

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи - не предел!

Единственная проблема - как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.

Смотрите также:

Приведение дробей к общему знаменателю

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется. А искомые числа, «выравнивающие» знаменатели, называются.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей.

Взгляните:

Задача. Найдите значения выражений:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6. Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку 24: 8 = 3; 24: 12 = 2. Это число намного меньше произведения 8 · 12 = 96.

Наименьшее число, которое делится на каждый из знаменателей, называется их (НОК).

Обозначение: наименьшее общее кратное чисел a и b обозначается НОК(a; b). Например, НОК(16; 24) = 48; НОК(8; 12) = 24.

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Задача. Найдите значения выражений:

Заметим, что 234 = 117 · 2; 351 = 117 · 3. Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 - общий. Поэтому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогично, 15 = 5 · 3; 20 = 5 · 4. Множители 3 и 4 взаимно просты, а множитель 5 - общий. Поэтому НОК(15; 20) = 5 · 3 · 4 = 60.

Теперь приведем дроби к общим знаменателям:

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

  1. Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
  2. Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, 234 · 3 = 702, следовательно, для первой дроби дополнительный множитель равен 3.

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи - не предел!

Единственная проблема - как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.

Смотрите также:

Приведение дробей к общему знаменателю

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется. А искомые числа, «выравнивающие» знаменатели, называются.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

Задача. Найдите значения выражений:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа.

Приведение дробей к общему знаменателю

Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6. Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку 24: 8 = 3; 24: 12 = 2. Это число намного меньше произведения 8 · 12 = 96.

Наименьшее число, которое делится на каждый из знаменателей, называется их (НОК).

Обозначение: наименьшее общее кратное чисел a и b обозначается НОК(a; b). Например, НОК(16; 24) = 48; НОК(8; 12) = 24.

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Задача. Найдите значения выражений:

Заметим, что 234 = 117 · 2; 351 = 117 · 3. Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 - общий. Поэтому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогично, 15 = 5 · 3; 20 = 5 · 4. Множители 3 и 4 взаимно просты, а множитель 5 - общий. Поэтому НОК(15; 20) = 5 · 3 · 4 = 60.

Теперь приведем дроби к общим знаменателям:

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

  1. Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
  2. Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, 234 · 3 = 702, следовательно, для первой дроби дополнительный множитель равен 3.

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи - не предел!

Единственная проблема - как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.


Материал этой статьи объясняет, как найти наименьший общий знаменатель и как привести дроби к общему знаменателю . Сначала даны определения общего знаменателя дробей и наименьшего общего знаменателя, а также показано, как найти общий знаменатель дробей. Дальше приведено правило приведения дробей к общему знаменателю и рассмотрены примеры применения этого правила. В заключение разобраны примеры приведения трех и большего количества дробей к общему знаменателю.

Навигация по странице.

Что называют приведением дробей к общему знаменателю?

Теперь мы можем сказать, что такое приведение дробей к общему знаменателю. Приведение дробей к общему знаменателю – это умножение числителей и знаменателей данных дробей на такие дополнительные множители, что в результате получаются дроби с одинаковыми знаменателями.

Общий знаменатель, определение, примеры

Теперь пришло время дать определение общего знаменателя дробей.

Иными словами, общим знаменателем некоторого набора обыкновенных дробей является любое натуральное число, которое делится на все знаменатели данных дробей.

Из озвученного определения следует, что данный набор дробей имеет бесконечно много общих знаменателей, так как существует бесконечное множество общих кратных всех знаменателей исходного набора дробей.

Определение общего знаменателя дробей позволяет находить общие знаменатели данных дробей. Пусть, к примеру, даны дроби 1/4 и 5/6 , их знаменатели равны 4 и 6 соответственно. Положительными общими кратными чисел 4 и 6 являются числа 12 , 24 , 36 , 48 , … Любое из этих чисел является общим знаменателем дробей 1/4 и 5/6 .

Для закрепления материала рассмотрим решение следующего примера.

Пример.

Можно ли дроби 2/3 , 23/6 и 7/12 привести к общему знаменателю 150 ?

Решение.

Для ответа на поставленный вопрос нам нужно выяснить, является ли число 150 общим кратным знаменателей 3 , 6 и 12 . Для этого проверим, делится ли 150 нацело на каждое из этих чисел (при необходимости смотрите правила и примеры деления натуральных чисел , а также правила и примеры деления натуральных чисел с остатком): 150:3=50 , 150:6=25 , 150:12=12 (ост. 6) .

Итак, 150 не делится нацело на 12 , следовательно, 150 не является общим кратным чисел 3 , 6 и 12 . Следовательно, число 150 не может быть общим знаменателем исходных дробей.

Ответ:

Нельзя.

Наименьший общий знаменатель, как его найти?

В множестве чисел, являющихся общими знаменателями данных дробей, существует наименьшее натуральное число , которое называют наименьшим общим знаменателем. Сформулируем определение наименьшего общего знаменателя данных дробей.

Определение.

Наименьший общий знаменатель – это наименьшее число, из всех общих знаменателей данных дробей.

Осталось разобраться с вопросом, как найти наименьший общий делитель.

Так как является наименьшим положительным общим делителем данного набора чисел, то НОК знаменателей данных дробей представляет собой наименьший общий знаменатель данных дробей.

Таким образом, нахождение наименьшего общего знаменателя дробей сводится к знаменателей этих дробей. Разберем решение примера.

Пример.

Найдите наименьший общий знаменатель дробей 3/10 и 277/28 .

Решение.

Знаменатели данных дробей равны 10 и 28 . Искомый наименьший общий знаменатель находится как НОК чисел 10 и 28 . В нашем случае легко : так как 10=2·5 , а 28=2·2·7 , то НОК(15, 28)=2·2·5·7=140 .

Ответ:

140 .

Как привести дроби к общему знаменателю? Правило, примеры, решения

Обычно обыкновенные дроби приводят к наименьшему общему знаменателю. Сейчас мы запишем правило, которое объясняет, как привести дроби к наименьшему общему знаменателю.

Правило приведения дробей к наименьшему общему знаменателю состоит из трех шагов:

  • Во-первых, находится наименьший общий знаменатель дробей.
  • Во-вторых, для каждой дроби вычисляется дополнительный множитель, для чего наименьший общий знаменатель делится на знаменатель каждой дроби.
  • В-третьих, числитель и знаменатель каждой дроби умножается на ее дополнительный множитель.

Применим озвученное правило к решению следующего примера.

Пример.

Приведите дроби 5/14 и 7/18 к наименьшему общему знаменателю.

Решение.

Выполним все шаги алгоритма приведения дробей к наименьшему общему знаменателю.

Сначала находим наименьший общий знаменатель, который равен наименьшему общему кратному чисел 14 и 18 . Так как 14=2·7 и 18=2·3·3 , то НОК(14, 18)=2·3·3·7=126 .

Теперь вычисляем дополнительные множители, с помощью которых дроби 5/14 и 7/18 будут приведены к знаменателю 126 . Для дроби 5/14 дополнительный множитель равен 126:14=9 , а для дроби 7/18 дополнительный множитель равен 126:18=7 .

Осталось умножить числители и знаменатели дробей 5/14 и 7/18 на дополнительные множители 9 и 7 соответственно. Имеем и .

Итак, приведение дробей 5/14 и 7/18 к наименьшему общему знаменателю завершено. В итоге получились дроби 45/126 и 49/126 .

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется приведением к общему знаменателю. А искомые числа, «выравнивающие» знаменатели, называются дополнительными множителями.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6 . Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку 24: 8 = 3; 24: 12 = 2 . Это число намного меньше произведения 8 · 12 = 96 .

Наименьшее число, которое делится на каждый из знаменателей, называется их наименьшим общим кратным (НОК).

Обозначение: наименьшее общее кратное чисел a и b обозначается НОК(a ; b ) . Например, НОК(16; 24) = 48 ; НОК(8; 12) = 24 .

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Задача. Найдите значения выражений:

Заметим, что 234 = 117 · 2; 351 = 117 · 3 . Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 - общий. Поэтому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогично, 15 = 5 · 3; 20 = 5 · 4 . Множители 3 и 4 взаимно просты, а множитель 5 - общий. Поэтому НОК(15; 20) = 5 · 3 · 4 = 60.

Теперь приведем дроби к общим знаменателям:

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

  1. Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
  2. Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, 234 · 3 = 702 , следовательно, для первой дроби дополнительный множитель равен 3.

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи - не предел!

Единственная проблема - как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта