Главная » 1 Описание » Вольфганг эрнст паули - биография.

Вольфганг эрнст паули - биография.

Вольфганг Паули родился 25 апреля 1900 года в городе Вена, Австрия. Мальчик вырос в семье врача, профессора химии. Еще в средней школе проявил незаурядные математические способности и самостоятельно начал изучать высшую математику, поэтому сразу прочитал только что опубликованный труд Альберта Эйнштейна по теории относительности.

Первая работа Паули вышла в свет в 1918 году и посвящена математическим вопросам единой теории гравитации и электромагнетизма. В том же году поступил в Мюнхенский университет, где учился у известного физика Арнольда Зоммерфельда и по просьбе которого в 1920 году начал работать над статьей по теории относительности для «Энциклопедии математических наук».

Впоследствии эта статья многократно издавалась в виде книги, и ее переводы вышли во многих странах. В 1921 году защитив докторскую диссертацию, Паули отправился в Геттингенский университет, где работал под руководством «учителя гениев» Макса Борна на кафедре теоретической физики. Именно в эти годы в Геттингене родилась матричная формулировка квантовой механики и новая, статистическая ее интерпретация.

Работа под руководством известных ученых пробудила у Паули интерес к новой области физики, квантовой теории и ученый полностью погрузился в проблемы, встававшие перед физиками в этой области. Уже с университетских лет Вольфганг уделял большее внимание проблеме атомов и спектров, и в 1924 году эти исследования привели его к формулировке одного из важнейших законов физики микромира: к принципу, носящему его имя.

Принцип запрета Паули играет фундаментальную роль для понимания строения и поведения атомов, атомных ядер, свойств металлов и других физических явлений. Объясняет химическое взаимодействие элементов и их прежде непонятное расположение в периодической системе. Ученый использовал этот принцип для понимания магнитных свойств простых металлов и газов.

В последующие годы Паули преподавал в Копенгагене и Гамбурге, а в 1928 году занял пост профессора Высшего технического училища в Цюрихе, на котором оставался до конца жизни, за исключением нескольких лет, проведенных в США, когда читал лекции в Институте фундаментальных исследований в Принстоне и возглавлял кафедру теоретической физики.

В 1945 году Вольфганг Паули награжден Нобелевской премией по физике «за открытие принципа запрета». Также с его именем связано такое фундаментальное понятие, как спин элементарной частицы, а еще предсказал существование нейтрино.

Награды и Память о Вольфганге Паули

1931 - награжден медалью Лоренца.
1945 - Нобелевская премия по физике.
1950 - избран членом Американской академии искусств и наук.
1958 - награжден медалью Макса Планка.

Памятный знак в Геттингене

Именем Паули названы аллея в 14-м округе Вены и улица в университетском городке Цюриха.

В честь ученого в Геттингене установлен памятный знак.

В 1970 году Международный астрономический союз присвоил имя Паули кратеру на обратной стороне Луны.

Ежегодно в Высшей технической школе Цюриха проходит мемориальная лекция в память о Паули. В гамбургском университете имя Паули носит самый большой зал физического института.

Основные труды Вольфганга Паули

Релятивистская теория элементарных частиц. - М.: Иностранная литература, 1947. - 80 с.
Общие принципы волновой механики. - М.-Л.: Гостехиздат, 1947. - 332 с.
Мезонная теория ядерных сил. - М.: Иностранная литература, 1947. - 79 с.
Инвариантная регуляризация в релятивистской квантовой теории (совместно с Вилларсом) // Сдвиг уровней атомных электронов. - М.: Иностранная литература, 1950.
О математической структуре модели Ли (совместно с Челленом). Русский перевод // УФН. - 60. - 425 (1956).
Физические очерки: Сборник статей. - М.: Наука, 1975. - 256 с.
Труды по квантовой теории в двух томах.
Том 1. Квантовая теория. Общие принципы волновой механики. Статьи 1920-1928 / Под ред. Я. А. Смородинского. - М.: Наука, 1975. - (Серия «Классики науки»)
Том 2. Статьи 1928-1958 / Под ред. Я. А. Смородинского. - М.: Наука, 1977. - (Серия «Классики науки»)
Теория относительности. - 3-е изд., испр. - М.: Наука, 1991. - 328 с.

Австрийско-швейцарский физик Вольфганг Эрнст Паули родился в Вене. Его отец, Вольфганг Йозеф Паули, был известным физиком и биохимиком, профессором коллоидной химии в Венском университете. Его мать, Берта (в девичестве Шютц) Паули, была писательницей, связанной с венскими театральными и журналистскими кругами. Герта, младшая сестра Паули, стала актрисой и писательницей. Эрнст Мах, знаменитый физик и философ, был его крестным отцом. В средней школе в Вене Паули проявил незаурядные математические способности, однако, находя классные занятия скучными, он переключился на самостоятельное изучение высшей математики и поэтому сразу прочитал только что опубликованную работу Альберта Эйнштейна по общей теории относительности.

В 1918 г. Паули поступил в Мюнхенский университет, где учился под руководством известного физика Арнольда Зоммерфельда . В это время немецкий математик Феликс Клейн был занят изданием математической энциклопедии. Клейн попросил Зоммерфельда написать обзор общей и специальной теории относительности Эйнштейна, а Зоммерфельд в свою очередь попросил написать эту статью 20-летнего Паули. Тот быстро написал статью объемом в 250 страниц, которую Зоммерфельд охарактеризовал как «сделанную просто мастерски», а Эйнштейн похвалил.

В 1921 г., закончив докторскую диссертацию по теории молекулы водорода и получив докторскую степень в кратчайшие для университета сроки, Паули отправился в Гёттинген, где занялся научными исследованиями совместно с Максом Борном и Джеймсом Франком. В конце 1922 г. он в Копенгагене работает в качестве ассистента у Нильса Бора . Работа под руководством Зоммерфельда, Борна, Франка и Бора пробудила у Паули интерес к новой области физики – квантовой теории, которая занималась изучением атома и субатомных частиц, и он полностью погрузился в проблемы, встававшие перед физиками в этой области.

Хотя принципы классической физики позволяли удовлетворительно объяснять поведение макроскопических физических систем, попытки применить те же принципы к явлениям атомного масштаба терпели неудачу. Особенно сложной представлялась ядерная модель атома , по которой электроны вращались по орбитам вокруг центрального ядра. Согласно принципам классической физики, вращающиеся по орбитам электроны должны непрерывно испускать электромагнитные излучения, теряя при этом энергию и приближаясь по спирали к ядру. В 1913 г. Бор предположил, что электроны не могут непрерывно испускать излучение, поскольку они обязаны находиться на своих разрешенных орбитах; все промежуточные орбиты запрещены. Электрон может испустить или поглотить излучение, только сделав квантовый скачок с одной разрешенной орбиты на другую.

Модель Бора частично основывалась на изучении атомных спектров. Когда некий элемент нагревается и переходит в газо- или парообразное состояние, он излучает свет с характерным спектром. Этот спектр не представляет собой непрерывной цветовой области, подобной спектру Солнца, а состоит из последовательности ярких линий определенных длин волн, разделенных более широкими темными участками. Атомная модель Бора объясняла главную суть атомных спектров: каждая линия представляла свет, испускаемый атомом, когда электроны переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией. Более того, модель правильно предсказывала большую часть характерных черт простейшего атомного спектра – спектра водорода. В то же время с помощью этой модели менее успешно описывались спектры более сложных атомов.

Еще два существенных недостатка модели Бора помогли Паули в дальнейшем внести свой значительный вклад в квантовую теорию. Во-первых, эта модель не могла объяснить некоторые тонкие детали в спектре водорода. Например, когда атомный газ помещали в магнитное поле, некоторые спектральные линии расщеплялись на несколько близко расположенных линий – эффект, впервые обнаруженный Питером Зееманом в 1896 г. Более важным, однако, было то, что устойчивость электронных орбит не находила полного объяснения. Хотя считалось очевидным, что электроны не могли падать по спирали на ядро, непрерывно испуская излучение, не было видно явной причины, почему бы им не опускаться скачками, переходя с одной разрешенной орбиты на другую и собираясь вместе в наинизшем энергетическом состоянии.

В 1923 г. Паули стал ассистент-профессором теоретической физики в Гамбургском университете. Здесь он в начале 1925 г. занимался теоретическими исследованиями строения атомов и их поведения в магнитных полях, разрабатывая теорию эффекта Зеемана и других видов спектрального расщепления. Он выдвинул предположение, что электроны обладают неким свойством, которое позже Сэмюэл Гаудсмит и Джордж Уленбек назвали спином, или собственным угловым моментом. В магнитном поле у спина электрона имеются две возможные ориентации: ось спина может быть направлена в ту же сторону, что и поле, или в противоположную сторону. Орбитальное движение электрона в атоме определяет еще одну ось, которая может быть ориентирована по-разному в зависимости от приложенного внешнего поля. Различные возможные комбинации спиновой и орбитальной ориентации слегка отличаются энергетически, что приводит к увеличению числа атомных энергетических состояний. Переходы электрона с каждого из этих подуровней на некоторую другую орбиту соответствуют слегка отличающимся длинам световых волн, чем и объясняется тонкое расщепление спектральных линий.

Вскоре после того, как Паули ввел такое свойство «двузначности» электрона, он аналитически объяснил, почему все электроны в атоме не занимают наинизший энергетический уровень. В усовершенствованной им модели Бора допустимые энергетические состояния, или орбиты, электронов в атоме описываются четырьмя квантовыми числами для каждого электрона. Эти числа определяют основной энергетический уровень электрона, его орбитальный угловой момент, его магнитный момент и (в этом состоял вклад Паули) ориентацию его спина. Каждое из этих квантовых чисел может принимать только определенные значения, более того, допустимы лишь некоторые комбинации данных значений. Он сформулировал закон, который стал известен как принцип запрета Паули и согласно которому никакие два электрона в системе не могут иметь одинаковые наборы квантовых чисел. Так, каждая оболочка в атоме может содержать лишь ограниченное число электронных орбит, определяемых допустимыми значениями квантовых чисел.

Принцип запрета Паули играет фундаментальную роль для понимания строения и поведения атомов, атомных ядер, свойств металлов и других физических явлений. Он объясняет химическое взаимодействие элементов и их прежде непонятное расположение в периодической системе. Сам Паули использовал принцип запрета для того, чтобы понять магнитные свойства простых металлов и некоторых газов.

Вскоре после того, как Паули сформулировал свой принцип запрета, квантовая теория получила солидное теоретическое обоснование благодаря работам Эрвина Шрёдингера , Вернера Гейзенберга и П. А. М. Дирака . Теоретический аппарат, использованный ими для описания атомных и субатомных систем, стал называться квантовой механикой. Атомная модель Бора была заменена квантовомеханической моделью, которая успешнее предсказывала спектры и другие атомные явления. Что касается достижений Паули, то они позволили распространить квантовую механику на такие области, как физика частиц высокой энергии и взаимодействие частиц со светом и другими формами электромагнитных полей. Эти области стали известны как релятивистская квантовая электродинамика.

В 1928 г. Паули сменил Питера Дебая на посту профессора Федерального технологического института в Цюрихе, на котором он оставался до конца жизни, за исключением двух периодов, проведенных в Соединенных Штатах; он провел академический 1935/36 г. в качестве приглашенного лектора в Институте фундаментальных исследований в Принстоне (штат Нью-Джерси) и во время второй мировой войны, когда, опасаясь, что Германия вторгнется в Швейцарию, он вернулся в этот же институт, где возглавлял кафедру теоретической физики с 1940 по 1946 г.

В 30-е гг. он сделал еще один важный вклад в физику. Наблюдения над бета-распадом атомных ядер, при котором нейтрон в ядре испускает электрон, превращаясь при этом в протон, выявили очевидное нарушение закона сохранения энергии: после учета всех зарегистрированных продуктов распада энергия после распада оказывалась меньше своего значения до распада. В 1930 г. Паули выдвинул гипотезу, согласно которой предполагалось, что при таком распаде испускается какая-то незарегистрированная частица (которую Энрико Ферми назвал нейтрино), уносящая потерянную энергию, и при этом закон сохранения момента импульса оставался в силе. В конце концов нейтрино удалось зарегистрировать в 1956 г.

В 1945 г. Паули был награжден Нобелевской премией по физике «за открытие принципа запрета, который называют также принципом запрета Паули». Он не присутствовал на церемонии вручения премии, и ее от его имени получил сотрудник американского посольства в Стокгольме, В Нобелевской лекции, посланной в Стокгольм в следующем году, Паули подвел итоги своих работ, касавшихся принципа запрета и квантовой механики.

Паули стал швейцарским гражданином в 1946 г. В дальнейшей работе он стремился пролить свет на проблемы взаимодействия частиц высокой энергии и сил, с помощью которых они взаимодействуют, т.е. занимался той областью физики, которую сейчас называют физикой высоких энергий, или физикой частиц. Он также провел глубокое исследование той роли, которую в физике частиц играет симметрия. Обладая поистине фантастическими способностями и умением глубоко проникать в существо физических проблем, он был нетерпим к туманным аргументам и поверхностным суждениям. Он подвергал собственные работы такому беспощадному критическому анализу, что его публикации фактически свободны от ошибок. Коллеги называли его «совестью физики».

После развода, последовавшего за недолгим и несчастливым первым браком, Паули в 1934 г. женился на Франциске Бертрам. Испытывая глубокий интерес к философии и психологии, он получал большое удовольствие от бесед со своим другом К. Г. Юнгом. Он также высоко ценил искусство, музыку и театр. Во время отпуска любил плавать, бродить по горам и лесам Швейцарии. Интеллектуальные способности Паули находились в резком диссонансе с его «умением» работать руками. Его коллеги обычно шутили по поводу таинственного «эффекта Паули», когда одно только присутствие невысокого и полноватого ученого в лаборатории, казалось, вызывало всевозможные поломки и аварии. В начале декабря 1958 г. Паули заболел и вскоре, 15 декабря, умер.

Кроме Нобелевской премии, Паули был награжден медалью Франклина Франклиновского института (1952) и медалью Макса Планка Германского физического общества (1958). Он был членом Швейцарского физического общества, Американского физического общества, Американской ассоциации фундаментальных наук, а также иностранным членом

Вольфганг Эрнст Паули (нем. Wolfgang Ernst Pauli ; 25 апреля 1900, Вена - 15 декабря 1958, Цюрих) - лауреат Нобелевской премии по физике за 1945 год.

Вольфганг Паули родился в Вене в семье врача и профессора химии Вольфганга Йозефа Паули (наст. Вольф Пасхелес, 1869-1955), родом из видной пражской еврейской семьи Пасхелес-Утиц, в 1898 году сменившего имя и незадолго до женитьбы в 1899 году принявшего католическую веру. Мать Вольфганга Паули - фельетонист Берта Камилла Паули (урождённая Шютц, 1878-1927) - была дочерью известного еврейского литератора Фридриха Шютца (1844-1908). Младшая сестра Паули - Герта Паули (1909-1973) - также стала литератором. Второе имя Паули получил в честь своего крёстного дяди, физика Эрнста Маха.

Вольфганг учился в Мюнхенском университете у Арнольда Зоммерфельда. Там, по просьбе Зоммерфельда, 20-летний Паули написал обзор для «Физической энциклопедии», посвящённый общей теории относительности, и эта монография до сих пор остаётся классической. Позже он преподавал в Гёттингене, Копенгагене, Гамбурге, Принстонском университете (США) и в Цюрихской высшей электротехнической школе (Швейцария). С именем Паули связано такое фундаментальное понятие квантовой механики, как спин элементарной частицы; он предсказал существование нейтрино и сформулировал «принцип запрета» - принцип Паули, за что был удостоен Нобелевской премии по физике за 1945 год. В 1958 году награждён медалью имени Макса Планка, позже в том же году Вольфганг Паули умирает от рака в Цюрихе.

Научные достижения

Паули внёс существенный вклад в современную физику, особенно в области квантовой механики. Он редко публиковал свои работы, предпочитая этому интенсивный обмен письмами со своими коллегами, в особенности с Нильсом Бором и Вернером Гейзенбергом, с которыми он крепко дружил. По этой причине многие из его идей встречаются только в этих письмах, которые часто передавались далее и копировались. Паули, судя по всему, мало заботило то, что по причине малого числа публикаций большая часть его работы была почти не известна широкой общественности. Все же некоторые факты стали известны:

  • 1924 год: Паули вводит в квантовую механику новую степень свободы, чтобы устранить имевшуюся несостоятельность в интерпретации наблюдаемых молекулярных спектров. Эта степень свободы была в 1925 г. идентифицирована Г. Уленбеком и С. Гаудсмитом как спин электрона. При этом Паули формулирует свой принцип запрета, который, по-видимому, стал его главным вкладом в квантовую механику.
  • 1926 год: Вскоре после опубликования Гейзенбергом матричного представления квантовой механики, Паули применяет эту теорию для описания наблюдаемого спектра водорода. Это служит значительным доводом для признания теории Гейзенберга.
  • 1927 год: Паули вводит спиноры для описания спина электрона.
  • 1930 год: Паули постулирует нейтрино. Он осознал, что при бета-распаде нейтрона на протон и электрон законы сохранения энергии и импульса могут выполняться, только если при этом испускается ещё одна, до тех пор неизвестная частица. Так как в тот момент времени доказать существование этой частицы было невозможно, Паули постулировал существование неизвестной частицы. Итальянский физик Энрико Ферми назвал позже эту частицу «нейтрончик»: нейтрино. Экспериментальное доказательство существования нейтрино появилось только в 1954 г.

Личные качества

В области физики Паули был известен как перфекционист. При этом он не ограничивался только своими работами, но и безжалостно критиковал ошибки своих коллег. Он стал «совестью физики», часто отзывался о работах как о «совсем неверных», либо комментировал примерно так: «Это не только неправильно, это даже не дотягивает до ошибочного!» В кругах его коллег ходила по этому поводу такая шутка: «После смерти Паули удостаивается аудиенции у Бога. Паули спрашивает Бога, почему постоянная тонкой структуры равна 1/137. Бог кивает, идёт к доске и начинает со страшной скоростью писать уравнение за уравнением. Паули смотрит сначала с большой удовлетворённостью, но вскоре начинает сильно и решительно отрицательно качать головой.»

Другой анекдот повествует о том, как Гейзенберг представил Паули свою новую теорию. В качестве ответа он получил письмо, в котором был нарисован квадрат с пометкой «Я могу рисовать как Тициан.» Внизу мелким почерком было приписано: «Не хватает только деталей.»

Также Паули славился тем, что в его присутствии чувствительная экспериментальная аппаратура переставала работать или даже внезапно ломалась. Это явление известно под названием «эффекта Паули».

В Вене Паули учился в федеральной гимназии № 19 по адресу Гимназиумштрассе 83, 1190 Вена. Его одноклассником был будущий лауреат нобелевской премии Рихард Кун, получивший в 1938 году нобелевскую премию по химии. Рассказывают также, что однажды на уроке физики учитель сделал на доске ошибку, которую не смог найти даже после долгого поиска. К великой радости учеников он в отчаянии взывает: «Паули, ну скажите наконец-то, в чём ошибка. Вы наверняка давно уже её нашли.»

Диалог Паули - Юнг

Менее известная область его деятельности, которая пристально изучается только с 1990 г., возникла из сотрудничества с психологом Карлом Густавом Юнгом. Из их переписки, которую оба учёных вели с 1932 до 1958 г., становится ясным, что Паули принадлежит большая часть понятия синхроничности, которое ввёл К. Г. Юнг, и, кроме того, часть уточнения понятий коллективного бессознательного и архетипов, которые имеют первостепенное значение для работ Юнга.

Существенную часть этого диалога составляет и сегодня ещё не решённая психофизическая проблема, объединение коллективного психо с материей, глубинных корней внутреннего мира человека с внешним миром, что Юнг обозначал как unus mundus (единый мир) и Паули как психофизическую действительность единения.

Современное состояние анализа его записей показывает, что эти занятия Паули имели не только чисто академический интерес, а брали свои истоки из глубоколежащих собственных переживаний - экзистенциальных размышлений об архетипе «дух материи».

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

(1890 - 1958)

Австро-швейцарский физик Вольфганг Эрнст Паули родился 25 апреля 1890 г. в Вене в семье известного физика и биохимика, профессора колоидной химии Венского университета.

Еще в школе он проявил незаурядные математические способности, самостоятельно изучая высшую математику и только что опубликованную работу Альберта Эйнштейна по общей теории относительности.

С 1918 г. Вольфганг Паули учится в Мюнхенском университете под руководством известного физика Арнольда Зоммерфельда. 1921 г., получив докторскую степень, работает в Геттингенском университете ассистентом у Макса Борна и Джеймса Франко, а в 1922- 1923 гг. в Институте теоретической физики в Копенгагене ассистентом у Нильса Бора .

1923 г. Паули становится ассистент-профессором теоретической физики в Гамбургском университете, где в 1924 г. для объяснения сверхтонкой структуры спектральных линий выдвигает гипотезу ядерного спина, предложив теорию существования спинового и магнитного моментов ядер. В течение 1924 - 1925 гг. он сформулировал один из важных принципов современной теоретической физики, согласно которому две тождественные частички с полуцелыми спинами не могут находиться в одном состоянии - принцип Паули . Объяснил парамагнетизм электронного газа в металле (1927) , структуру электронных оболочек атомов, 1927 г. ввел в новую квантовую механику спин, а для описания спина электрона - матрицы (спиновые матрицы Паули) создает также теорию спина электрона.

1928 г. Вольфганга Паули избирают профессором Федерального технологического института в Цюрихе, где он работает до конца жизни, за исключением двух периодов, проведенных в Соединенных Штатах Америки: 1935 - 1936 гг. - лектор в Институте фундаментальных исследований в Принстоне (штат Нью-Джерси) и 1940- 1946 гг. - заведующий кафедры теоретической физики того же института. 1929 г. вместе с Вернером Гейзенбергом Паули сделал попытку формулирования квантовой электродинамики, введя общую схему квантования полей, чем заложил основы системной теории квантования поля. Объяснил сверхтонкую структуру атомных спектров (1928) .

1931 г. Вольфганг Паули выдвинул гипотезу относительно существования нейтрино и сформулировал (1933) главные его свойства. Зарегистрировать нейтрино прибегнуло лишь 1956 г.

1940 г. он доказал теорему о связи статистики и спина, 1941 г. показал, что закон сохранения электрического заряда связан с инвариантностью относительно калибровочних преобразований.

1945 г. Паули было награждено Нобелевской премией в области физики «за открытия принципа запрета, который еще называют принципом Паули».

1946 г. Вольфганг Паули стал швейцарским гражданином. Он никогда не припускался нечетких аргументов и неглубоких суждений, подвергая собственные работы бескомпромиссному критическому анализу, за что коллеги называли его «совестью физики». 1955 г. ученый сформулировал окончательный вариант теоремы, которая отображает симметрии элементарных частичек.

Австрийско-швейцарский физик Вольфганг Эрнст Паули родился в Вене. Его отец, Вольфганг Йозеф Паули, был известным физиком и биохимиком, профессором коллоидной химии в Венском университете. Его мать, Берта (в девичестве Шютц) Паули, была писательницей, связанной с венскими театральными и журналистскими кругами. Герта, младшая сестра П., стала актрисой и писательницей. Эрнст Мах, знаменитый физик и философ, был его крестным отцом. В средней школе в Вене П. проявил незаурядные математические способности, однако, находя классные занятия скучными, он переключился на самостоятельное изучение высшей математики и поэтому сразу прочитал только что опубликованную работу Альберта Эйнштейна по общей теории относительности.

В 1918 г. П. поступил в Мюнхенский университет, где учился под руководством известного физика Арнольда Зоммерфельда. В это время немецкий математик Феликс Клейн был занят изданием математической энциклопедии. Клейн попросил Зоммерфельда написать обзор общей и специальной теории относительности Эйнштейна, а Зоммерфельд в свою очередь попросил написать эту статью 20-летнего П. Тот быстро написал статью объемом в 250 страниц, которую Зоммерфельд охарактеризовал как «сделанную просто мастерски», а Эйнштейн похвалил.

В 1921 г., закончив докторскую диссертацию по теории молекулы водорода и получив докторскую степень в кратчайшие для университета сроки, П. отправился в Гёттинген, где занялся научными исследованиями совместно с Максом Борном и Джеймсом Франком. В конце 1922 г. он в Копенгагене работает в качестве ассистента у Нильса Бора. Работа под руководством Зоммерфельда, Борна, Франка и Бора пробудила у П. интерес к новой области физики – квантовой теории, которая занималась изучением атома и субатомных частиц, и он полностью погрузился в проблемы, встававшие перед физиками в этой области.

Хотя принципы классической физики позволяли удовлетворительно объяснять поведение макроскопических физических систем, попытки применить те же принципы к явлениям атомного масштаба терпели неудачу. Особенно сложной представлялась ядерная модель атома, по которой электроны вращались по орбитам вокруг центрального ядра. Согласно принципам классической физики, вращающиеся по орбитам электроны должны непрерывно испускать электромагнитные излучения, теряя при этом энергию и приближаясь по спирали к ядру. В 1913 г. Бор предположил, что электроны не могут непрерывно испускать излучение, поскольку они обязаны находиться на своих разрешенных орбитах; все промежуточные орбиты запрещены. Электрон может испустить или поглотить излучение, только сделав квантовый скачок с одной разрешенной орбиты на другую.

Модель Бора частично основывалась на изучении атомных спектров. Когда некий элемент нагревается и переходит в газо- или парообразное состояние, он излучает свет с характерным спектром. Этот спектр не представляет собой непрерывной цветовой области, подобной спектру Солнца, а состоит из последовательности ярких линий определенных длин волн, разделенных более широкими темными участками. Атомная модель Бора объясняла главную суть атомных спектров: каждая линия представляла свет, испускаемый атомом, когда электроны переходят с одной разрешенной орбиты на другую орбиту с более низкой энергией. Более того, модель правильно предсказывала большую часть характерных черт простейшего атомного спектра – спектра водорода. В то же время с помощью этой модели менее успешно описывались спектры более сложных атомов.

Еще два существенных недостатка модели Бора помогли П. в дальнейшем внести свой значительный вклад в квантовую теорию. Во-первых, эта модель не могла объяснить некоторые тонкие детали в спектре водорода. Например, когда атомный газ помещали в магнитное поле, некоторые спектральные линии расщеплялись на несколько близко расположенных линий – эффект, впервые обнаруженный Питером Зееманом в 1896 г. Более важным, однако, было то, что устойчивость электронных орбит не находила полного объяснения. Хотя считалось очевидным, что электроны не могли падать по спирали на ядро, непрерывно испуская излучение, не было видно явной причины, почему бы им не опускаться скачками, переходя с одной разрешенной орбиты на другую и собираясь вместе в наинизшем энергетическом состоянии.

В 1923 г. П. стал ассистент-профессором теоретической физики в Гамбургском университете. Здесь он в начале 1925 г. занимался теоретическими исследованиями строения атомов и их поведения в магнитных полях, разрабатывая теорию эффекта Зеемана и других видов спектрального расщепления. Он выдвинул предположение, что электроны обладают неким свойством, которое позже Сэмюэл Гаудсмит и Джордж Уленбек назвали спином, или собственным угловым моментом. В магнитном поле у спина электрона имеются две возможные ориентации: ось спина может быть направлена в ту же сторону, что и поле, или в противоположную сторону. Орбитальное движение электрона в атоме определяет еще одну ось, которая может быть ориентирована по-разному в зависимости от приложенного внешнего поля. Различные возможные комбинации спиновой и орбитальной ориентации слегка отличаются энергетически, что приводит к увеличению числа атомных энергетических состояний. Переходы электрона с каждого из этих подуровней на некоторую другую орбиту соответствуют слегка отличающимся длинам световых волн, чем и объясняется тонкое расщепление спектральных линий.

Вскоре после того, как П. ввел такое свойство «двузначности» электрона, он аналитически объяснил, почему все электроны в атоме не занимают наинизший энергетический уровень. В усовершенствованной им модели Бора допустимые энергетические состояния, или орбиты, электронов в атоме описываются четырьмя квантовыми числами для каждого электрона. Эти числа определяют основной энергетический уровень электрона, его орбитальный угловой момент, его магнитный момент и (в этом состоял вклад П.) ориентацию его спина. Каждое из этих квантовых чисел может принимать только определенные значения, более того, допустимы лишь некоторые комбинации данных значений. Он сформулировал закон, который стал известен как принцип запрета Паули и согласно которому никакие два электрона в системе не могут иметь одинаковые наборы квантовых чисел. Так, каждая оболочка в атоме может содержать лишь ограниченное число электронных орбит, определяемых допустимыми значениями квантовых чисел.

Принцип запрета Паули играет фундаментальную роль для понимания строения и поведения атомов, атомных ядер, свойств металлов и других физических явлений. Он объясняет химическое взаимодействие элементов и их прежде непонятное расположение в периодической системе. Сам П. использовал принцип запрета для того, чтобы понять магнитные свойства простых металлов и некоторых газов.

Вскоре после того, как П. сформулировал свой принцип запрета, квантовая теория получила солидное теоретическое обоснование благодаря работам Эр-вина Шрёдингера, Вернера Гейзенберга и П.А.М. Дирака. Теоретический аппарат, использованный ими для описания атомных и субатомных систем, стал называться квантовой механикой. Атомная модель Бора была заменена квантовомеханической моделью, которая успешнее предсказывала спектры и другие атомные явления. Что касается достижений П., то они позволили распространить квантовую механику на такие области, как физика частиц высокой энергии и взаимодействие частиц со светом и другими формами электромагнитных полей. Эти области стали известны как релятивистская квантовая электродинамика.

В 1928 г. П. сменил Питера Дебая на посту профессора Федерального технологического института в Цюрихе, на котором он оставался до конца жизни, за исключением двух периодов, проведенных в Соединенных Штатах; он провел академический 1935/36 г. в качестве приглашенного лектора в Институте фундаментальных исследований в Принстоне (штат Нью-Джерси) и во время второй мировой войны, когда, опасаясь, что Германия вторгнется в Швейцарию, он вернулся в этот же институт, где возглавлял кафедру теоретической физики с 1940 по 1946 г.

В 30-е гг. он сделал еще один важный вклад в физику. Наблюдения над бета-распадом атомных ядер, при котором нейтрон в ядре испускает электрон, превращаясь при этом в протон, выявили очевидное нарушение закона сохранения энергии: после учета всех зарегистрированных продуктов распада энергия после распада оказывалась меньше своего значения до распада. В 1930 г. П. выдвинул гипотезу, согласно которой предполагалось, что при таком распаде испускается какая-то незарегистрированная частица (которую Энрико Ферми назвал нейтрино), уносящая потерянную энергию, и при этом закон сохранения момента импульса оставался в силе. В конце концов нейтрино удалось зарегистрировать в 1956 г.

В 1945 г. П. был награжден Нобелевской премией по физике «за открытие принципа запрета, который называют также принципом запрета Паули». Он не присутствовал на церемонии вручения премии, и ее от его имени получил сотрудник американского посольства в Стокгольме, В Нобелевской лекции, посланной в Стокгольм в следующем году, П. подвел итоги своих работ, касавшихся принципа запрета и квантовой механики.

П. стал швейцарским гражданином в 1946 г. В дальнейшей работе он стремился пролить свет на проблемы взаимодействия частиц высокой энергии и сил, с помощью которых они взаимодействуют, т.е. занимался той областью физики, которую сейчас называют физикой высоких энергий, или физикой частиц. Он также провел глубокое исследование той роли, которую в физике частиц играет симметрия. Обладая поистине фантастическими способностями и умением глубоко проникать в существо физических проблем, он был нетерпим к туманным аргументам и поверхностным суждениям. Он подвергал собственные работы такому беспощадному критическому анализу, что его публикации фактически свободны от ошибок. Коллеги называли его «совестью физики».

После развода, последовавшего за недолгим и несчастливым первым браком, П. в 1934 г. женился на Франциске Бертрам. Испытывая глубокий интерес к философии и психологии, он получал большое удовольствие от бесед со своим другом К.Г. Юнгом. Он также высоко ценил искусство, музыку и театр. Во время отпуска любил плавать, бродить по горам и лесам Швейцарии. Интеллектуальные способности П. находились в резком диссонансе с его «умением» работать руками. Его коллеги обычно шутили по поводу таинственного «эффекта Паули», когда одно только присутствие невысокого и полноватого ученого в лаборатории, казалось, вызывало всевозможные поломки и аварии. В начале декабря 1958 г. П. заболел и вскоре, 15 декабря, умер.

Кроме Нобелевской премии, П. был награжден медалью Франклина Франклиновского института (1952) и медалью Макса Планка Германского физического общества (1958). Он был членом Швейцарского физического общества, Американского физического общества, Американской ассоциации фундаментальных наук, а также иностранным членом Лондонского королевского общества.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта