Главная » Условно-съедобные грибы » Сравнение характеристик электрона и позитрона.

Сравнение характеристик электрона и позитрона.

позитрон

А, м. (спец.). Элементарная частица с положительным зарядом с массой, равной массе электрона.

прил. по-зитронный, -ая, -ое.

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

позитрон

м. Положительный электрон.

Энциклопедический словарь, 1998 г.

позитрон

ПОЗИТРОН (от лат. positivus - положительный и... трон) (е+) античастица электрона. Позитрон стабилен, но в веществе из-за аннигиляции с электронами (е?) существует очень короткое время. Позитроны образуются в процессах рождения пар е+ е? гамма-квантами, при распадах мюонов и т.д.

Позитрон

[от лат. posi (tivus) ≈ положительный и (элек)трон ] (символ е+), элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Массы (me) и спины (J) П. и электрона равны, а их электрические заряды (е) и магнитные моменты (mе) равны по абсолютной величине, но противоположны по знаку .

Теоретически существование положительно заряженного «двойника» электрона следует из Дирака уравнения; эта возможность была указана П. Дираком в 1931. В 1932 К. Д. Андерсон экспериментально обнаружил такую частицу в составе космических лучей и назвал её «П.». Открытие П. имело фундаментальное значение. В отличие от известных к середине 1932 электрона, протона и нейтрона, П. не входил в состав «обычного» вещества на Земле, возникли понятия античастицы и антивещества. Предсказанные Дираком и наблюдённые на опыте в 1933 процессы аннигиляции и рождения пар П.-электрон были первыми убедительными проявлениями взаимопревращаемости элементарных частиц.

П. участвует в электромагнитном, слабом и гравитационном взаимодействиях и относится к классу лептонов. По статистическим свойствам П. является фермионом.

П. стабилен, но в веществе существует лишь короткое время из-за аннигиляции с электронами; например, в свинце П. аннигилируют в среднем за 5×10-11сек. При определённых условиях, прежде чем аннигилировать, П. и электрон могут образовать связанную систему типа атома водорода ≈ позитроний ; время жизни такой системы порядка 10-7 сек, если суммарный спин электрона и П. равен 1 (ортопозитроний), и порядка 10-10сек, если он равен 0 (парапозитроний).

П. образуются при взаимопревращениях свободных элементарных частиц (например, распадах мюона, в процессах рождения g-квантами пар П.-электрон в электростатическом поле атомного ядра) и при бета-распаде некоторых радиоактивных изотопов. П., получаемые при бета-распаде и рождении пар, используются для исследовательских целей: изучение процессов замедления П. в веществе и их последующей аннигиляции даёт разнообразную информацию о физических и химических свойствах вещества, например распределении скоростей электронов проводимости, о дефектах кристаллической решётки, о кинетике некоторых типов химических реакций. Один из методов исследования элементарных частиц при сверхвысоких энергиях основан на столкновении встречных пучков ускоренных П. и электронов (см. Ускорители на встречных пучках).

Лит.: Дирак П. А. М., Принципы квантовой механики, пер. с англ., М., 1960; Новожилов Ю. В., Элементарные частицы, 3 изд., М., 1974; Гольданский В. И., Физическая химия позитрона и позитрония, М., 1968.

Э. А. Тагиров.

Википедия

Позитрон

Позитро́н (от - положительный , и electron - электрон ) - античастица электрона. Относится к антивеществу, имеет электрический заряд +1, спин 1/2, лептонный заряд −1 и массу, равную массе электрона. При аннигиляции позитрона с электроном их масса превращается в энергию в форме двух гамма-квантов.

Позитроны возникают в одном из видов радиоактивного распада (позитронная эмиссия), а также при взаимодействии фотонов с энергией больше 1,022 МэВ с веществом. Последний процесс называется « рождением пар », ибо при его осуществлении фотон, взаимодействуя с электромагнитным полем ядра, образует одновременно электрон и позитрон. Также позитроны способны возникать в процессах рождения электрон-позитронных пар в сильном электрическом поле.

Примеры употребления слова позитрон в литературе.

Это было бы связано с реакциями, которые идут с выделением больших энергий, что характерно для превращения пары электрон - позитрон в пару нейтрино - антинейтрино и для так называемого нейтринного тормозного излучения.

Ад, акаша, алкоголизм, Ангел, антивещество, антигравитация, антифотон, астения, астрология, атом, Армагеддон, аура, аутогенная тренировка, белая горячка, бессонница, бесстрастие, Бог, божественное, божественный путь, Буддизм, буддхи, будущее, будущее Вселенной, будущее Солнечной системы, вакуум, Великий обет, вещество, виртуальный, влияние на судьбу, внеземная цивилизация, Вселенная, всемирный потоп, воплощение, время, Высший Разум, Высшие Знания, галактика, геологические периоды, Гермес Трисмегист, гиперон, гипноз, головной мозг, гороскоп, гравитационные волны, гравитация, гуна, Дао, двойник, деперсонализация, дефект массы, демон, Дзэн-буддизм, добро зло, ДНК, Древние Знания, дрейф материков, Дух, душа, дхьяна, дьявол, Единая Теория Поля, жизнь, заболевания психики, зарождение жизни, звезда, земная жизнь, знание будущего, знания, зомби, зомбирование, изменение судьбы, измененные состояния сознания, измерение вещества, Изумрудная Скрижаль, иммунная система, инстинкт, интеллект, интуиция, искривление света, ис

Точно так же быстро движущийся позитрон не попадет в дырку Дирака, покуда его скорость существенно не уменьшится.

К счастью, только одного, поскольку уничтожая отрицательно заряженный электрон, позитрон гибнет и сам.

Обнаружено короткое замыкание в электромагнитах, вытягивающих из главной камеры положительные мезоны и продукты их распада позитроны .

Идея, которую сейчас обдумывал Гарди, была несколько расплывчатой: подвергнуть нейтрид сложному облучению, обрушить на него весь комплекс ядерных частиц, которые только можно получить в беватроне мезоны, протоны, электроны, позитроны , гамма-кванты.

В этих условиях керн антинуклона образован двумя позитронами и имеет обнаруживаемое положительное радиальное дисковое поле.

Но при прохождении сквозь мягкое время лептоны антиатомов аннигилируют свободные электроны в молекулах гранита, образуя антинейтроны, которые за 896 секунд как раз успевают распасться на антипротоны и позитроны .

Вслед за первой нейтральной частицей -- нейтроном Чэдвика -- появление первой античастицы -- позитрона Андерсона.

Позитроны , невообразимое их число, квадриллионы квадриллионов - рождались и исчезали в миллионные доли секунды.

Он состоял из губчатого платиново-иридиевого сплава, внутри которого квадриллионы квадриллионов позитронов возникали и исчезали за миллионные доли секунды.

До сих пор я рассматривал отрицательно заряженные электроны как лишние брызги переполненного океана Дирака, а позитроны - как дырки в нем.

Впрочем, подождите минуточку, я, кажется, смогу показать вам один позитрон , - продолжал отец Паулини после короткой паузы.

Томпкинса отец Паулини, отталкивая своего собеседника в сторону, в то время как новорожденный позитрон со свистом пронесся в каком-нибудь дюйме от них.

Поэтому позитрон имеет большую вероятность аннигилировать в конце траектории, когда столкновения с другими частицами по дороге основательно замедлят его.

О зарядах электрона и позитрона

Трофимов Геннадий Васильевич, кандидат химических наук.

Частицы и античастицы различаются количеством элементарных субчастиц в структурах их оболочек, то есть электрон имеет полный набор нейтринных частиц в своей оболочке, а позитрон на одну частицу меньше. Но нейтринная материя находится в состоянии невесомости, поэтому массы электрона и позитрона равны и определяются массой их ядер.

Когда рассуждения касаются анионов и катионов, мы, не задумываясь, объясняем их заряды избытком или недостатком электронов в их оболочках и все становится понятным, пока дело не доходит до самих электронов и позитронов. Электрон - это отрицательно заряженная частица, а позитрон положительно заряженная. И только что понятное, простое объяснение становится абсолютной бессмыслицей. Наука не знает природы электрических зарядов, и никто не может объяснить природу этого феномена. Ученые гадают, то ли это какая-то частица сообщает своим присутствием или отсутствием заряд, то ли это свойство разных структур электрона?

Не зная природы электрона, наука считает его точечной бесструктурной частицей, сгустком материи, обладающей зарядом, что абсолютно неверно. Бесструктурных частиц в природе не бывает. Они просто не могли образоваться в процессе усложнения элементарных частиц и сами не имели бы возможности усложняться. То есть, если бы электрон действительно был точечным зарядом, то в природе не было бы фотонов, теплоты и света. Возможность объяснения природы зарядов появилась относительно недавно в связи с созданием беспостулатной модели строения атома . В оболочках реальных атомов нет ни орбит, ни электронов и созданы они не на электромагнитной, а на гравитационной основе, поэтому атомные ядра не имеют зарядов. Оболочка атома плотно заполнена фотонами - элементарными частицами теплоты и света, которые под действием мощного притяжения ядра образуют в ней фотонную структуру, защищенную энергетическим барьером. Однако вне оболочек атомов и молекул фотонная материя сильно разрежена под действием центробежной силы вращения Вселенной.

Материя газов, фотоны и все устойчивые элементарные частицы образуют непрерывные материи, в которых частицы плотно прижаты друг к другу оболочками, и это состояние нельзя изменить ни при каких условиях. Их можно как угодно сильно растягивать (разрежать), но нельзя разорвать так, чтобы между частицами образовалось пустое пространство. Вместо этого происходит лишь беспредельное увеличение объема частиц. То есть в газах не существует ни “межмолекулярных расстояний”, ни “свободного пробега частиц”, ни самопроизвольного их движения. Это означает, что кинетическая теория газов и квантовая механика основаны на ложных предположениях (постулатах), и рассуждения с позиции этих теорий могут не соответствовать или не соответствуют действительности .

Непрерывность этих материй можно продемонстрировать на примере разрежения воздуха, который тоже является непрерывной материей. Для этого возьмем медицинский шприц и смажем его поршень маслом, чтобы он не пропускал воздух. Если теперь вытеснить из него весь воздух, плотно закрыть отверстие штуцера, а затем создать разрежающее усилие, то оставшиеся в штуцере молекулы газов заполнят весь объем шприца. Увеличение их объема происходит за счет поглощения фотонной материи (материи теплоты), свободно проникающей через стенку цилиндра, поскольку оболочки ее атомов заполнены фотонами. Если шприц имеет объем 10 см 3, то увеличение объема молекул произойдет примерно в 250 раз, что не является пределом. Но молекулы газов активно препятствуют разрежению и, если отпустить шток, то поршень вернется в исходное положение. То есть возврат поршня происходит под действием самопроизвольного сжатия молекул, а не под действием атмосферного давления, которое равно не 1.033 г/см 2, а нулю, поскольку ртуть в барометрических трубках находится в состоянии невесомости . Очевидно, что если бы фотонная материя, проникающая в шприц, занимала межмолекулярное пространство, то поршень не мог бы возвращаться в исходное положение.

Объем молекул газов на Земле определяется равновесием двух сил, действующих в противоположных направлениях: силой тяготения ядер атомов, уменьшающей объем частиц, и центробежной силой вращения галактики, увеличивающей их объем. Но молекулы газов уплотняются одновременно и под действием силы тяготения Земли и поэтому равновесие смещено в строну уменьшения объема частиц. Однако с удалением от ее поверхности сила тяготения быстро ослабевает, и равновесие смещается в направлении увеличения объема молекул, что является единственной причиной затруднения дыхания на больших высотах. По этой же причине объем молекул на поверхности воды больше, чем на глубине, и только поэтому лед легче воды .

Объемы элементарных частиц определяются такими же равновесиями, поскольку их строение аналогично строению атома в том смысле, что они имеют ядра и оболочки, заполненные более мелкими элементарными частицами. Вне оболочек последние образуют непрерывные материи, которые находятся под действием постоянного разрывного напряжения или разрежения, связанного с вращением галактики и (или) Вселенной. То есть структура элементарных частиц защищена энергетическим барьером устойчивости, как и структура атомов, молекул, любых химических соединений и тел на Земле . Одновременно равновесия сил являются причиной невесомости непрерывных материй, за исключением γ - материи или материи “дефекта массы”, хотя она и находится в состоянии сильнейшего разрежения во Вселенной. Кстати, сила притяжения атмосферы Землей уравновешена центробежной силой вращения галактики и поэтому она (атмосфера) находится в состоянии невесомости. Это является единственной причиной отсутствия атмосферного давления. По этой же причине невесома и фотонная материя, поскольку сила ее притяжения Землей уравновешена центробежной силой вращения Вселенной. Именно поэтому масса покоя фотона равна нулю. Следует отметить, что фотоны в структуре оболочек атомов абсолютно неподвижны, то есть скорость движения материи фотонов или материи света может быть любой.

Если заставить железный стержень быстро вращаться, то он намагничивается тем сильнее, чем больше его длина. Это означает, что элементарные частица, плотность материи которых многократно превышает плотность железа, выбрасывается из него под действием центробежной силы в радиальных направлениях, но, описав в воздухе траекторию, снова возвращаются в стержень через его торцовую часть, где центробежное ускорение минимально, что и приводит к намагничиванию его в определенном направлении. С одной стороны это является подтверждением непрерывности материй элементарных частиц, поскольку материи никуда не улетают, а с другой стороны, это означает, что большая часть массы галактики, вследствие ее вращения, сосредоточена вовсе не в центре, а на ее периферии в виде “темной материи”, масса которой многократно превышает массу ее видимой части. Эта материя в виде мощного потока возвращается внутрь галактики через ее ось вращения и пронизывает ее звездный диск от центра к периферии. Галактический поток является причиной существования магнетизма и гравитации, а также броуновского движения частиц и многих периодических процессов на Земле . В частности он является причиной сезонной смены направления ее стратосферного ветра с восточного на западный и с западного на восточный, поскольку Земля при своем обращении вокруг Солнца дважды в год пересекает его в разных направлениях .

Нейтринная структура в оболочках электронов защищена нейтринным энергетическим барьером подобно тому, как фотонная структура в оболочках атомов и молекул защищена фотонным или тепловым энергетическим барьером. Периферийные нейтрино (по аналогии с периферийными фотонами в оболочках атомов) связаны с ядрами электронов значительно слабее и именно эти частицы переходят в циркулирующий поток при быстром вращении металлического стержня или гироскопа. Чем больше скорость вращения тем больше нейтринных частиц переходит из электронов в циркулирующий поток, больше гироскопический эффект и сильнее уплотнение вращающегося тела. Именно поэтому объем железной заготовки после намагничивания заметно уменьшается. Ствол пушки танка, при его движении по неровной поверхности, поддерживается в горизонтальном положении с помощью гироскопа, скорость вращения дисков которого равна или превышает 30 тысяч оборотов в минуту. А при скорости вращения металлического колесика более 80 тысяч оборотов в минуту плотность нейтринного потока и энергия частиц возрастают настолько, что им можно приваривать медные контакты к кварцевым подложкам микросхем, даже не удаляя изоляционное покрытие .

Но чем может отличаться нейтрино от антинейтрино? Очевидно, только количеством частиц в их оболочках. Оболочки нейтрино заполнены гипотетическими “гравитонами” - элементарными частицами гравитационных полей и потеря одного из них, по-видимому, вызывает незначительное нарушение структуры нейтрино и превращает его в античастицу. Поскольку гравитоны находятся в состоянии невесомости, то массы нейтрино и антинейтрино равны. В ряду частиц от атома до нейтрино плотность материи возрастает, поэтому плотность электронного нейтрино должна быть значительно больше плотности электрона, равной 9.7∙10 9 г/см 3. Именно поэтому нейтринная материя удаляется из вращающегося железного стержня.

Взаимодействие идентичных частиц, а также частиц и античастиц не является чем-то особенным. Скорее, наоборот, это достаточно общее явление, подобное взаимодействию идентичных атомов при образовании двухатомной молекулы. Например, при взаимодействии двух атомов водорода образуется двуядерная (двухатомная) молекула этого газа:

Н + Н = Н2 + 104, ккал.

При этом один атом водорода в левой части уравнения реакции может быть при желании назван “протоном”, а другой “антипротоном”. То есть при взаимодействии частицы и античастицы всегда образуется двуядерная частица и выделяется часть материи, находящейся в оболочках взаимодействующих частиц в виде “энергии” ее образования. В данном случае это материя теплоты и света, заполняющая оболочки атомов водорода, но только не “энергия”. Однако выделение теплоты при образовании молекул принято называть “энергией образования”, “энергетическим барьером устойчивости”, которые являются привычными терминами в науке и их все-таки придется сохранить.

Для гравитационного взаимодействия нейтрино и антинейтрино являются идентичными частицами, и поэтому взаимодействуют с образованием двунейтринной частицы ν2, подобной двухатомным молекулам: H2, O2, N2 … и т. д. Кстати, имеются сведения о том, что многие, если не все атомы твердых веществ в таблице химических элементов (за исключением инертных газов), в газообразном состоянии существуют в виде двухатомных молекул. Очевидно, что склонность к образованию двуядерных частиц является обычным явлением в природе. По аналогии с нейтрино будем считать, что потеря электроном одного нейтрино сообщает ему положительный заряд. Тогда взаимодействие электрона и позитрона является обычной химической реакцией, которая должна сопровождаться синтезом двухэлектронной частицы - е2, то есть фотона, и выделением нейтринной материи, как энергии его образования:

е- + е+ = ф0 + nν,

где символами последовательно обозначены электрон, позитрон, фотон и материя нейтрино.

Однако по литературным источникам эта реакция выглядит иначе:

е- + е+ = (2 - 3) ф0 + ν.

Такое изображение реакции нарушает закон сохранения материи, поскольку сумма масс в правой части уравнения в 2 - 3 раза превосходит сумму электронных масс в левой. Иными словами, реакция написана неверно и не может соответствовать действительности. Причиной этого, возможно, является неучтенная склонность электронов и позитронов к образованию парных частиц е2- и е2+, а также возможность выделяющейся нейтринной материи легко “выбивать” фотоны из фотонных структур оболочек соседних атомов, поскольку она является “энергией” их образования.

Для гравитационного взаимодействия потеря одной частицы из оболочки электрона является несущественным нарушением его структуры, и только поэтому электрон взаимодействует с позитроном. То есть для гравитационного взаимодействия безразлично имеют электроны одинаковые или разные заряды. Поэтому с таким же успехом может проходить межэлектронное или межпозитронное взаимодействие:

е- + е- = ф0 +n ν,

е+ + е+ = ф0 + (n - 2) ν,

Отличаться реакции будут только количеством выделившихся нейтрино в правой части уравнения: в первой на две частицы больше, чем во второй. В научной литературе такие реакции неизвестны, однако обе протекают в осветительных лампах накаливания, так как синтез фотонов в спиралях ламп связан с уплотнением электронов под действием напряжения электрического тока и вытеснением из них нейтрино в магнитное поле, образующееся вокруг вольфрамовой спирали.

Взаимодействие идентичных частиц связано с существованием в природе жесткого правила или абсолютного закона, разрешающего взаимодействие (притяжение и отталкивание) исключительно между идентичными частицами, который никогда не нарушается. Но для этого они, как минимум, должны безошибочно “узнавать” друг друга. И природа “изобрела” для каждого вида частиц индивидуальный отличительный признак или видовой код. И только в силу кодового взаимодействия атомов и молекул мы можем выделять любые вещества в чистом виде . Как уже говорилось, утрата электроном одного нейтрино не нарушает принадлежности его к электронам. Но если бы отсутствовали две частицы, то, возможно, электрон не мог бы взаимодействовать с позитроном, поскольку это были бы разные по энергетическому коду частицы. Именно поэтому заряды элементарных частиц, как правило, не превышают единицы, однако более массивные частицы, например атомы, могут быть многозарядными, но при этом происходит резкое изменение их химических свойств.

Нейтринная материя находится в состоянии невесомости, но потеря даже одной ее частицы из оболочки электрона приводит к заметному уменьшению его скрытой массы и уплотнению атома. Например, при последовательном удалении 5 нейтрино из оболочки атома ванадия (радиус которого равен 1.39 Å), заряд его катиона увеличивается: +2, +3, +4, +5, а его радиус становится равным: 0.72, 0.67, 0.61, 0.40 ангстрема. Это происходит вследствие уменьшения объема атомов и межъядерных расстояний, а, следовательно, усиления взаимного их уплотнения. Удаление нейтрино вызывает серьезную внутреннюю перестройку атома, в частности поворот оси главного гравитационного потока на тот или иной угол, что является причиной изменения его физических и химических свойств. Рассмотрим это более подробно.

Каждый период в таблице химических элементов начинается одним и заканчивается другим инертным газом, иными словами, атом каждый раз делает полный оборот вокруг своей оси на 3600. Второй и третий периоды состоят из 8 элементов, поэтому при переходе к следующему элементу угол поворота оси увеличивается на 450, а большие периоды состоят из 18 элементов и увеличение угла происходит через 200. То есть каждый элемент, кроме своего порядкового номера, характеризуется еще и углом поворота оси гравитационного потока атома относительно оси атомов нулевой группы элементов, представленной инертными газами. Угол поворота задается количеством пар нуклонов в ядре при рождении атома и является причиной постоянства его химических свойств. Он определяет активную зону его экваториальной поверхности, то есть, какой стороной атом должен взаимодействовать с другими частицами . В подгруппах таблицы химических элементов все атомы имеют один и тот же угол поворота и поэтому являются химическими аналогами. При изменении валентности происходит смещение оси гравитационного потока, что является причиной изменения его химических и физических свойств. Например, трехвалентный церий является типичным представителем третьей группы в таблице элементов, но после перехода его в четырехвалентное состояние он становится аналогом четвертой группы (подгруппы титана) и образует аналогичные по составу соли, особенно с цирконием, который является следующим за лантаном (по номеру) элементом четвертого периода.

Любой процесс, связанный с уплотнением атомов или молекул, сопровождается выделением не только теплоты, но и нейтринной материи, как энергии образования фотонной структуры молекул и кристаллов. Например, переход газообразной воды в атмосфере (в облаках) в жидкое и твердое состояния сопровождается уплотнением молекул, перестройкой структуры и выделением огромного объема свободной фотонной материи, которая под действием межфотонного взаимодействия (сжатия) образует жгуты молниевых разрядов. Процесс их образования связан с уменьшением объема фотонов и вытеснением из них свободной нейтринной материи или рентгеновского излучения, что одно и то же. Поэтому обычный дождь, даже без грозовых разрядов имеет слабый фон рентгеновского излучения. То есть молния - это в основном не электронный, а фотонный разряд, хотя и сопровождающийся электрическими явлениями. Рентгеновское излучение в рентгеновских установках возникает при деформации разреженных (т. е. наполненных нейтринной материей) электронов вследствие их ударов об анод рентгеновской трубки.

Нелишним будет отметить, что непрерывная нейтринная материя галактики и Вселенной является, по-видимому, единственной средой, в которой могут распространяться радиоволны. Под действием импульсов напряжения электрического тока (рабочей частоты передатчика) в его антенне происходят сжатия и разрежения электронов и синхронное вытеснение из них нейтринной материи. Колебания ее плотности и являются причиной возникновения и распространения радиоволн. Поскольку нейтринная материя одновременно является материей магнитных потоков, то их можно назвать “магнитными колебаниями”, “колебаниями в магнитной или в нейтринной материи”. То есть современное представление о радиоволнах как об электромагнитном излучении надо признать неверным, как и о рентгеновском излучении, которое является потоком нейтринной материи.

Список литературы

Трофимов Г. В. Строение атома с позиции корпускулярного представления о фотонах. // Sententiae. “Унiверсум-Вiнiця”, спецвiпуск № 3, Фiлософiя i коcмологiя, 2004. С. 76.

Трофимов Г. В. Строение атома с позиции корпускулярного представления о фотонах: http://www.sciteclibrary.ru/rus/catalog/pages/7622.html

Трофимов Г. В. Кому нужна такая наука? http://www.sciteclibrary.ru/rus/catalog/pages/7681.html

Трофимов Г. В. А существует ли атмосферное давление? http://www.sciteclibrary.ru/rus/catalog/pages/7645.html

Трофимов Г. В. Гравитация и энергетика атома. http://www.sciteclibrary.ru/rus/catalog/pages/7762.html

Сезонный ветер вне Земли. Эврика-88. М., “Молодая гвардия”, стр. 47, 1988г.

Загадочная сварка. // Эврика - 89. М. “Молодая гвардия”, 1989. С. 173.

1932. Открытие позитрона.

Carl David Anderson

Позитрон, зарегистрированный в камере Вильсона, помещенной в магнитное поле. После прохождения свинцовой пластинки энергия позитрона уменьшается, соответственно уменьшается кривизна его траектории в магнитном поле.

Нобелевская премия по физике

1936 г . – К. Андерсон За открытие позитрона

Открытиепозитрона

Характеристика

Численное значение

Спин J ,=

Масса m e c 2 , МэВ

0.51099892±0.00000004

Электрический заряд, Кулон

(1.60217653±0.00000014)·10−19

Магнитный момент, e = /2m e c

1.001159652187±0.000000000004

> 4.6·1026

Время жизни, лет

Лептонное число L e

Лептонные числа L μ ,L τ

Открытие позитрона - частицы по своим характеристикам идентичной электрону за исключением знака электрического заряда (у позитрона он положительный) - было исключительно важным событием в физике. Еще в 1928 году П. Дирак предложил уравнение для описания релятивистской квантовой механики электрона. Оказалось, что уравнение Дирака имеет два решения, как с положительной, так и с отрицательной энергией. Состояние с отрицательной энергией описывает частицу аналогичную электрону, но имеющую положительный электрический заряд.

Позитрон был первой обнаруженной частицей из целого класса частиц, которые получили название античастицы . До открытия позитрона казалась загадочной различная роль положительных и отрицательных зарядов в природе. Почему существует тяжелый положительно заряженный протон, и нет тяжелой частицы с массой протона и отрицательным зарядом? Зато существует легкий отрицательно заряженный электрон. Открытие позитрона по существу восстановило зарядовую симметрию для легких частиц. В квантовой теории поля электрон и позитрон полностью равноправные частицы.

Почему e - иe + являются

стабильными частицами?

Нейтрино ν

1931. В.Паули выдвинул гипотезу о существовании нейтрино для объяснения спектра электронов β -распада

n → p+ e− + υ e

1956. Ф. Райнес,

К. Коэн зарегистрировали антинейтрино.

Электронное антинейтрино

1953 – 1956 Ф. Райнес, К. Коэн

ν +p →e + +n

Источник антинейтрино – ядерный реактор e + + e − → 2 γ ~10 микросекунд

n + Cd(A) → Cd(A+ 1) * → Cd(A+ 1) + (3 − 5) γ

σ (ν p )= 10− 43 см 2

Открытиеантинейтрино (1)

Доказать существование электронного антинейтрино удалось в 1956 г. Райнесу и Коэну. Для этого они использовали реакцию

образуется большое число антинейтрино, которые и предполагалось зарегистрировать с помощью реакции (*). Протонная мишень представляла собой два бака по 200 л каждый, заполненные раствором хлористого кадмия в воде (CdCl2 +H2 O). Возникающие в результате реакции позитроны регистрировались по аннигиляционным γ -квантам,

образующимся при взаимодействии позитронов с электронами вещества мишени.

e ++ e −→ 2 γ .

Образующиеся в результате аннигиляции γ -кванты

вызывали световые вспышки в жидких сцинтилляторах (3 емкости по 1200 л каждая), расположенных по обе стороны от двух протонных мишеней. Световые вспышки регистрировали 100 фотоумножителей. Образующиеся в реакции нейтроны замедлялись в мишени до тепловых энергий и поглощались ядрами кадмия. Кадмий имеет большое сечение реакции (n , γ ) захвата тепловых нейтронов. Среднее

время замедления нейтронов в водородосодержащей среде ~10 мкс. В результате захвата нейтронов изотопы кадмия образовывались в возбуждённом состоянии. Переход их в основное состояние сопровождался испусканием 3-5 γ -

квантов. Для идентификации антинейтрино регистрировались аннигиляционные γ -кванты и образующиеся приблизительно через 10 мкс γ -кванты из реакции радиационного захвата на

Теория Дирака описывала не только электрон с отрицательным электрическим зарядом, но и аналогичную частицу с положительным зарядом. Отсутствие такой частицы в природе рассматривалось как указание на «лишние решения» уравнений Дирака. Зато открытие позитрона явилось триумфом теории.

В соответствии с теорией Дирака электрон и позитрон могут рождаться парой, и на этот процесс должна быть затрачена энергия, равная энергии покоя этих частиц, 2×0,511 МэВ. Поскольку были известны естественные радиоактивные вещества , испускавшие γ-кванты с энергией больше 1 МэВ, представлялось возможным получить позитроны в лаборатории, что и было сделано. Экспериментальное сравнение свойств позитронов и электронов показало, что все физические характеристики этих частиц, кроме знака электрического заряда, совпадают.

Позитрон оказался первой открытой античастицей . Существование античастицы электрона и соответствие суммарных свойств двух античастиц выводам теории Дирака, которая могла быть обобщена на другие частицы, указывало на возможность парной природы всех элементарных частиц и ориентировало последующие физические исследования. Такая ориентация оказалась необычайно плодотворной, и в настоящее время парная природа элементарных частиц является точно установленным законом природы, обоснованным большим числом экспериментальных фактов.

Аннигиляция

Из теории Дирака следует, что электрон и позитрон при столкновении должны аннигилировать с освобождением энергии, равной полной энергии сталкивающихся частиц. Оказалось, что этот процесс происходит главным образом после торможения позитрона в веществе, когда полная энергия двух частиц равна их энергии покоя 1,022 МэВ. На опыте были зарегистрированы пары γ-квантов с энергией по 0,511 МэВ, разлетавшихся в прямо противоположных направлениях от мишени, облучавшейся позитронами. Необходимость возникновения при аннигиляции электрона и позитрона не одного, а как минимум двух γ-квантов вытекает из закона сохранения импульса . Суммарный импульс в системе центра масс позитрона и электрона до процесса превращения равен нулю, но если бы при аннигиляции возникал только один γ-квант, он бы уносил импульс, который не равен нулю в любой системе отсчёта .

В 2007 экспериментально доказано существование связанной системы из двух позитронов и двух электронов (молекулярный позитроний). Такая молекула распадается ещё быстрее, чем атомарный позитроний.

Позитроны в природе

Считается, что в первые мгновения после Большого Взрыва количество позитронов и электронов во Вселенной было примерно одинаково, однако при остывании эта симметрия нарушилась. Пока температура Вселенной не понизилась до 1 МэВ, тепловые фотоны постоянно поддерживали в веществе определённую концентрацию позитронов путём рождения электрон-позитронных пар (такие условия существуют и сейчас в недрах горячих звёзд). После охлаждения вещества Вселенной ниже порога рождения пар оставшиеся позитроны аннигилировали с избытком электронов.

В космосе позитроны рождаются при взаимодействии с веществом гамма-квантов и энергичных частиц космических лучей , а также при распаде некоторых типов этих частиц (например, положительных мюонов). Таким образом, часть первичных космических лучей составляют позитроны, так как в отсутствие электронов они стабильны. В некоторых областях Галактики обнаружены аннигиляционные гамма-линии 511 кэВ, доказывающие присутствие позитронов.

В солнечном термоядерном pp-цикле (а также в CNO-цикле) часть реакций сопровождается эмиссией позитрона, который немедленно аннигилирует с одним из электронов окружения; таким образом, часть солнечной энергии выделяется в виде позитронов, и в ядре Солнца всегда присутствует некоторое их количество (в равновесии между процессами образования и аннигиляции).

Некоторые природные радиоактивные ядра (первичные, радиогенные, космогенные) испытывают бета-распад с излучением позитронов . Например, часть распадов природного изотопа 40 K происходит именно по этому каналу. Кроме того, гамма-кванты с энергией более 1,022 МэВ, возникающие при радиоактивных распадах, могут рождать электрон-позитронные пары.

При взаимодействии электронного антинейтрино (с энергией больше 1,8 МэВ) и протона происходит реакция обратного бета-распада с образованием позитрона: Такая реакция происходит в природе, поскольку существует поток антинейтрино с энергией выше порога обратного бета-распада, возникающих, например, при бета-распаде природных радиоактивных ядер.

Литература

  • Все известные свойства позитрона систематизированы в обзоре Particle Data Group .
  • Климов А. Н. Ядерная физика и ядерные реакторы. М. Атомиздат, 1971.

Примечания

См. также


Элементарные частицы
Фермионы
Бозоны
Другие Ду́хи
Гипотетические
Другие A 0 · Дилатон · · J · Тахион · · X (4140)
· W’ · Z’ · Стерильное нейтрино
Составные частицы
Адроны
Барионы / Гипероны Нуклоны (p · p · n · n ) · Δ · Λ · Σ · Ξ · Ω
Мезоны / Кварконии π · ρ · η · · φ · ω · · ϒ · θ · · · ·
Другие Атомные ядра · Атомы · Экзотические атомы (Позитроний · Мюоний · Кварконий) · Молекулы
Гипотетические
Другие Мезонная молекула · Померон
Квазичастицы Солитон Давыдова · Экситон · Биэкситон · Магнон · Фонон · Плазмон · Поляритон · Полярон · Примесон · Ротон · Биротон · Дырка · Электрон · Куперовская пара · Орбитон · Трион · Фазон · Флуктуон · Энион · Холон и спинон Списки Список частиц · Список квазичастиц · Список барионов · Список мезонов · История открытия частиц

Wikimedia Foundation . 2010 .

Изучает взаимодействие γ-квантов с электронной оболочкой атома. Для наблюдения треков электронов он впервые использовал камеру Вильсона, помещенную в магнитное поле. Этот метод регистрации позволял по кривизне трека измерять энергию электронов. Источник γ-квантов располагался рядом с камерой Вильсона. Анализируя полученные фотографии, Д. Скобельцын впервые получил ряд новых результатов о механизме взаимодействия γ-квантов с атомом: измерил величины сечений взаимодействия γ-квантов с различными атомами, измерил ионизационные потери при движении заряженной частицы в среде. Однако гораздо больший интерес вызвали наблюдаемые в камере Вильсона не искривленные в магнитном поле траектории электронов высоких энергий. О том, что эти траектории принадлежат электронам, Д. Скобельцын заключил по величине ионизации вдоль трека пролетающей в камере Вильсона частицы. Скобельцын сделал вывод, что эти треки принадлежат электронам космического излучения, но они не искривляются, т.к. имеют большие энергии. Вскоре эта гипотеза получила подтверждение − треки не исчезали после того, как был убран источник γ-излучения. Энергия космических электронов по оценкам Скобельцына составляла ~1 ГэВ. Неожиданно оказалось, что не все частицы искривлялись в магнитном поле в одном направлении. Некоторые частицы отклонялись так, как будто бы имели положительный заряд. Вначале эти следы приняли за положительно заряженные протоны. Однако характер ионизации вдоль трека был такой же, как в случае электронов. Для того, чтобы понять природу этих частиц необходимо было измерить направление движения частиц, измерить их энергию.
Результаты Д. Скобельцына и разработанный им метод детектирования частиц космического излучения вызвали большой интерес физиков. В нескольких лабораториях стали создавать аналогичные установки. В Кавендишской лаборатории этим занялись П. Блэкетт и Дж. Оккиалини , а в США эксперименты с камерой Вильсона в магнитном поле начал молодой научный сотрудник
К. Андерсон , работавший под руководством Нобелевского лауреата Дж. Милликена . К 1932 г. К. Андерсон получил несколько сотен фотографий космических частиц в камере Вильсона в магнитном поле. Так же как и Д. Скобельцын К. Андерсон наблюдал треки как отрицательно, так и положительно заряженных частиц.
В 1932 г. в журнале “Science” появилась заметка К. Андерсона, в которой он сообщал об открытии в составе космических лучей новой частицы. Эта частица имела такую же массу, как и открытый ранее электрон, но имела в отличие от электрона не отрицательный, а положительный электрический заряд. Это наблюдение было сделано Андерсоном по наблюдениям траекторий частиц в камере Вильсона в сильном магнитном поле.
Оказалось, что частицы космических лучей, которые наблюдал К. Андерсон, искривляются в камере Вильсона, помещенной в магнитное поле, в противоположных направлениях, т.е. среди частиц зарегистрированных в камере Вильсона были как отрицательно, так и положительно заряженные частицы.

Рис. 3.1. Следы космических частиц, полученные Андерсоном в камере Вильсона, помещённой в магнитное поле 20000–25000 эрстед.

После экспериментов Блэкетта и Оккиалини уже не было никаких сомнений, что позитрон − это новая частица. Кроме того им впервые удалось надежно зарегистрировать рождение электрон-позитронной пары при взаимодействии γ-квантов с веществом. Блэкетт и Оккиалини впервые указали на то, что позитрон является той самой частицей, которую предсказал незадолго до этого П. Дирак.
Вскоре выяснилось, что позитроны могут рождаться не только в космических лучах, но и под действием γ-квантов с энергией больше 1 МэВ. Если в камеру Вильсона поместить свинцовую пластинку и облучать её γ-квантами от радиоактивного источника с энергией γ-квантов >1 МэВ, то можно наблюдать две частицы, рождающиеся в одной точке, которые магнитным полем отклоняются в противоположные стороны, это электрон и позитрон. Рождение позитронов всегда происходит в паре с электроном.

γ → e + + e - .

На рис. 3.3 показано рождение электрон-позитронной пары в камере Вильсона, заполненной криптоном.


Рис. 3.3. Рождение пары электрон-позитрон в камере Вильсона.

Открытие позитрона − частицы по своим характеристикам идентичной электрону за исключением знака электрического заряда (у позитрона он положительный) − было исключительно важным событием в физике. Еще в 1928 году П. Дирак предложил уравнение для описания релятивистской квантовой механики электрона. Оказалось, что уравнение Дирака имеет два решения, как с положительной, так и с отрицательной энергией. Состояние с отрицательной энергией описывает частицу аналогичную электрону, но имеющую положительный электрический заряд.

П. Блэкетт, Г. Оккиалини: « Согласно сообщению Андерсона, им найдено несколько следов, которые должны быть приписаны положительно заряженным частицам с ничтожной массой. Андерсон приводит подробное описание этих фотографий, хотя самые фотографии не воспроизведены. На одной из них о направлении движения можно однозначно заключить по изменению кривизны пути после прохождения насквозь свинцовой пластинки. На другой фотографии два следа, выходящие из пластинки, искривляются в противоположных направлениях. На третьей две частицы покидают пластинку, отклоняясь в ту сторону, куда отклонились бы положительные заряды. Длина пробега и характеристическая ионизация − всё это вместе с предыдущим дает Андерсону основание утверждать, что перед нами − положительно заряженные частицы с массой, значительно меньшей, чем масса протона».

П. Блэкетт, Г. Оккиалини. «Разрушение атомов космическими лучами и положительный электрон».

Позитрон был первой обнаруженной частицей из целого класса частиц, которые получили название античастицы . До открытия позитрона казалась загадочной различная роль положительных и отрицательных зарядов в природе. Почему существует тяжелый положительно заряженный протон, и нет тяжелой частицы с массой протона и отрицательным зарядом? Зато существует легкий отрицательно заряженный электрон. Открытие позитрона по существу восстановило зарядовую симметрию для легких частиц. В квантовой теории поля электрон и позитрон полностью равноправные частицы. Позитрон является стабильной частицей и может в пустом пространстве существовать, так же как электрон, бесконечно долго. Однако при столкновении электрона и позитрона происходит их аннигиляция. Электрон и позитрон исчезают, и вместо них рождаются два γкванта (фотона):

е - + е + → 2γ.

Происходит превращение частиц с массой отличной от нуля (масса электрона mc 2 = 0.511 МэВ) в частицы с нулевой массой (фотоны).
Наряду с процессом аннигиляции был обнаружен и процесс рождения пары частиц – электрона и позитрона. Электрон-позитронные пары рождались γ-квантами с энергией несколько МэВ в кулоновском поле атомного ядра.
При взаимодействии частиц высокой энергии с веществом процессы рождения и аннигиляции частиц и античастиц приводят к рождению большого количества вторичных частиц порожденных высокоэнергетической первичной частицей – каскадных ливней (рис. 3.4, 3.5, 3.6).

  1. Описан метод, с помощью которого удается заставить частицы, обладающие огромной энергией, фотографировать следы своих собственных путей в камере Вильсона.
  2. Нарисована картина наиболее поразительных, характерных явлений, заснятых этим методом на некоторых из 500 удачных фотографий; подвергся обсуждению вопрос о природе «ливней», состоящих из частиц, дающих на снимках сочетание сразу нескольких и даже многих путей.
  3. Рассмотрение пробега, ионизации, кривизны и направления движения частиц приводит к подтверждению взгляда, высказанного впервые Андерсоном, о том, что должны существовать частицы с положительным зарядом, но с массой, скорее сравнимой с массой электрона, чем прогона…
  4. Разобран вопрос о происхождении положительных и отрицательных электронов в ливне… Последующее поведение положительных электронов рассмотрено в свете дираковской теории «дырок».

Нобелевская премия по физике

1948 г. − П. Блэкетт. За усовершенствование метода камеры Вильсона и сделанные в связи с этим открытия в области ядерной физики и космической радиации.


Рис. 3.4. Позитрон, созданный гамма-лучами в свинцовой пластине и прошедший сквозь алюминиевую пластину толщиной 0,55 мм. Энергия позитрона над алюминиевой пластиной 820 кэВ, под алюминиевой пластиной 520 кэВ.

П. Блэкетт, Г. Оккиалини: «Сделать первый шаг в раскрытии этих сложных явлений − значит, прежде всего, путем отождествления установить природу частиц, порождающих следы. Не совсем легко с этим справиться, так как данные, почерпнутые из фотографий и служащие для выводов, зачастую противоречивы. Однако, по-видимому, неизбежно следует придти к тому замечательному, рассеивающему затруднения заключению, которое уже сделал Андерсон при расшифровке аналогичных фотографий. Оно состоит в том, что некоторые из следов нужно приписать частицам, несущим положительный заряд, но имеющим массу, ничтожную сравнительно с массой протона».


Рис. 3.5. Развитие ливня в свинцовых пластинах.


Рис. 3.6. Развитие ливня в свинцовых пластинах.

П. Блэкетт, Г. Оккиалини: «Чтобы определить знак заряда частицы, надо знать, в каком направлении она двигалась вдоль следа. Есть четыре способа узнать об этом из фотографий:

    Частица пронизывает достаточно толстую металлическую пластинку, так что по выходе из нее частица успела потерять заметную долю своей энергии. Очевидно, что в этом случае движение совершается со стороны большего значения Hρ в сторону меньшего. В противном случае пришлось бы допустить существование выигрыша энергии внутри пластинки, а эта возможность настолько маловероятна, что мы вправе ее отбросить. Если, при фотографировании попадется частица совсем медленная, тогда представляется случай обнаружить изменение Hρ, вызываемое благодаря непрестанной потере энергии во время прохождения частицы через газ.

  1. С другой стороны, если частица служит причиной появления какой-либо вторичной частицы с достаточной энергией, скажем, при столкновении со свободным электроном, − тогда угол между вторичным следом и первичным, укажет направление движения частиц.
  2. Если группа следов расходится из некоторой общей точки или некоторой малой области пространства, тогда существует очень большая вероятность − хотя и не сама достоверность, − что всякая частица такой группы движется, удаляясь от этой области.
  3. Если след наблюдается в почти вертикальном направлении, то более вероятно, что частица двигалась вниз, а не вверх. В основу последнего предположения взят бесспорный факт, что ионизация под действием космического излучения увеличивается от глубин к высотам. Однако трудно оценить численно эту вероятность, поскольку не известна повторяемость таких явлений, как зафиксированное на рис. 13, где есть, по крайней мере, одна частица, отразившаяся кверху».

В классической физике понятия частицы и волны резко разграничены − одни физические объекты являются частицами, а другие − волнами. Превращение пары электрон-позитрон в фотоны стало дополнительным подтверждением представления о том, что между излучением и веществом много общего.

П. Блэкетт, Г. Оккиалини: «Очевидно, что существуют несколько различных процессов, дающих начало сложным путям ливней. В небольшом количестве случаев этот процесс совсем прост. Налетающая частица − обычно отрицательный или положительный электрон − выбивает из отдельного ядра, по всей вероятности, три или более частицы. Рис. 17 с большой наглядностью подтверждает, что налетающая частица выбрасывает из ядра меди 2 электрона (оба с E e ≈ 13·10 6 V) наряду с одним протоном. Извержение могло сопровождаться также и другими частицами, но они, по-видимому, имели слишком недостаточную длину пробега, чтобы преодолеть толщу пластинки и выйти из нее. Рис. 13 дает картину двух электронов (E e ≈ 10·10 6 и 13·10 6 V), вышибленных из ядра свинца книзу, и двух других, с большей энергией ( E e > 100·10 6 V), выбитых кверху. Возможно, что один из последних двух представляет собою налетающую частицу, взрывающую ядро, и тогда другой электрон − один из осколков, летящий при взрыве кверху. Возможно и то, что обе верхние частицы суть продукты разрушения ядра; тогда в этом случае саморазрушение придется приписать какому-то неионизующему агенту.
Однако оба эти случая − сравнительно простые при сопоставлении со сложной картиной обильных ливней. В этом наиболее типичном процессе наблюдается одновременное извержение некоторого числа частиц, вылетающих с огромной энергией. Эти частицы выбрасываются обыкновенно в направлениях, заключенных внутри довольно узкого конуса, но бывают случаи (рис. 12), когда этот конус, довольно широкий. Вполне естественно искать объяснение узкого конуса разлета частиц в том импульсе, который сообщается им в момент удара налетающей частицей, обладающей чрезвычайно большой энергией. Пока еще невозможно установить природу всех частиц, выброшенных из ядра, но, по-видимому, среди них преобладают отрицательные и положительные электроны; есть некоторые, правда, еще недостаточные указания, что в ряде случаев те и другие электроны выбиваются приблизительно в одинаковом количестве.
Возникновение этих частиц возбуждает огромный интерес; в частности, они, несомненно, часто зарождаются внутри материала с легким и средним атомным весом, поскольку излучающие центры обнаружены и в воздухе, и в стекле, и в алюминии, и в меди. Согласно самым последним представлениям о структуре ядра, в таких легких ядрах не должно быть свободных отрицательных электронов. А уже найдено, по крайней мере, положительных и отрицательных электронов, исходящих из отдельного точечного центра излучения в стекле, меди или свинце (рис. 12, 11 и 10) и, следовательно, по всей вероятности, из отдельного ядра.
Существует три возможных гипотезы, которые мы вправе сделать относительно появления этих частиц: они могли существовать в разрушенном ядре с самого начала, еще до акта соударения; они могли существовать в налетающей частице; наконец, они могли возникнуть в течение процесса соударения. За отсутствием каких-либо независимых доказательств самостоятельного существования частиц прежде сотрясения ядра разумно принять последнюю из этих трех гипотез. Затем, учитывая хорошо известные трудности, вырастающие при обращении с электронами внутри ядер как с независимыми механическими объектами, последняя гипотеза, быть может, и в этом смысле имеет большее преимущество. Тогда согласно этой гипотезе все ливни (вместе с обычным β-распадом) следует представлять себе как процесс возникновения частицы в прямом смысле этого слова.
Этот вопрос чрезвычайно близко связан с проблемой строения нейтрона. Согласно взгляду на нейтрон как на сложную частицу, отрицательные электроны в ливнях могут получиться при расщеплении каждого из нейтронов на отрицательный электрон и протон, но эта схема не дает объяснения возникновению положительных электронов. Кроме того, она приводит к тому, что нужно ожидать большего количества следов протонов на фотографиях, чем наблюдается в действительности».

П. Блэкетт, Г. Оккиалини: «Существование положительных электронов в этих ливнях немедленно вызывает естественный вопрос: почему же до сих пор они ускользали от наблюдения? Ясно, что они могут обладать только ограниченной продолжительностью жизни как свободные частицы, поскольку они не встречаются ни в одном веществе при нормальных условиях.
Вполне допустимо, что они могут входить в соединение с другими элементарными частицами и образовывать устойчивые ядра, переставая при этом быть свободными. Но кажется более приемлемым, что они исчезают при взаимодействии с отрицательным электроном, выбрасывая при этом 2 кванта или более.
Этот последний механизм дан непосредственно в дираковской теории электронов, Согласно этой теории, квантовые состояния в области отрицательной кинетической энергии, представлявшие прежде непреодолимое препятствие для физической интерпретации, почти все, за немногими исключениями, заполнены отрицательными электронами. Немногие незанятые состояния ведут себя подобно обыкновенным частицам с положительной кинетической энергией и положительным зарядом. Сам Дирак думал отождествить эти «дырки» с протонами, но от этого пришлось отказаться, когда было установлено, что у этих «дырок» должна быть такая же масса, как и у отрицательных электронов. Предстоит непосредственная и важная задача экспериментального определения массы положительного электрона точными измерениями его ионизации и
. Сейчас же можно только сказать, что отсутствие разницы между ионизацией следов у отрицательных и положительных электронов при одинаковом стало достоверностью, а это косвенно служит временным доказательством равенства их масс.
По теории Дирака, положительные электроны имеют только очень короткую среднюю продолжительность жизни, пока какой-либо отрицательный электрон сверху не соскочит с легкостью вниз, в незанятое состояние. Таким образом «дырка» заполнится, и произойдет исчезновение сразу обоих − и положительного и отрицательного − электронов одновременно; при этом излучится 2 кванта энергии.
Мы чувствуем себя обязанными перед проф. Дираком не только за весьма ценное и неоднократное обсуждение этих вопросов, но также и за позволение привести результаты его вычислений по определению действительной вероятности этого процесса «аннигиляции» (исчезновения) электронов. Размеры поперечного сечения электронов при аннигиляции (в единицах площади) суть:

и γ = (1 − v2/c2) -1/2 , а v − скорость положительного электрона».

В стабильных атомных ядрах существует определенное равновесное соотношение между числом протонов Z и числом нейтронов в ядре N

где A + Z + N. Если число протонов превышает это равновесное значение, то протон p в ядре может в результате β + -распада превратиться в нейтрон n, позитрон e + и электронное нейтрино ν e

p → n + e + + ν e .

Позитроны образуются при β + -распаде атомных ядер. Впервые позитроны образующиеся при β + -распаде наблюдали Ф. Жолио и И. Кюри .
Такой распад происходит только внутри атомного ядра. Свободный протон является стабильной частицей, т.к. его масса m(p) меньше суммы масс нейтрона m(n), позитрона m(e +) и нейтрино m(ν e). Аналогичная ситуация имеет место и в случае ядер, перегруженных нейтронами относительно равновесного значения. Нейтрон n внутри ядра распадается, превращаясь в протон p, электрон e - и электронное антинейтрино e

n → p + e - + e .

Однако в отличие от протона распад свободного нейтрона возможен, т.к. масса покоя нейтрона m(n) больше суммы масс протона m(p), электрона m(e -) и электронного антинейтрино m( e). Распады протонов и нейтронов в атомном ядре привели к появлению чрезвычайно глубокой концепции физики частиц – в результате распада появляются новые частицы, которых не было в начальном состоянии . Протон, электрон и электронное антинейтрино не существуют внутри нейтрона, они образуются при β-распаде нейтрона. Эта концепция впервые была развита Э. Ферми в созданной им теории β-распада.
Процессы β‑распада, аннигиляции и рождения пар заставили по-новому осмыслить, что же такое элементарная частица. Элементарная частица перестала быть неизменным «кирпичиком» в строении материи. Возникла новая чрезвычайно глубокая концепция взаимного превращения элементарных частиц. Оказалось, что элементарные частицы могут рождаться и исчезать, превращаясь в другие элементарные частицы.

Источники позитронов

Позитроны образуются при распаде β + -радиоактивных ядер, большинство из которых получаются искусственным путем или остались на Земле как продукты нуклеосинтеза в звездах.

22 Na − источник позитронов

В качестве источника позитронов широко используется изотоп 22 Na. Период полураспада изотопа 22 Na равен 2.6 года. В 90% случаев распад происходит в результате β + -распада

22 Na → 22 Ne + e + + ν e ,

с образованием стабильного изотопа 22 Ne (рис. 3.7).
В 10% случаев распад 22 Na происходит в результате е-захвата

22 Na + e - → 22 Ne + ν e .


Рис. 3.7. Радиоактивный источник позитронов 22 Na.

Практически 100% распадов происходит на первое возбужденное состояние 22 Ne с энергией E* = 1.27 МэВ, J P = 2 + . Распад в основное состояние 22 Ne J P = 0 + составляет 0.05%. Поэтому β + -распад 22 Na практически всегда сопровождается появлением γ-кванта с энергией 1.27 МэВ.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта