Главная » 3 Как собирать » Полные уроки — Гипермаркет знаний. Геометрическое место точек

Полные уроки — Гипермаркет знаний. Геометрическое место точек


Подписи к слайдам:

Тема урока:
«Геометрическое место точек».9 классУчитель Гордеева Н.М.
Скажи мне – и я забуду,Покажи мне – и я запомню,Вовлеки меня – и я пойму. (Древняя китайская мудрость)
Цель урока:
систематизировать и углубить знания по теме «Метод координат».
“Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия”. (Дьердье Пойа)
Задача:
найти геометрическое место точек, обладающих определенным свойством (совершить открытие).
Определение:
Геометрическим местом точек называется фигура, которая состоит из всех точек плоскости, обладающих определенным свойством.
Геометрическое место точек,
равноудаленных от данной точки, есть
окружность.
Геометрическое место точек,
равноудаленных от концов данного отрезка, есть
серединный перпендикуляр к этому отрезку.
Геометрическое место точек,
равноудаленных от сторон данного угла, есть
биссектриса этого угла.
Геометрическое место точек,
равноудаленных от двух параллельных прямых, есть
параллельная им прямая, проходящая через середину их общего перпендикуляра (на ней лежат центры окружностей, касающихся данных прямых).
Геометрическое место точек,
являющихся вершинами прямоугольных треугольников с данной гипотенузой, есть
окружность, построенная на гипотенузе как на диаметре (исключая концы гипотенузы).
Геометрическое место точек,
отношение расстояний от которых до двух данных точек – величина постоянная, есть
окружность
(которую называют окружностью Аполлония).
Задание 1
На рисунке AD=DB=2 см.Что представляет собой геометрическое место точек, принадлежащих данной прямой, которые удалены от точки D на расстояние: а) равное 2см; б) более 2см; в) не более 2см.
a
b
A
D
B
Решение:

A
D
B
a
b
A
D
B
a
b
A
D
B
a
b
Задание 2
По тому же рисунку определите, что представляет собой геометрическое место точек плоскости, которые удалены от точки D на расстояниеа) равное 2см; б) более 2см; в) не более 2см.
A
D
B
a
b
Решение:
а) Расстояние от D равно 2см:
A
D
B
a
b
Решение:
б) Расстояние от D более 2см:
A
D
B
a
b
Решение:
в) Расстояние от D не более 2см:
A
D
B
a
b
Задание 3
Используя метод координат, найдите пару чисел, удовлетворяющих условию
Задание 4
Используя метод координат, докажите, что система уравнений имеет единственное решение:
Задание 5
Определите ГМТ, удовлетворяющих уравнению: а)
Задание 5
Определите ГМТ, удовлетворяющих уравнению: б)
Задание 5
Определите ГМТ, удовлетворяющих уравнению: в)
Задание 5
Определите ГМТ, удовлетворяющих уравнению: г)
Задание 5
Определите ГМТ, удовлетворяющих уравнению: д)
Парабола как геометрическое место точек.
Парабола есть геометрическое место точек, равноудаленных от заданной точки и от заданной прямой.
Построение параболы.
Как разбить клумбу?
Геометрическое место точек,
сумма расстояний от которых до двух заданных точек F1, F2 есть величина постоянная; большая, чем F1F2.
План построения ГМТ.
Прикрепим концы нити с помощью кнопок к точкам F1 и F2. Карандашом натянем нить так, чтобы его острие касалось бумаги. Будем перемещать карандаш по бумаге так, чтобы нить оставалась натянутой. Вычерчиваем карандашом линию.
Построение ГМТ
Что будет происходить с эллипсом, если фокусы: а) приближаются друг к другу; б) удаляются друг от друга.
Найти геометрическое место точек, для которых сумма расстояний до двух заданных точек F1 и F2: а) меньше заданной величины 2а; б) больше заданной величины 2а.
Уравнение ГМТ
Определите ГМТ, удовлетворяющих уравнению:
Уравнение ГМТ
, тогда
- уравнение эллипса
Ответ: F1 , F2
Конические сечения
Конические сечения
Аполлоний Пергский (II-III вв. до н. э.) - древнегреческий математик. Важнейший труд - “Конические сечения”
Конические сечения
Их изучали еще древнегреческие геометры. Теория конических сечений была одной из вершин античной геометрии.Уравнения этих линий были выведены гораздо позднее, когда стал применяться метод координат.
Кривые второго порядка
y
0
x
Метод координат в соединении с алгеброй составляет раздел геометрии, который называется аналитической геометрией.
Эксцентриситет эллипса
характеризует степень его вытянутости.
Еще Иоганн Кеплер (1571 – 1630) – немецкий астроном обнаружил, что планеты Солнечной системы движутся вокруг Солнца не по окружностям, как думали раньше, а по эллипсам, причем Солнце находится в одном из фокусов этих эллипсов.
Орбиты движения небесных тел
ВенераНептунЗемляПлутонКомета Галлея
0,0068 0,0086 0,0167 0,253 0,967
Решали задачу о множестве точек, а это ГМТ имеет отношение к Вселенной, (а это была всего лишь только задача!).
Домашнее задание
Составить уравнение геометрического места точек, произведение расстояний от которых до двух данных точек F1(-c; 0), F2(c; 0) есть постоянная величина a2. Такое геометрическое место точек называется овалом Кассини.
Домашнее задание
Составить уравнение геометрического места точек, произведение расстояний от которых до двух данных точек F1(-а; 0), F2(а; 0) есть постоянная величина а2. Такое геометрическое место точек называется лемнискатой (см. рис.). (Уравнение лемнискаты сначала найти непосредственно, потом – рассматривая ее как частный вид овала Кассини).
Подведение итогов урока

Определение. Геометрическое место точек – фигура, которая состоит из всех точек на плоскости, обладающих определённым свойством.

Теорема. Геометрическое место точек, равноудалённых от двух данных точек, есть серединный перпендикуляр к отрезку, соединяющему эти точки, то есть прямая, перпендикулярная этому отрезку и проходящая через его середину.

Доказательство.

Пусть точка C равноудалена от A и B. Отметим точку M – середину отрезка AB. Треугольники ACM и BCM равны по трём сторонам. Углы AMC и BMC равны и дают в сумме развёрнутый угол. Значит, они оба равны 90°.
Мы доказали, что все точки, равноудалённые от двух данных точек, лежат на серединном перпендикуляре.

2) Пусть точка C лежит на серединном перпендикуляре к AB. Треугольники AMC и BMC равны двум катетам, значит, AC=BC.
Мы доказали, что все точки серединного перпендикуляра к отрезку равноудалены от его концов.

Таким образом, геометрическое место точек, равноудалённых от двух данных точек, и серединный перпендикуляр к отрезку, соединяющему эти точки, совпадают.

Теорема доказана.

A (0; 0), B (a; 0), C (x; y). AC=CB.

2) Круг (определение). Формула для вычисления площади круга (без вывода). Вывод формулы площади кругового сектора.

Определение. Круг – это множество точек плоскости, расположенных на расстоянии не более данного от данной точки.

БИЛЕТ 8

1)Треугольник (определение). Теорема о сумме углов треугольника, прямая Эйлера (без доказательства).

Определение. Треугольник – это фигура, состоящая из 3 точек, не лежащих на одной прямой, и 3 отрезков, попарно соединяющих их.

Теорема. Сумма углов треугольника равна 180°.

Доказательство.

Проведём через вершину B прямую a, параллельную стороне AC.
как накрест лежащие.
. Тогда .

Теорема доказана.

Теорема. Центр описанной окружности треугольника, его ортоцентр, центр тяжести, а также центр окружности девяти точек лежат на одной прямой, называемой прямой Эйлера.

Расстояния между двумя точками через координаты этих точек (рассмотреть все случаи).

Проведём a и b, .

Т.к. треугольник прямоугольный,

БИЛЕТ 9

Признаки равенства прямоугольных треугольников

Так как в прямоугольном треугольнике угол между двумя катетами прямой, а любые два прямых угла равны, то из первого признака равенства треугольников следует:

1) По двум катетам (из I первого признака)

2) По катету и острому углу (из II первого признака)

(так как по противолежащему углу однозначно определяется прилежащий)

3) По гипотенузе и острому углу

Доказательство.

В таких треугольниках два других острых угла также равны, поэтому треугольники равны по второму признаку равенства треугольников, т. е. по стороне (гипотенузе) и двум прилежащим к

ней углам.

Теорема доказана .

4) По гипотенузе и катету

Доказательство.

Рассмотрим треугольники ABC и A 1 B 1 C 1 , у которых углы C и C 1 - прямые, АВ=А 1 В 1 , ВС=В 1 С 1 .

Так как ∠C=∠C 1 , то треугольник ABC можно наложить на треугольник A 1 B 1 C 1 так, что вершина С совместится с вершиной C 1 , а стороны СА и СВ наложатся соответственно на лучи С 1 А 1 и С 1 В 1 . Поскольку СВ=С 1 В 1 , то вершина B совместится с вершиной В 1 .
Но тогда вершины А и А 1 также совместятся.

В самом деле, если предположить, что точка А совместится с некоторой другой точкой А 2 луча С 1 А 1 , то получим равнобедренный треугольник A 1 B 1 A 2 , в котором углы при основании А 1 А 2 не равны (∠А 2 - острый, a ∠А 1 тупой как смежный с острым углом B 1 A 1 C 1). Но это невозможно, поэтому вершины А и А 1 совместятся.

Следовательно, полностью совместятся треугольники ABC и A l B l C l , т. е. они равны.

Теорема доказана.

Окружность

Определение. Окружность – это геометрическое место точек, равноудалённых от данной.

Так как длина всей окружности равна 2πR, то длина дуги в 1° равна 2πR/360° = πR/180°.
Поэтому длина l выражается формулой:

БИЛЕТ 10

1) Признаки параллелограмма:

1. Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм.

Геометрическим местом точек (в дальнейшем ГМТ), называется фигура плоскости, состоящая из точек обладающих некоторым свойством, и не содержащая ни одной точки, не обладающей этим свойством.

Мы будем рассматривать только те ГМТ, которые можно построить с помощью циркуля и линейки.

Рассмотрим ГМТ на плоскости, обладающие простейшими и наиболее часто выражающимися свойствами:

1) ГМТ, отстоящих на данном расстоянии r от данной точки О, есть окружность с центром в точке О радиуса r.

2) ГМТ равноудаленных от двух данных точек А и В, есть прямая, перпендикулярная к отрезку АВ и проходящая через его середину.

3) ГМТ равноудаленных от двух данных пересекающихся прямых, есть пара взаимно перпендикулярных прямых, проходящих через точку пересечения и делящих углы между данными прямыми пополам.

4) ГМТ, отстоящих на одинаковом расстоянии h от прямой, есть две прямые, параллельные этой прямой и находящиеся по разные стороны от нее на данном расстоянии h.

5) Геометрическое место центров окружностей, касающихся данной прямой m в данной на ней точке М, есть перпендикуляр к АВ в точке М (кроме точки М).

6) Геометрическое место центров окружностей, касающихся данной окружности в данной на ней очке М, есть прямая, проходящая через точку М и центр данной окружности (кроме точек М и О).

7) ГМТ, из которых данный отрезок виден под данным углом, составляет две дуги окружностей, описанных на данном отрезке и вмещающих данный угол.

8) ГМТ, расстояния от которых до двух данных точек А и В находятся в отношении m: n, есть окружность (называемая окружностью Аполлония).

9) Геометрическое место середин хорд, проведенных из одной точки окружности, есть окружность, построенная на отрезке, соединяющем данную точку с центром данной окружности, как на диаметре.

10) Геометрическое место вершин треугольников равновеликих данному и имеющих общее основание, составляет две прямые, параллельные основанию и проходящие через вершину данного треугольника и ему симметричного относительно прямой, содержащей основание.

Приведем примеры отыскания ГМТ.

ПРИМЕР 2. Найти ГМТ, являющихся серединами хорд, проведенных из одной точки данной окружности (ГМТ № 9).

Решение . Пусть дана окружность с центром О и на этой окружности выбрана точка А из которой проводятся хорды. Покажем, что искомое ГМТ есть окружность, построенная на АО как на диаметре (кроме точки А) (рис. 3).

Пусть АВ - некоторая хорда и М - ее середина. Соединим М и О. Тогда МО ^ АВ (радиус, делящий хорду пополам, перпендикулярен этой хорде). Но, тогда ÐАМО = 90 0 . Значит М принадлежит окружности с диаметром АО (ГМТ № 7). Т.к. эта окружность проходит через точку О, то О принадлежит нашему ГМТ.


Обратно, пусть М принадлежит нашему ГМТ. Тогда, проведя через М хорду АВ и соединив М и О, получим, что ÐАМО = 90 0 , т.е. МО ^ АВ, а, значит, М - середина хорды АВ. Если же М совпадает с О, то О - середина АС.

Часто метод координат позволяет находить ГМТ.

ПРИМЕР 3. Найти ГМТ, расстояние от которых до двух данных точек А и В находятся в данном отношении m: n (m ≠ n).

Решение . Выберем прямоугольную систему координат так, чтобы точки А и В располагались на оси Ох симметрично относительно начала координат, а ось Оу проходила через середину АВ (рис.4). Положим АВ = 2a. Тогда точка А имеет координаты А (a, 0), точка В - координаты В (-a, 0). Пусть С принадлежит нашему ГМТ, координаты С(х, у) и CB/CA = m/n. Но Значит

(*)

Преобразуем наше равенство. Имеем

Цели урока:

  • Образовательная: показать новый метод решения задач на построение геометрического места точек; Научить применять его в решении задач.
  • Развивающая: развитие наглядно- образного мышления; познавательного интереса.
  • Воспитывающая: развитие умения планировать работу, искать рациональные пути ее выполнения, способности аргументировано отстаивать свое мнение, критически оценивать результат.


Задачи урока:

  • Изучения нового материала.
  • Проверить умение учащихся решать задачи.

План урока:

  1. Определения.
  2. Пример 1.
  3. Пример 2.
  4. Пример 3.
  5. Теоретическая часть.
  6. Общии понятия.


Введение.

Древнеегипетскую и вавилонскую культуру в области математики продолжали греки. Они не только усвоили весь опыт их геометрии, но и пошли гораздо дальше. Ученые древней Греции сумели привести в систему накопленные геометрические знания и, таким образом, заложить начала геометрии как дедуктивной науки.

Греческие купцы познакомились с восточной математикой, прокладывая торговые пути. Но люди Востока почти не занимались теорией, и греки быстро это обнаружили. Они задавались вопросами: почему в равнобедренном треугольнике два угла при основании равны; почему площадь треугольника равна половине площади прямоугольника при одинаковых основаниях и высотах?

К сожалению, не сохранилось первоисточников, описывающих ранний период развития греческой математики. Только благодаря восстановленным текстам четвертого столетия до нашей эры и трудам арабских ученых, которые были богаты переводами сочинений авторов античной Греции, мы располагаем изданиями Евклида, Архимеда, Аполлония и других великий людей. Но в этих произведениях уже представлена вполне развитая математическая наука.

Математика древней Греции прошла длительный и сложный путь развития, начиная с VI столетия до н.э. и по VI век. Историки науки выделяют три периода ее развития в соответствии с характером знаний:

  1. Накопление отдельных математических фактов и проблем (6 - 5B.B. до н.э.).
  2. Систематизация полученных знаний (4 - 3 в.в. до н.э.).
  3. Период вычислительной математики (3в. до н.э. - 6 в.).

Геометрическое место точек (ГМТ).

Определения.

Геометрическое место – термин, применявшийся в старой литературе по геометрии и до сих пор применяющийся в учебной литературе, для обозначения множества точек, удовлетворяющих некоторому условию , как правило, геометрического характера. Например: геометрическое место точек, равноудаленных от двух данных точек A и B – это серединный перпендикуляр к отрезку AB. Иногда говорят и о геометрическом месте прямых и других фигур.

Название связано с представлением о линии как о «месте», на котором располагаются точки.

В геометрии траектория некоторой точки, перемещающейся в соответствии с данной формулой или условием. Например, круг является геометрическим местом точки, перемещающейся на плоскости так, что расстояние от места ее нахождения до центра остается неизменным.

Геометрическое место точек (ГМТ) - это множество точек, в которое попадают все точки, удовлетворяющие определенному условию, и только они.

Геометрическое место точек (ГМТ) - фигура речи в математике, употребляемая для определения геометрической фигуры как множества точек, обладающих некоторым свойством.

Примеры.

  • Серединный перпендикуляр к отрезку есть геометрическое место точек, равноудалённых от концов отрезка.
  • Окружность есть геометрическое место точек, равноудалённых от данной точки, называемой центром окружности.
  • Парабола есть геометрическое место точек, равноудалённых от точки (называемой фокусом) и прямой (называемой директрисой).
Пример 1.

Срединный перпендикуляр любого отрезка есть геометрическое место точек (т.е. множество всех точек), равноудалённых от концов этого отрезка. Пусть PO перпендикулярно AB и AO = OB:

Тогда, расстояния от любой точки P, лежащей на срединном перпендикуляре PO, до концов A и B отрезка AB одинаковы и равны d .

Таким образом, каждая точка срединного перпендикуляра отрезка обладает следующим свойством: она равноудалена от концов отрезка.

Пример 2.

Биссектриса угла есть геометрическое место точек, равноудалённых от его сторон.

Пример 3.

Окружность есть геометрическое место точек (т.е. множество всех точек), равноудалённых от её центра (на рис. показана одна из этих точек – А).

Хорда , проходящая через центр круга (например, BC, рис 1), называется диаметром и обозначается d или D . Диаметр – это наибольшая хорда, равная двум радиусам (d = 2 r).

Касательная . Предположим, секущая PQ (рис.2) проходит через точки K и M окружности. Предположим также, что точка M движется вдоль окружности, приближаясь к точке K. Тогда секущая PQ будет менять своё положение, вращаясь вокруг точки K. По мере приближения точки M к точке K секущая PQ будет стремиться к некоторому предельному положению АВ. Прямая AB называется касательной к окружности в точке K. Точка K называется точкой касания. Касательная и окружность имеют только одну общую точку – точку касания.

Свойства касательной.

  1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания (AB перпендикулярно OK, рис.2).
  2. Из точки, лежащей вне круга, можно провести две касательные к одной и той же окружности; их отрезки равны АВ=АС (рис.3).

Сегмент – это часть круга, ограниченная дугой ACB и соответствующей хордой AB (рис.4). Длина перпендикуляра CD, проведенного из середины хорды AB до пересечения с дугой ACB, называется высотой сегмента.

Углы в круге.

Центральный угол – угол, образованный двумя радиусами (∠AOB, рис.5). Вписанный угол – угол, образованный двумя хордами AB и AC, проведенными из их одной общей точки (∠BAC, рис.4). Описанный угол – угол, образованный двумя касательными AB и AC, проведенными из одной общей точки (∠BAC, рис.3).

Соотношения между элементами круга.

Вписанный угол (∠ABC, рис.7) равен половине центрального угла, опирающегося на ту же дугу AmC (∠AOC, рис.7). Поэтому, все вписанные углы (рис.7), опирающиеся на одну и ту же дугу (AmC, рис.7), равны. А так как центральный угол содержит то же количество градусов, что и его дуга (AmC, рис.7), то любой вписанный угол измеряется половиной дуги, на которую он опирается (в нашем случае AmC).

Все вписанные углы, опирающиеся на полукруг (∠APB, ∠AQB, …, рис.8), прямые.

Угол (∠AOD, рис.9), образованный двумя хордами (AB и CD), измеряется полусуммой дуг, заключённых между его сторонами: (AnD + CmB) / 2 .

Угол (∠AOD, рис.10), образованный двумя секущими (AO и OD), измеряется полуразностью дуг, заключённых между его сторонами: (AnD – BmC) / 2.

Угол (∠DCB, рис.11), образованный касательной и хордой (AB и CD), измеряется половиной дуги, заключённой внутри него: CmD / 2.

Угол (∠BOC, рис.12), образованный касательной и секущей (CO и BO), измеряется полуразностью дуг, заключённых между его сторонами: (BmC – CnD) / 2 .

Описанный угол (∠AOC, рис.12), образованный двумя касательными (CO и AO), измеряется полуразностью дуг, заключенных между его сторонами: (ABC – CDA) / 2 .

Произведения отрезков хорд (AB и CD, рис.13 или рис.14), на которые они делятся точкой пересечения, равны: AO · BO = CO · DO.

Квадрат касательной равен произведению секущей на её внешнюю часть (рис.12): OA 2 = OB · OD. Это свойство можно рассматривать как частный случай рис.14.

Хорда (AB, рис.15), перпендикулярная диаметру (CD), O пополам: AO = OB.

Рис. 15

Интересный факт:

Поздравляем с Пи-раздником вас.

Выражаясь научным языком, число "Пи" - это отношение длины окружности к ее диаметру. Простая вроде бы вещь, но волнует умы математиков с глубокой древности. И продолжает волновать. До такой степени, что ученые - лет 20 назад - договорились отмечать праздник этого числа. И призвали присоединиться к торжествам всю прогрессивную общественность. Она присоединяется: ест круглые Пи-роги, вы-ПИ-вает, обязательно Пи-во и издает звуки Пи при встрече.

Фанаты будут соревноваться, вспоминая знаки числа "Пи". И постараются превзойти рекорд 24-летнего китайского студента Лю Чао, который назвал по памяти без ошибок 68890 знаков. На это у него ушло 24 часа и 4 минуты.

Отправление торжеств назначено на 14 марта - дату, которая в американском написании выглядит как 3.14 - то есть, первыми тремя цифрами числа "Пи".
По легенде, о числе "Пи" знали еще вавилонские жрецы. Использовали при строительстве Вавилонской башни. Но не смогли точно вычислить его значение и от этого не справились с проектом. Сам символ числа "Пи" впервые использовал в своих трудах в 1706 году математик Уильям Джон (William Jones). Но реально он прижился после 1737 года благодаря стараниям шведского математика Леонарда Эйлера (Leonhard Euler).

Отмечать праздник придумал американский физик Ларри Шо (Larry Shaw).
На вопрос, сколько знаков в числе "Пи" после запятой, точного ответа нет. Скорее всего, их бесконечное число. А главная особенность в том, что последовательность этих знаков не повторяется. Сегодня их известно 12411 триллионов. Обследовано 500 миллиардов. И повторений не найдено.

Как считают некоторые видные физики и математики, например Дэвид Бейли, Питер Борвин и Саймон Плофе (David Bailey, Peter Borewin, Simon Plouffe), их - повторений - не найти никому и никогда. Хоть испиши знаками всю Вселенную. Да хоть сколько Вселенных... И в этом ученые видят некую скрытую мистику. Полагают, что в числе "Пи" зашифрован бесконечный первородный хаос, ставший потом гармонией. Или какая-то загадочная информация.



Вопросы:

  1. Сформулируйте определение окружности и круга?
  2. С какими новыми понятиями вы познакомились?
  3. Что называется геометрическим местом точек?
  4. Какая разница между диаметром и радиусом?
  5. Как найти радиус окружности какая описана около треугольника?

Список использованных источников:

  1. Урок на тему "Наглядная геометрия"
  2. Савин А.П. Метод геометрических мест /Факультативный курс по математике: Учебное пособие для 7-9 классов средней школы. Сост. И.Л. Никольская. – М.: Просвещение, с. 74.
  3. Смирнова И.М., Смирнов В.А. Геометрия: Учебник для 7-9 классов общеобразовательных учреждений. – М.: Мнемозина, 2005, с. 84.
  4. Шарыгин И.Ф. Геометрия. 7-9 классы: Учебник для общеобразовательных учебных заведений. – М.: Дрофа, с. 76.
  5. Мазур К. И. «Решение основных конкурсных задач по математике сборника под редакцией М. И. Сканави»

Над уроком работали:

Самылина М.В.

Потурнак С.А.

Владимир ЛАГОВСКИЙ

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме , где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Вы не только повысите свой статус, как компетентного преподавателя, а и сделаете весомый вклад в развитие школы будущего. Гильдия Лидеров Образования открывает двери для специалистов высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.

Задачи с линиями 2-го порядка.
Как найти геометрическое место точек?

Данный практикум представляет собой логическое продолжение лекции о линиях второго порядка и её популярных представителях – эллипсе , гиперболе и параболе . Сегодня мы закрепим пройденный материал многочисленными задачами, и, кроме того, дополним теоретический багаж знаниями, которые я намеренно скрыл на первых занятиях, чтобы не перегружать «чайников» новой информацией. Признаюсь честно, ненавижу вымучивать первые абзацы своих статей (особенно, когда готов чёткий план урока), поэтому разольём кофе по чашкам, сядем в круг и перейдём к обсуждению вопросов по существу.

В самостоятельных и контрольных работах наиболее часто встречаются следующие задания:

Найти геометрическое место точек (или составить уравнение множества точек ), каждая из которых удовлетворяет определённым аналитическим условиям. Безусловно, данная формулировка является общей и не факт, что в итоге должна получиться обязательно линия, и обязательно второго порядка. Однако в контексте рассматриваемой темы эти магические слова практически всегда вызывают к жизни уравнение эллипса, окружности , гиперболы либо параболы .

Ответ : искомая линия представляет собой окружность с центром в точке радиуса . Каноническое уравнение: (либо в зависимости от способа приведения).

Аналогичный пример для самостоятельного решения:

Задача 2

Составить уравнение множества точек, для каждой из которых сумма квадратов расстояний от точек равна 20. Определить тип линии, выполнить чертёж и привести уравнение к каноническому виду. Указать координаты фокусов, записать уравнение асимптот, если они есть. Вычислить эксцентриситет кривой.

Краткое оформление и чертёж в конце урока.

Систематизируем порядок решения данной задачи:

На первом шаге необходимо рассмотреть точку с неизвестными координатами, которая принадлежит искомому множеству точек, и разобраться в условии задачи . Как правило, в нём говорится о расстояниях от точки «эм» до других точек и/или других линий, а также о соотношениях этих длин.

На втором шаге следует найти длины нужных отрезков и в соответствии с аналитическим условием задачи составить уравнение.

На третьем шаге осуществляем упрощение полученного уравнения. Сначала приводим его к общему виду, а затем к форме, которая близкА к канонической. В некоторых задачах сразу получается каноническое уравнение.

На четвёртом шаге – чертёж.

На пятом – приведение к каноническому виду.

На шестом – фокусы, асимптоты, эксцентриситет. Напоминаю, что находить их гораздо удобнее именно из канонической записи.

На практике чаще всего заданий меньше, так, в некоторых случаях не надо приводить уравнение к каноническому виду, а в самой компактной версии не требуется и чертёжа – достаточно лишь упростить уравнение и назвать линию. Я специально «нагружаю» условия задач, чтобы образцы решений годились «на все случаи жизни». Но, тем не менее, надрываться тоже не будем, и разогреемся парой новых коктейлей:

Задача 3

Составить уравнение множества точек, для каждой из которых квадрат расстояния до точки на 16 больше квадрата расстояния до оси ординат.

Решение : Пусть точка принадлежит искомому множеству. Тогда:

Примечание : строго говоря, в соответствии с формулировкой условия нужно рассмотреть (та же самая длина), но в этой и других задачах мы пренебрежём данной логической неточностью.

Чему равно расстояние от точки до оси ординат? Можно воспользоваться стандартной формулой расстояния от точки до прямой , но если немного подключить воображение, то легко понять, что расстояние от любой точки до оси равно модулю её «иксовой» координаты:

По условию на 16 больше , чем , следовательно, справедливо следующее равенство:

(либо )

Таким образом:

Раскручиваем гайки:

«Икс квадрат» сокращается, и, очевидно, уравнение нужно максимально приблизить к каноническому виду :


парабола с вершиной в точке , фокальным параметром .

Ответ : искомое множество точек представляет собой параболу

Если дополнительно требуется привести уравнение линии к каноническому виду , то в данном примере это осуществляется элементарно:

1) Приведём уравнение параболы к каноническому виду путём её параллельного переноса центром в начало координат:

2) Перейдём к новой прямоугольной системе координат с центром в точке , тогда уравнение параболы примет вид: .

Чертёж приводить не буду, поскольку параболу мы уже вертели, как хотели.

Задача 4

Составить уравнение множества точек, для каждой из которых расстояние до точки равно расстоянию до оси абсцисс. Выполнить чертёж. Привести уравнение к каноническому виду.

В образце решения последний пункт реализован обоими способами.

Разобранные задачи с окружностями (особенно часто), параболами встречаются и в школьной программе. Ну а на нашей тусовке 18+ становится всё жарче – снимайте джемперы и пиджаки:

Задача 5

Найти уравнение геометрического места точек, для каждой из которых отношение расстояния до точки к расстоянию до прямой постоянно и равно . Сделать чертеж. Привести уравнение линии к каноническому виду, найти фокусы, эксцентриситет, асимптоты и директрисы (если они существуют).

Решение : пусть точка принадлежит искомому множеству точек. В задаче говорится о расстоянии:
,

В результате:
эллипс с центром в начале координат, полуосями .

Обратите внимание, что такая формулировка однозначно определяет эллипс и добавлять что-либо излишне.

Изобразим на чертеже найденный эллипс, точку и прямую :


Геометрическая проверка тут затруднена, но с другой стороны и не сверхъестественна. Возьмём какую-нибудь точку эллипса, проще всего рассмотреть .
Для неё: .
По условию отношение должно равняться .
Проверяем:
, что и требовалось проверить.

На практике можно выбрать любую точку эллипса, измерить расстояния линейкой, разделить на с помощью калькулятора и удостовериться, что получилось примерно .

В данной задаче уравнение линии нарисовалось сразу в каноническом виде, что облегчает решение. Осталось разобраться с фокусами, эксцентриситетом, асимптотами и директрисами.

Очевидно, что у эллипса отсутствуют асимптоты.

Вычислим и запишем фокусы эллипса :

.

Первый фокус совпал с точкой .

Найдём эксцентриситет: . По ещё одному странному совпадению эксцентриситет оказался равен отношению .

…однако, совпадения ли это?

Директриса, как вы помните из материалов о параболе , – это прямая . Причём прямая с армией горячих поклонников. Сейчас изучал статистику запросов Яндекса – за месяц около 1000 человек искали поpnо с директрисой и примерно 600 любителей геометрии изъявили желание её тpа)(нyть =) Ну что же, шалуны, завидуйте, у эллипса две директрисы!

Канонически расположенный эллипс имеет две директрисы, которые задаются уравнениями , где «эпсилон» – эксцентриситет данного эллипса.

Для нашего героя :

Так и есть, первая директриса полностью совпала с прямой «дэ». Более того, в условии задачи фактически сформулирована следующая теорема аналитической геометрии:

Эллипс отношение


То есть, для любой точки эллипса отношение её расстояния от фокуса к расстоянию от неё же до ближайшей директрисы в точности равно эксцентриситету: .

Со вторым фокусом и второй директрисой аналогичная история, какую бы точку эллипса мы ни взяли – будет справедливо отношение:

Ответ : искомое геометрическое место точек представляет собой эллипс с фокусами и эксцентриситетом . Уравнения директрис: .

Похожий пример для самостоятельного решения:

Задача 6

Найти уравнение геометрического места точек, для каждой из которых отношение расстояния до точки к расстоянию до прямой постоянно и равно . Выполнить чертеж. Привести уравнение линии к каноническому виду, найти фокусы, эксцентриситет, асимптоты и директрисы, если они существуют.

В образце решения концовка реализована обоими способами, выбирайте версию, которая более уместна в вашем курсе высшей математики.

Наша вечеринка в самом разгаре, и вокруг происходит столько интересного, что, порой, и говорить об этом неловко =) Зажигаем дальше!

Задача 7

Составить уравнение линии, для каждой из которых разность расстояний до точек и по модулю равна 8. Привести уравнение к каноническому виду и выполнить чертёж. Найти асимптоты, фокусы, эксцентриситет и директрисы, если они существуют.

Решение : пусть точка принадлежит искомой линии. Тогда:

По условию:

Кстати, ничего не напоминает? Внимательные читатели уже определили линию;-)

Корни? Модуль ? Застрелитесь! Ерунда!

Сначала нужно избавиться от радикалов. Поскольку возводить в квадрат сразу – идея плохая (экспериментаторы могут попробовать), разведём корни по углам ринга:

Ну вот, теперь совсем другое дело:

Успехи есть, но один корень остался. Оставим нашего зловреда в одиночестве и максимально упростим левую часть уравнения:

Возводим в квадрат обе части ещё раз, заметьте, как попутно и совершенно спокойно завершается расправа с модулем:

Перебросим всё направо и «развернём» уравнение:

Получено уравнение линии 2-го порядка в общем виде . Выделяем полный квадрат при переменной «игрек», для этого вынесем «минус девять» за скобку:

Хорошо осмыслите выполненное действие – фишка распространённая.

Собираем квадрат разности и допиливаем константы:

Вот тебе и раз. По всем признакам мыльная опера должна была закончиться гиперболой , но у нас «лишний» минус. Выполним проверку и раскроем скобки (что желательно сделать в любом случае)… нет, всё верно – получается исходное общее уравнение .

Изменим знаки у обеих частей:

Уже ближе к правде, но «минус» оказался «не на своём месте». В главе о повороте и параллельном переносе гиперболы я рассказывал, что это признак поворота данной кривой на 90 градусов относительно своего канонического положения.

Но давайте сначала доведём до ума уравнение. Делим обе части на 144:

И завершающий тонкий тюнинг:

– вот она, долгожданная гипербола, удовлетворяющая условию задачи, ...которое фактически представляет собой определение гиперболы =)

По условию требуется сначала привести уравнение к каноническому виду, и только потом выполнить чертёж. Дабы не превысить точку кипения серого вещества, применим упрощенную схему. Однако случай всё равно не самый простой. Центр симметрии нашей подопечной находится в точке , и, кроме того, она повёрнута на 90 градусов вокруг этой точки

На первом шаге осуществим параллельный перенос гиперболы ТАК – чтобы её центр оказался в начале координат. В результате получится уравнение: .

Вторым действием повернём гиперболу вокруг начала координат на 90 градусов, при этом меняем местами значения полуосей и перебрасываем «минус» к переменной «игрек» :

В принципе, операции перестановочны, т.е. сначала можно было повернуть вокруг точки , а потом перенести центр в начало координат.

Не забывая про асимптоты , выполним чертёж:


Еще раз: как расположена исходная гипербола ? Она получена поворотом канонической гиперболы на 90 градусов вокруг начала координат и дальнейшим переносом вдоль оси на 5 единиц вверх центром симметрии в точку .

Но работать гораздо удобнее с приведённым уравнением. Найдём фокусы:

В случае перечисленных выше преобразований они как раз и «переезжают» в точки условия задачи.

Вычислим эксцентриситет:

У гиперболы, точно так же, как у эллипса, две директрисы. В каноническом случае они расположены между ветвями гиперболы и задаются такими же уравнениями , где «эпсилон» эксцентриситет данной гиперболы.

В рассматриваемом примере:

Более того, для гиперболы справедлива абсолютно такая же теорема:

Гипербола – есть множество всех точек плоскости, таких, что отношение расстояния до каждой точки от фокуса к расстоянию от неё до соответствующей (ближайшей) директрисы равно эксцентриситету:


То есть, для любой точки гиперболы отношение её расстояния от фокуса к расстоянию от неё же до ближайшей директрисы равно эксцентриситету: .

Для пары и любой точки гиперболы (ради разнообразия я выбрал демонстрационную точку дальней ветви) отношение такое же:

К слову, у параболы с её единственным фокусом и единственной директрисой по определению эти длины относятся «один к одному», поэтому эксцентриситет любой параболы и равен единице.

Ответ : искомая линия представляет собой гиперболу с центром симметрии в точке и повёрнутую на 90 градусов относительно своего канонического положения. Канонический вид уравнения: , фокусы: , эксцентриситет: , асимптоты: , директрисы: .

Очень хотелось упростить пример, но он взят из конкретной работы, поэтому пришлось с упорным занудством разобрать все-все-все тонкости и технические приёмы. Налью всем по стакану молока за вредность и подкину задание для самостоятельного решения:

Задача 8

Найти уравнение геометрического места точек, для каждой из которых отношение расстояния до точки к расстоянию до прямой постоянно и равно . Сделать точный чертеж.

Подумайте, о какой это точке и о какой прямой шепчет условие;-)

Героически разбираемся с решением и чертежом, после чего с чистой душой и лёгким сердцем засыпаем на раскладушках возле мониторов, чтобы проснуться к следующиму занятию со свежими головами и розовыми лицами.

Спокойной ночи!

Решения и ответы:

Пример 2: Решение : Пусть точка принадлежит искомому множеству точек. Тогда:


По условию:

Или:

Упростим уравнение:

Выделим полные квадраты:

– окружность с центром в точке радиуса
Выполним чертеж:

Приведём уравнение к каноническому виду.
1) Способ первый . Осуществим параллельный перенос окружности центром в начало координат: .
2) Способ второй . С помощью параллельного переноса перейдём от исходной к новой прямоугольной системе координат с началом в точке . Таким образом, уравнение окружности запишется в каноническом виде: .
Ответ : уравнение искомого множества точек задаёт окружность с центром в точке радиуса . Канонический вид уравнения: (или в зависимости от способа). Фокусы окружности совпадают и находятся в её центре. У окружности отсутствуют асимптоты. Эксцентриситет любой окружности равен нулю.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта