itthon » Ehetetlen gomba » Ha a diszkrimináns negatív szám. Másodfokú egyenletek

Ha a diszkrimináns negatív szám. Másodfokú egyenletek

A trigonometria tanulmányozását a derékszögű háromszöggel kezdjük. Határozzuk meg, mi a szinusz és a koszinusz, valamint az érintő és a kotangens hegyesszög. Ez a trigonometria alapjai.

Emlékezzünk erre derékszög egy 90 fokkal egyenlő szög. Más szóval, fél elfordított szög.

Éles sarok- kevesebb, mint 90 fok.

Tompaszög- 90 foknál nagyobb. Egy ilyen szöghöz képest a „tompa” nem sértés, hanem matematikai kifejezés :-)

Rajzoljunk egy derékszögű háromszöget. A derékszöget általában jelöli. Felhívjuk figyelmét, hogy a sarokkal szemközti oldalt ugyanaz a betű jelzi, csak kicsi. Így az A szemközti szöget jelöljük.

A szöget a megfelelő jelzi görög levél.

Átfogó derékszögű háromszögnek a derékszöggel ellentétes oldala.

Lábak- hegyesszögekkel ellentétes oldalak.

A szöggel szemben fekvő lábat ún szemben(szöghez viszonyítva). A másik láb, amely a szög egyik oldalán fekszik, ún szomszédos.

Sinus A derékszögű háromszög hegyesszöge a szemközti oldal és a hipotenusz aránya:

Koszinusz hegyesszög derékszögű háromszögben - arány szomszédos láb a hipotenuszhoz:

Tangens hegyesszög egy derékszögű háromszögben - az ellenkező oldal és a szomszédos oldal aránya:

Egy másik (ekvivalens) definíció: egy hegyesszög érintője a szög szinuszának és koszinuszának aránya:

Kotangens hegyesszög egy derékszögű háromszögben - a szomszédos oldal és az ellenkező oldal aránya (vagy, ami megegyezik, a koszinusz és a szinusz aránya):

Jegyezze meg az alábbiakban a szinusz, koszinusz, érintő és kotangens alapvető összefüggéseit. Hasznosak lesznek a problémák megoldása során.

Bizonyítsunk be néhányat közülük.

Rendben, megadtuk a definíciókat és felírtuk a képleteket. De miért van szükségünk még mindig szinuszra, koszinuszra, érintőre és kotangensre?

Tudjuk bármely háromszög szögeinek összege egyenlő.

Ismerjük a közti kapcsolatot a felek derékszögű háromszög. Ez a Pitagorasz-tétel: .

Kiderült, hogy egy háromszög két szögének ismeretében megtalálhatja a harmadikat. Egy derékszögű háromszög két oldalának ismeretében megtalálhatja a harmadikat. Ez azt jelenti, hogy a szögeknek megvan a saját arányuk, és az oldalaknak megvan a sajátjuk. De mit kell tennie, ha egy derékszögű háromszögben ismeri az egyik szöget (a derékszög kivételével) és az egyik oldalt, de meg kell találnia a többi oldalt?

Ezzel találkoztak az emberek a múltban, amikor térképeket készítettek a területről és a csillagos égboltról. Végül is nem mindig lehet közvetlenül megmérni a háromszög minden oldalát.

Szinusz, koszinusz és érintő – más néven trigonometrikus szögfüggvények- közötti kapcsolatokat adni a felekÉs sarkok háromszög. A szög ismeretében mindent megtalálhat trigonometrikus függvények speciális táblázatok szerint. És a háromszög és az egyik oldal szögeinek szinuszainak, koszinuszainak és érintőinek ismeretében megtalálhatja a többit.

Rajzolunk egy táblázatot is a szinusz, koszinusz, tangens és kotangens értékeiről a „jó” szögekhez tól-ig.

Kérjük, vegye figyelembe a két piros kötőjelet a táblázatban. Megfelelő szögértékeknél az érintő és a kotangens nem létezik.

Nézzünk meg néhány trigonometriai problémát a FIPI Feladatbankból.

1. Egy háromszögben a szög , . Megtalálja .

A probléma négy másodperc alatt megoldódik.

Mert a , .

2. Egy háromszögben a szög , , . Megtalálja .

Keressük meg a Pitagorasz-tétel segítségével.

A probléma megoldódott.

A problémákban gyakran vannak háromszögek szögekkel és vagy szögekkel és. Emlékezz fejből az alapvető arányokra!

Egy olyan háromszögnél, amelynek szögei és az at szöggel ellentétes szár egyenlő a hypotenus fele.

Egy háromszög szögekkel és egyenlő szárú. Ebben a hypotenusa szor nagyobb, mint a láb.

Megnéztük a megoldandó problémákat derékszögű háromszögek- vagyis megtalálni ismeretlen felek vagy sarkok. De ez még nem minden! BAN BEN Egységes államvizsga lehetőségek a matematikában sok olyan probléma van, ahol megjelenik egy háromszög külső szögének szinusza, koszinusza, érintője vagy kotangense. Erről bővebben a következő cikkben.

Például a \(3x^2+2x-7\) trinom esetén a diszkriminans egyenlő lesz: \(2^2-4\cdot3\cdot(-7)=4+84=88\). A \(x^2-5x+11\) trinom esetén pedig egyenlő lesz \((-5)^2-4\cdot1\cdot11=25-44=-19\).

A diszkriminánst \(D\) betűvel jelöljük, és gyakran használják a megoldásban. Ezenkívül a diszkrimináns értékéből megtudhatja, hogyan néz ki a grafikon hozzávetőlegesen (lásd alább).

Az egyenlet diszkriminánsa és gyökerei

A diszkrimináns érték a másodfokú egyenletek számát mutatja:
- ha \(D\) pozitív, az egyenletnek két gyöke lesz;
- ha \(D\) egyenlő nullával – csak egy gyök van;
- ha \(D\) negatív, akkor nincsenek gyökök.

Ezt nem kell tanítani, nem nehéz ilyen következtetésre jutni, pusztán annak tudatában, hogy a diszkriminánsból (vagyis \(\sqrt(D)\)) benne van az egyenlet gyökeinek kiszámítására szolgáló képletben : \(x_(1)=\)\(\ frac(-b+\sqrt(D))(2a)\) és \(x_(2)=\)\(\frac(-b-\sqrt(D) ))(2a)\) Nézzük meg mindegyik esetet részletesebben.

Ha a diszkrimináns pozitív

Ebben az esetben a gyökere néhány pozitív szám, ami azt jelenti, hogy \(x_(1)\) és \(x_(2)\) eltérő jelentésű lesz, mivel az első képletben hozzáadódik a \(\sqrt(D)\), a másodikban pedig kivonjuk. És két különböző gyökerünk van.

Példa : Keresse meg az \(x^2+2x-3=0\) egyenlet gyökereit
Megoldás :

Válasz : \(x_(1)=1\); \(x_(2)=-3\)

Ha a diszkrimináns nulla

És hány gyökér lesz, ha a diszkrimináns egyenlő nullával? Inkább okoskodjunk.

A gyökérképletek így néznek ki: \(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) és \(x_(2)=\)\(\frac(-) b- \sqrt(D))(2a)\) . És ha a diszkrimináns nulla, akkor a gyöke is nulla. Aztán kiderül:

\(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) \(=\)\(\frac(-b+\sqrt(0))(2a)\) \(=\)\(\frac(-b+0)(2a)\) \(=\)\(\frac(-b)(2a)\)

\(x_(2)=\)\(\frac(-b-\sqrt(D))(2a)\) \(=\)\(\frac(-b-\sqrt(0))(2a) \) \(=\)\(\frac(-b-0)(2a)\) \(=\)\(\frac(-b)(2a)\)

Vagyis az egyenlet gyökeinek értékei ugyanazok lesznek, mert a nulla összeadása vagy kivonása nem változtat semmit.

Példa : Keresse meg a \(x^2-4x+4=0\) egyenlet gyökereit
Megoldás :

\(x^2-4x+4=0\)

Kiírjuk az együtthatókat:

\(a=1;\) \(b=-4;\) \(c=4;\)

A diszkriminánst a következő képlettel számítjuk ki: \(D=b^2-4ac\)

\(D=(-4)^2-4\cdot1\cdot4=\)
\(=16-16=0\)

Az egyenlet gyökereinek megtalálása

\(x_(1)=\) \(\frac(-(-4)+\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)

\(x_(2)=\) \(\frac(-(-4)-\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)


Van kettő azonos gyökerek, ezért nincs értelme külön írni őket - egyben írjuk őket.

Válasz : \(x=2\)

Remélem, miután tanultam ez a cikk, megtanulod megtalálni a teljes másodfokú egyenlet gyökereit.

A diszkrimináns segítségével csak a teljes másodfokú egyenletek oldhatók meg a hiányos másodfokú egyenletek megoldására, más módszereket használnak, amelyeket a „Nem teljes másodfokú egyenletek megoldása” című cikkben talál.

Milyen másodfokú egyenleteket nevezünk teljesnek? Ez ax 2 + b x + c = 0 alakú egyenletek, ahol az a, b és c együtthatók nem egyenlők nullával. Tehát egy teljes másodfokú egyenlet megoldásához ki kell számítanunk a D diszkriminánst.

D = b 2 – 4ac.

A diszkrimináns értékétől függően írjuk le a választ.

Ha a diszkrimináns negatív szám(D< 0),то корней нет.

Ha a diszkrimináns nulla, akkor x = (-b)/2a. Ha a diszkrimináns pozitív szám (D > 0),

akkor x 1 = (-b - √D)/2a, és x 2 = (-b + √D)/2a.

Például. Oldja meg az egyenletet x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Válasz: 2.

Oldja meg a 2. egyenletet x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Válasz: nincs gyökere.

Oldja meg a 2. egyenletet x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2) = (-5 - 9)/4 = - 3,5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Válasz: – 3,5; 1.

Tehát képzeljük el a teljes másodfokú egyenletek megoldását az 1. ábra diagramja segítségével.

Ezekkel a képletekkel bármilyen teljes másodfokú egyenletet megoldhat. Csak arra kell vigyázni az egyenletet polinomként írták fel standard nézet

A x 2 + bx + c, különben hibázhat. Például az x + 3 + 2x 2 = 0 egyenlet felírásakor tévesen úgy dönthet, hogy

a = 1, b = 3 és c = 2. Ekkor

D = 3 2 – 4 1 2 = 1 és akkor az egyenletnek két gyöke van. És ez nem igaz. (Lásd a fenti 2. példa megoldását).

Ezért, ha az egyenlet nem szabványos polinomként van felírva, akkor először a teljes másodfokú egyenletet kell felírni a standard alakú polinomként (a monomi a legmagasabb mutató fokok, vagyis A x 2 , majd kevesebbel bx, és akkor ingyenes tag Val vel.

A redukált másodfokú egyenlet és a második tagban páros együtthatójú másodfokú egyenlet megoldásakor más képleteket is használhat. Ismerkedjünk meg ezekkel a képletekkel. Ha egy teljes másodfokú egyenletben a második tag páros együtthatós (b = 2k), akkor az egyenletet a 2. ábra diagramján látható képletekkel oldhatja meg.

A teljes másodfokú egyenletet redukáltnak nevezzük, ha az együttható at x 2 egyenlő eggyelés az egyenlet alakját veszi fel x 2 + px + q = 0. Egy ilyen egyenlet megadható a megoldásra, vagy megkapható úgy, hogy az egyenlet összes együtthatóját elosztjuk az együtthatóval A, állva x 2 .

A 3. ábra a redukált négyzet megoldásának diagramját mutatja
egyenletek. Nézzünk egy példát az ebben a cikkben tárgyalt képletek alkalmazására.

Példa. Oldja meg az egyenletet

3x 2 + 6x – 6 = 0.

Oldjuk meg ezt az egyenletet az 1. ábra diagramján látható képletekkel.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(363) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = -1 - √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Válasz: –1 – √3; –1 + √3

Észreveheti, hogy az x együtthatója ebben az egyenletben páros szám, azaz b = 6 vagy b = 2k, ahol k = 3. Ezután próbáljuk meg megoldani az egyenletet az ábra diagramjában megadott képletekkel D 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 – 3√3)/3 = (3 (-1 – √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Válasz: –1 – √3; –1 + √3. Ha észrevesszük, hogy ebben a másodfokú egyenletben az összes együttható osztható 3-mal, és végrehajtva az osztást, megkapjuk az x 2 + 2x – 2 = 0 redukált másodfokú egyenletet. Oldjuk meg ezt az egyenletet a redukált másodfokú képletekkel
egyenletek 3. ábra.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Válasz: –1 – √3; –1 + √3.

Amint látjuk, ennek az egyenletnek a megoldása során különféle képletek ugyanazt a választ kaptuk. Ezért, ha alaposan elsajátította az 1. ábra diagramján látható képleteket, mindig meg tud majd oldani bármilyen teljes másodfokú egyenletet.

blog.site, az anyag teljes vagy részleges másolásakor az eredeti forrásra mutató hivatkozás szükséges.

Másodfokú egyenletek 8. osztályban tanulják, szóval nincs itt semmi bonyolult. Ezek megoldásának képessége feltétlenül szükséges.

A másodfokú egyenlet ax 2 + bx + c = 0 alakú egyenlet, ahol az a, b és c együtthatók tetszőleges számok, és a ≠ 0.

Tanulás előtt specifikus módszerek megoldásokhoz, vegye figyelembe, hogy minden másodfokú egyenlet három osztályba osztható:

  1. Nincsenek gyökerei;
  2. Pontosan egy gyökér legyen;
  3. Két különböző gyökerük van.

Ez fontos különbség másodfokú egyenletek a lineáris egyenletekből, ahol a gyök mindig létezik és egyedi. Hogyan határozható meg, hogy egy egyenletnek hány gyöke van? Erre van csodálatos dologdiszkriminatív.

Megkülönböztető

Legyen adott az ax 2 + bx + c = 0 másodfokú egyenlet. Ekkor a diszkrimináns egyszerűen a D = b 2 − 4ac szám.

Ezt a képletet fejből kell tudni. Hogy honnan származik, az most nem fontos. Még egy fontos dolog: a diszkrimináns előjele alapján meg lehet határozni, hogy hány gyöke van egy másodfokú egyenletnek. Ugyanis:

  1. Ha D< 0, корней нет;
  2. Ha D = 0, akkor pontosan egy gyök van;
  3. Ha D > 0, akkor két gyök lesz.

Kérjük, vegye figyelembe: a diszkrimináns a gyökerek számát jelzi, és egyáltalán nem a jeleiket, ahogyan azt valamilyen okból sokan hiszik. Vessen egy pillantást a példákra, és mindent meg fog érteni:

Feladat. Hány gyöke van a másodfokú egyenleteknek:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Írjuk ki az első egyenlet együtthatóit, és keressük meg a diszkriminánst:
a = 1, b = -8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Tehát a diszkrimináns pozitív, tehát az egyenletnek két különböző gyökere van. Hasonló módon elemezzük a második egyenletet:
a = 5; b = 3; c=7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

A diszkrimináns negatív, nincsenek gyökerei. Az utolsó hátralévő egyenlet:
a = 1; b = -6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

A diszkrimináns nulla - a gyökér egy lesz.

Kérjük, vegye figyelembe, hogy minden egyenlethez együtthatókat írtunk le. Igen, hosszú, igen, fárasztó, de nem fogod összekeverni az esélyeket és hülye hibákat elkövetni. Válassz magadnak: sebesség vagy minőség.

Mellesleg, ha rájön a dolog, egy idő után nem kell leírnia az összes együtthatót. Ilyen műveleteket hajt végre a fejében. A legtöbb ember ezt valahol 50-70 megoldott egyenlet után kezdi el – általában nem annyira.

Másodfokú egyenlet gyökerei

Most térjünk át magára a megoldásra. Ha a diszkrimináns D > 0, akkor a gyökök a következő képletekkel kereshetők:

Másodfokú egyenlet gyökeinek alapképlete

Ha D = 0, bármelyik képletet használhatja - ugyanazt a számot kapja, amely lesz a válasz. Végül, ha D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Első egyenlet:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = -2; c = -3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ az egyenletnek két gyöke van. Keressük meg őket:

Második egyenlet:
15 − 2x − x 2 = 0 ⇒ a = −1; b = -2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ az egyenletnek ismét két gyöke van. Keressük meg őket

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(igazítás)\]

Végül a harmadik egyenlet:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ az egyenletnek egy gyöke van. Bármilyen képlet használható. Például az első:

Amint a példákból látható, minden nagyon egyszerű. Ha ismeri a képleteket és tud számolni, akkor nem lesz probléma. Leggyakrabban akkor fordulnak elő hibák, amikor negatív együtthatókat helyettesítenek a képletben. Itt is segít a fent leírt technika: nézze meg a képletet szó szerint, írjon le minden lépést - és hamarosan megszabadul a hibáktól.

Hiányos másodfokú egyenletek

Előfordul, hogy egy másodfokú egyenlet kissé eltér a definícióban megadottól. Például:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Könnyen észrevehető, hogy ezekből az egyenletekből hiányzik az egyik kifejezés. Az ilyen másodfokú egyenletek még könnyebben megoldhatók, mint a szabványosak: még a diszkrimináns kiszámítását sem igénylik. Tehát vezessünk be egy új koncepciót:

Az ax 2 + bx + c = 0 egyenletet nem teljes másodfokú egyenletnek nevezzük, ha b = 0 vagy c = 0, azaz. az x változó vagy a szabad elem együtthatója nullával egyenlő.

Természetesen nagyon nehéz eset lehetséges, ha mindkét együttható nulla: b = c = 0. Ebben az esetben az egyenlet ax 2 = 0 alakot ölt. Nyilvánvalóan egy ilyen egyenletnek egyetlen gyöke van: x = 0.

Nézzük a fennmaradó eseteket. Legyen b = 0, akkor egy ax 2 + c = 0 alakú nem teljes másodfokú egyenletet kapunk. Alakítsuk át egy kicsit:

Az aritmetika óta Négyzetgyök csak től létezik nem negatív szám, az utolsó egyenlőségnek csak akkor van értelme, ha (−c /a) ≥ 0. Következtetés:

  1. Ha egy ax 2 + c = 0 alakú nem teljes másodfokú egyenletben teljesül a (−c /a) ≥ 0 egyenlőtlenség, akkor két gyöke lesz. A képlet fent van megadva;
  2. Ha (-c /a)< 0, корней нет.

Amint látja, a diszkriminánsra nem volt szükség - a hiányos másodfokú egyenletekben nincs összetett számítások. Valójában nem is szükséges megjegyezni az egyenlőtlenséget (−c /a) ≥ 0. Elég, ha kifejezzük az x 2 értéket, és megnézzük, mi van az egyenlőségjel másik oldalán. Ha van pozitív szám, akkor két gyöke lesz. Ha negatív, akkor egyáltalán nem lesznek gyökerei.

Most nézzük meg az ax 2 + bx = 0 alakú egyenleteket, amelyekben a szabad elem egyenlő nullával. Itt minden egyszerű: mindig két gyökér lesz. Elég a polinomot faktorozni:

Eltávolítás közös szorzó zárójelből

A szorzat akkor nulla, ha legalább az egyik tényező nulla. Innen erednek a gyökerek. Végezetül nézzünk meg néhány ilyen egyenletet:

Feladat. Másodfokú egyenletek megoldása:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Nincsenek gyökerek, mert négyzet nem lehet egyenlő negatív számmal.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = -1,5.



Előző cikk: Következő cikk:

© 2015 .
Az oldalról | Kapcsolatok
| Oldaltérkép