Главная » Несъедобные грибы » Ppt модели строения газов жидкостей твердых тел. Строение газообразных, жидких и твердых тел — Гипермаркет знаний

Ppt модели строения газов жидкостей твердых тел. Строение газообразных, жидких и твердых тел — Гипермаркет знаний

Урок №2/5 2

Тема №26: «Модель строения жидкости. Насыщенные и ненасыщенные пары. Влажность воздуха.»

1 Модель строения жидкости

Жи́дкость — одно из агрегатных состояний вещества . Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Рис.1

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом : газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое.

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур , ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло ), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления .

Все жидкости принято делить на чистые жидкости и смеси . Некоторые смеси жидкостей имеют большое значение для жизни: кровь , морская вода и др. Жидкости могут выполнять функцию растворителей .

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу , то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести : достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа , между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля , справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C.

Кроме того, жидкости (как и газы) характеризуются вязкостью . Она определяется как способность оказывать сопротивление перемещению одной из частей относительно другой — то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением . Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую — энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится. В паре, подобно газу, можно почти не учитывать сил сцепления и рассматривать движение как свободный полет молекул и соударение их друг с другом и с окружающими телами (стенками и жидкостью, покрывающей дно сосуда). В жидкости молекулы, как и в твердом теле, сильно взаимодействуют, удерживая друг друга. Однако, в то время как в твердом теле каждая молекула сохраняет неограниченно долго определенное положение равновесия внутри тела и движение ее сводится к колебанию около этого равновесного положения, характер движения в жидкости иной. Молекулы жидкости движутся гораздо свободнее, чем молекулы твердого тела, хотя и не так свободно, как молекулы газа. Каждая молекула в жидкости в течение некоторого времени движется то туда, то сюда, не удаляясь, однако, от своих соседей. Это движение напоминает колебание молекулы твердого тела около положения равновесия. Однако время от времени молекула жидкости вырывается из своего окружения и переходит в другое место, попадая в новое окружение, где опять в течение некоторого времени совершает движение, подобное колебанию.

Таким образом, движение молекул жидкости представляет собой нечто вроде смеси движений в твердом теле и в газе: «колебательное» движение на одном месте сменяется «свободным» переходом из одного места в другое. В соответствии с этим строение жидкости представляет что-то среднее между строением твердого тела и строением газа. Чем выше температура, т. е. чем больше кинетическая энергия молекул жидкости, тем большую роль играет «свободное» движение: тем короче промежутки «колебательного» состояния молекулы и чаще «свободные» переходы, т. е. тем больше жидкость уподобляется газу. При достаточно высокой температуре, характерной для каждой жидкости (так называемой критической температуре), свойства жидкости не отличаются от свойств сильно сжатого газа.

2 Насыщенные и ненасыщенные пары и их свойства

Над свободной поверхностью жидкости всегда имеются пары этой жидкости. Если сосуд с жидкостью не закрыт, то концентрация частиц пара при постоянной температуре может изменяться в широких пределах в сторону уменьшения и в сторону увеличения.

Процесс испарения в замкнутое пространство (закрытый сосуд с жидкостью) может при данной температуре происходить только до определенного предела . Это объясняется тем, что одновременно с испарением жидкости происходит конденсация пара. Сначала число молекул, вылетающих из жидкости за 1 с, больше числа молекул, возвращающихся обратно, и плотность, а значит, и давление пара растет. Это приводит к увеличению скорости конденсации. Через некоторое время наступает динамическое равновесие, при котором плотность пара над жидкостью становится постоянной.

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром. Пар, который не находится в состоянии динамического равновесия со своей жидкостью, называется ненасыщенным.

Опыт показывает, что ненасыщенные пары подчиняются всем газовым законам , и тем точнее, чем дальше они от насыщения Для насыщенных паров характерны следующие свойства:

  1. плотность и давление насыщенного пара при данной температуре — это максимальные плотность и давление, которые может иметь пар при данной температуре;
  2. плотность и давление насыщенного пара зависят от рода вещества. Чем меньше удельная теплота парообразования жидкости, тем быстрее она испаряется и тем больше давление и плотность ее паров;
  3. давление и плотность насыщенного пара однозначно определяются его температурой (не зависят от того, каким образом пар достиг этой температуры: при нагревании или при охлаждении);
  4. давление и плотность пара быстро возрастают с увеличением температуры (рис. 1, а, б).

Опыт показывает, что при нагревании жидкости уровень жидкости в закрытом сосуде понижается. Следовательно, масса и плотность пара возрастают. Более сильное увеличение давления насыщенного пара по сравнению с идеальным газом (закон Гей-Люссака не применим к насыщенному пару) объясняется тем, что здесь происходит рост давления не только за счет роста средней кинетической энергии молекул (как у идеального газа), но и за счет увеличения концентрации молекул;

  1. при постоянной температуре давление и плотность насыщенного пара не зависят от объема. На рисунке 2 для сравнения приведены изотермы идеального газа (а) и насыщенного пара (б).

Рис. 2

Опыт показывает, что при изотермическом расширении уровень жидкости в сосуде понижается, при сжатии — повышается, т.е. изменяется число молекул пара так, что плотность пара остается постоянной.

3 Влажность воздуха

Воздух, содержащий водяные пары, называют влажным . Для характеристики содержания водяного пара в воздухе вводят ряд величин: абсо лютную влажность, упругость водяного пара и относительную влажность.

Абсолютной влажностью ρ воздуха называют величину, численно равную массе водяного пара, содержащегося в 1 м 3 воздуха (т.е. плотность водяного пара в воздухе при данных условиях).

Упругость водяного пара p — это парциальное давление водяного пара, содержащегося в воздухе. В СИ единицами абсолютной влажности и упругости являются соответственно килограмм на кубический метр (кг/м 3 ) и паскаль (Па).

Если известна только абсолютная влажность или упругость водяного пара, еще нельзя судить, насколько сух или влажен воздух. Для определения степени влажности воздуха необходимо знать, близок или далек водяной пар от насыщения.

Относительной влажностью воздуха φ называют выраженное в процентах отношение абсолютной влажности к плотности ρ 0 насыщенного пара при данной температуре (или отношение упругости водяного пара к давлению p 0 насыщенного пара при данной температуре):

Чем меньше относительная влажность, тем дальше пар от насыщения, тем интенсивнее происходит испарение. Давление насыщенного пара p 0 при заданной температуре — величина табличная. Упругость водяного пара (а значит, и абсолютную влажность) определяют по точке росы.

При изобарном охлаждении до температуры t p пар становится насыщенным и его состояние изобразится точкой В . Температуру t p , при которой водяной пар становится насыщенным, называют точкой росы . При охлаждении ниже точки росы начинается конденсация паров: появляется туман, выпадает роса, запотевают окна.

4 Измерение влажности воздуха

Для измерения влажности воздуха используют измерительные приборы гигрометры. Существуют несколько видов гигрометров, но основные: волосной и психрометрический.

Так как непосредственно измерить давление водяных паров в воздухе сложно, относительную влажность воздуха измеряют косвенным путем.

Принцип действия волосного гигрометра основан на свойстве обезжиренного волоса (человека или животного) изменять свою длину в зависимости от влажности воздуха, в котором он находится.

Волос натянут на металлическую рамку. Изменение длины волоса передаётся стрелке, перемещающейся вдоль шкалы. Волосной гигрометр в зимнее время являются основным прибором для измерения влажности воздуха вне помещения.

Более точным гигрометром является гигрометр психрометрический – психрометр
(по др. гречески "психрос" означает холодный).
Известно, что от относительной влажности воздуха
зависит скорость испарения.
Чем меньше влажность воздуха, тем легче влаге испаряться.

В психрометре есть два термометра . Один - обычный, его называют сухим. Он измеряет температуру окружающего воздуха. Колба другого термометра обмотана тканевым фитилем и опущена в емкость с водой. Второй термометр показывает не температуру воздуха, а температуру влажного фитиля, отсюда и название увлажненный термометр. Чем меньше влажность воздуха, тем интенсивнее испаряется влага из фитиля, тем большее количество теплоты в единицу времени отводится от увлажненного термометра, тем меньше его показания, следовательно, тем больше разность показаний сухого и увлажненного термометров.

Точку росы определяют с помощью гигрометров. Конденсационный гигрометр представляет собой металлическую коробку А , передняя стенка К которой хорошо отполирована (рис. 2) Внутрь коробки наливают легко испаряющуюся жидкость — эфир — и вставляют термометр. Пропуская через коробку воздух с помощью резиновой груши Г , вызывают сильное испарение эфира и быстрое охлаждение коробки. По термометру замечают температуру, при которой появляются капельки росы на полированной поверхности стенки К . Давление в области, прилегающей к стенке, можно считать постоянным, так как эта область сообщается с атмосферой и понижение давления за счет охлаждения компенсируется увеличением концентрации пара. Появление росы указывает, что водяной пар стал насыщенным. Зная температуру воздуха и точку росы, можно найти парциальное давление водяного пара и относительную влажность.

Рис. 2

5 Задачи для самостоятельного решения

Задача 1

На улице идет холодный осенний дождь. В каком случае быстрее высохнет белье, развешенное на кухне: когда форточка открыта, или когда закрыта? Почему?

Задача 2

Влажность воздуха равна 78%, а показание сухого термометра равно 12 °С. Какую температуру показывает влажный термометр? (Ответ: 10 °С.)

Задача 3

Разность в показаниях сухого и влажного термометров равна 4 °С. Относительная влажность воздуха 60%. Чему равны показания сухого и влажного термометра? (Ответ: t c -l9 °С, t m = 10 °С.)

1. Модель строения жидкостей. Насыщенные и ненасыщенные пары; зависимость давления насыщен­ного пара от температуры; кипение. Влажность воз­духа; точка росы, гигрометр, психрометр.

Испарение - парообразование, происходящее при любой температуре со свободной поверхности жидкости. При тепловом движении при любой температуре кинетическая энергия молекул жидкости не значительно превышает потенциальную энергию их связи с другими молекулами. Испарение сопровождается охлаждением жидкости. Скорость испарения зависит: от площади открытой поверхности, температуры, концентрации молекул вблизи жидкости.

Конденсация - процесс перехода вещества из газообразного состояния в жидкое.
Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала испарения концентрация вещества в газообразном состоянии достигнет такого значения, при котором число молекул, возвращающихся в жидкость, становится равным числу молекул, покидающих жидкость за то же время. Устанавливается динамическое равновесие между процессами испарения и конденсации вещества.

Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называют насыщенным паром . (Паром называют совокупность молекул, покинувших жидкость в процессе испарения.) Пар, находящийся при давлении ниже насыщенного, называют ненасыщенным.

Вследствие постоянного испарения воды с поверхностей водоемов, почвы и растительного покрова, а также дыхания человека и животных в атмосфере всегда содержится водяной пар. Поэтому атмосферное давление представляет собой сумму давления сухого воздуха и находящегося в нем водяного пара. Давление водяного пара будет максимальным при насыщении воздуха паром. Насыщенный пар в отличие от ненасыщенного не подчиняется законам идеального газа. Так, давление насыщенного пара не зависит от объема, но зависит от температуры. Эта зависимость не может быть выражена простой формулой, поэтому на основе экспериментального изучения зависимости давления насыщенного пара от температуры составлены таблицы, по которым можно определить его давление при различных температурах.

Давление водяного пара, находящегося в воздухе при данной температуре, называют абсолютной влажностью . Поскольку давление пара пропорционально концентрации молекул, можно определить абсолютную влажность как плотность водяного пара, находящегося в воздухе при данной температуре, выраженную в килограммах на метр кубический (р).

Относительной влажностью называют отношение плотности водяного пара (или давления), находящегося в воздухе при данной температуре, к плотности (или давлению) водяного пара при той же температуре, выраженное в процентах, т. е.

Наиболее благоприятной для человека в средних климатических широтах является относительная влажность 40-60%.

Понижая температуру воздуха, можно довести находящийся в нем пар до насыщения.

Точкой росы называют температуру, при которой пар, находящийся в воздухе, становится насыщенным. При достижении точки росы в воздухе или на предметах, с которыми он соприкасается, начинается конденсация водяного пара. Для определения влажности воздуха используются приборы, которые называются гигрометрами и психрометрами.

Строение газов, жидкостей и твердых тел.

Основные положения молекулярно-кинетической теории :

    все вещества состоят из молекул, а молекулы из атомов,

    атомы и молекулы находятся в постоянном движении,

    между молекулами существуют силы притяжения и отталкивания.

В газах молекулы двигаются хаотически, расстояния между молекулами большие, молекулярные силы малы, газ занимает весь предоставленный ему объем.

В жидкостях молекулы располагаются упорядочно только на малых расстояниях, а на больших расстояниях порядок (симметрия) расположения нарушается – “ближний порядок”. Силы молекулярного притяжения удерживают молекулы на близком расстоянии. Движение молекул – “перескоки ” из одного устойчивого положения в другое (как правило, в пределах одного слоя. Таким движением объясняется текучесть жидкости. Жидкость не имеет форму, но имеет объем.

Твердые тела – вещества, которые сохраняют форму, делятся на кристаллические и аморфные. Кристаллические твердые тела имеют кристаллическую решетку, в узлах которой могут находиться ионы, молекулы или атомы Они совершают колебания относительно устойчивых положений равновесия.. Кристаллические решетки имеют правильную структуру по всему объему – “дальний порядок” расположения.

Аморфные тела сохраняют форму, но не имеют кристаллической решетки и, как следствие, не имеют ярко выраженной температуры плавления. Их называют застывшими жидкостями, так как они, как жидкости имеют “ближний ” порядок расположения молекул.

Силы взаимодействия молекул

Все молекулы вещества взаимодействуют между собой силами притяжения и отталкивания. Доказательство взаимодействия молекул: явление смачивания, сопротивление сжатию и растяжению, малая сжимаемость твердых тел и газов и др. Причина взаимодействия молекул - это электромагнитные взаимодействия заряженных частиц в веществе. Как это объяснить? Атом состоит из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Заряд ядра равен суммарному заряду всех электронов, поэтому в целом атом электрически нейтрален. Молекула, состоящая из одного или нескольких атомов, тоже электрически нейтральна. Рассмотрим взаимодействие между молекулами на примере двух неподвижных молекул. Между телами в природе могут существовать гравитационные и электромагнитные силы. Так как массы молекул крайне малы, ничтожно малые силы гравитационного взаимодействия между молекулами можно не рассматривать. На очень больших расстояниях электромагнитного взаимодействия между молекулами тоже нет. Но, при уменьшении расстояния между молекулами молекулы начинают ориентироваться так, что их обращенные друг к другу стороны будут иметь разные по знаку заряды (в целом молекулы остаются нейтральными), и между молекулами возникают силы притяжения. При еще большем уменьшении расстояния между молекулами возникают силы отталкивания, как результат взаимодействия отрицательно заряженных электронных оболочек атомов молекул. В итоге на молекулу действует сумма сил притяжения и отталкивания. На больших расстояниях преобладает сила притяжения (на расстоянии 2-3 диаметров молекулы притяжение максимально), на малых расстояниях сила отталкивания. Существует такое расстояние между молекулами, на котором силы притяжения становятся равными силам отталкивания. Такое положение молекул называется положением устойчивого равновесия. Находящиеся на расстоянии друг от друга и связанные электромагнитными силами молекулы обладают потенциальной энергией. В положении устойчивого равновесия потенциальная энергия молекул минимальна. В веществе каждая молекула взаимодействует одновременно со многими соседними молекулами, что также влияет на величину минимальной потенциальной энергии молекул. Кроме того, все молекулы вещества находятся в непрерывном движении, т.е. обладают кинетической энергией. Таким образом, структура вещества и его свойства (твердых, жидких и газообразных тел) определяются соотношением между минимальной потенциальной энергией взаимодействия молекул и запасом кинетической энергии теплового движения молекул.

Строение и свойства твердых, жидких и газообразных тел

Строение тел объясняется взаимодействием частиц тела и характером их теплового движения.

Твердое тело

Твердые тела имеют постоянную форму и объем, практически несжимаемы. Минимальная потенциальная энергия взаимодействия молекул больше кинетической энергии молекул. Сильное взаимодействие частиц. Тепловое движение молекул в твердом теле выражается только лишь колебаниями частиц (атомов, молекул) около положения устойчивого равновесия.

Из-за больших сил притяжения молекулы практически не могут менять свое положение в веществе, этим и объясняется неизменность объема и формы твердых тел. Большинство твердых тел имеет упорядоченное в пространстве расположение частиц, которые образуют правильную кристаллическую решетку. Частицы вещества (атомы, молекулы, ионы) расположены в вершинах - узлах кристаллической решетки. Узлы кристаллической решетки совпадают с положением устойчивого равновесия частиц. Такие твердые тела называются кристаллическими.

Жидкость

Жидкости имеют определенный объем, но не имеют своей формы, они принимают форму сосуда, в которой находятся. Минимальная потенциальная энергия взаимодействия молекул сравнима с кинетической энергией молекул. Слабое взаимодействие частиц. Тепловое движение молекул в жидкости выражено колебаниями около положения устойчивого равновесия внутри объема, предоставленного молекуле ее соседями. Молекулы не могут свободно перемещаться по всему объему вещества, но возможны переходы молекул на соседние места. Этим объясняется текучесть жидкости, способность менять свою форму.

В жидкостях молекулы достаточно прочно связаны друг с другом силами притяжения, что объясняет неизменность объема жидкости. В жидкости расстояние между молекулами равно приблизительно диаметру молекулы. При уменьшении расстояния между молекулами (сжимании жидкости) резко увеличиваются силы отталкивания, поэтому жидкости несжимаемы. По своему строению и характеру теплового движения жидкости занимают промежуточное положение между твердыми телами и газами. Хотя разница между жидкостью и газом значительно больше, чем между жидкостью и твердым телом. Например, при плавлении или кристаллизации объем тела изменяется во много раз меньше, чем при испарении или конденсации.

Газы не имеют постоянного объема и занимают весь объем сосуда, в котором они находятся. Минимальная потенциальная энергия взаимодействия молекул меньше кинетической энергии молекул. Частицы вещества практически не взаимодействуют. Газы характеризуются полной беспорядочностью расположения и движения молекул.

Расстояние между молекулами газа во много раз больше размеров молекул. Малые силы притяжения не могут удержать молекулы друг около друга, поэтому газы могут неограниченно расширяться. Газы легко сжимаются под действием внешнего давления, т.к. расстояния между молекулами велики, а силы взаимодействия пренебрежимо малы. Давление газа на стенки сосуда создается ударами движущихся молекул газа.

Модели строения газов, жидкостей и твёрдых тел

Все вещества могут существовать в трёхагрегатных состояниях .

Газ – агрегатное состояние, в котором вещество не имеет определённого объёма и формы. В газах частицы вещества удалены на расстояния, значительно превышающие размер частицы. Силы притяжения между частицами малы и не могут удерживать их друг возле друга. Потенциальная энергия взаимодействия частиц считается равной нулю, то есть она много меньше кинетической энергии движения частиц. Частицы хаотично разлетаются, занимая весь объём сосуда, в котором находится газ. Траектории частиц газа представляют собой ломаные линии (от одного удара до другого частица движется равномерно и прямолинейно). Газы легко сжимаются.

Жидкость – агрегатное состояние, в котором вещество имеет определённый объём, но не сохраняет своей формы. В жидкостях расстояния между частицами сравнимы с размерами частиц, поэтому силы взаимодействия частиц в жидкостях велики. Потенциальная энергия взаимодействия частиц сравнима с их кинетической энергией. Но этого не достаточно для упорядоченного расположения частиц. В жидкостях наблюдается лишь взаимная ориентация соседних частиц. Частицы жидкостей совершают хаотические колебания около некоторых положений равновесия и через некоторое время меняются местами с соседями. Эти скачки объясняют текучесть жидкостей.

Твёрдое тело – агрегатное состояние, в котором вещество имеет определённый объём и сохраняет свою форму. В твёрдых телах расстояния между частицами сравнимы с размерами частиц, но меньше, чем у жидкостей, поэтому силы взаимодействия частиц огромны, что и позволяет веществу сохранять форму. Потенциальная энергия взаимодействия частиц больше их кинетической энергией, поэтому в твёрдых телах наблюдается упорядоченное расположение частиц, называемое кристаллической решёткой. Частицы твёрдых тел совершают хаотические колебания около положения равновесия (узла кристаллической решётки) и очень редко меняются местами с соседями. Кристаллы обладают характерным свойством – анизотропией – зависимостью физических свойств от выбора направления в кристалле.

1. Существует множество явлений природы, которые можно понять, лишь зная строение вещества. К таким явлениям относятся, например, процессы нагревания и охлаждения тел, превращения вещества из твёрдого состояния в жидкое и газообразное, образования тумана и др.

Вопрос о том, какое строение имеют вещества, занимал людей ещё в древности. Так, в V в. до н.э. древнегреческий мыслитель Демокрит высказал мысль о том, что вещество состоит из мельчайших частиц, невидимых глазом. Он считал, что существует предел деления вещества. Эту последнюю неделимую частичку, сохраняющую свойства вещества, он назвал «атомом». Демокрит также полагал, что атомы непрерывно движутся и что вещества различаются числом атомов, их размерами, формой, порядком расположения.

Догадка древних мыслителей не сразу превратилась в научную идею. У неё было много противников: Аристотель, в частности, считал, что тело можно делить до бесконечности. Справедливость той или иной гипотезы мог подтвердить только опыт; осуществить же его в то время было невозможно. Поэтому идеи Демокрита были на какое-то время забыты. К ним вернулись в эпоху Возрождения. В XVII-XVIII вв. были изучены свойства газов, а затем в XIX в. построена теория строения вещества в газообразном состоянии. Большой вклад в развитие теории строения вещества внёс русский учёный М.В. Ломоносов (1711 -1765 г.г.), который считал, что вещество состоит из атомов, и, используя эти представления, сумел объяснить такие явления, как испарение, теплопроводность и др.

2. В основе молекулярно-кинетической теории строения вещества лежат три положения.

Положение 1. Все вещества состоят из частиц, между которыми есть промежутки. Такими частицами могут быть молекулы, атомы, ионы.

Доказательством этого положения служат факты, установленные в ходе наблюдений и экспериментов. К таким фактам относятся сжимаемость тел, растворимость веществ в воде и др. Так, если растворить немного краски в воде, то вода окрасится. Если каплю этой воды поместить в другой стакан с чистой водой, то эта вода также окрасится, только цвет её будет менее насыщенным. Можно повторить эту операцию ещё несколько раз. В каждом случае раствор будет окрашен, только более слабо, чем в предыдущем. Это значит, что капля краски делится на частицы. Приведённые факты и описанный опыт позволяют сделать вывод о том, что тела не сплошные, они состоят из маленьких частиц.

О том, что тела не сплошные, а между частицами, из которых они состоят, существуют промежутки, свидетельствует то, что газ в цилиндре можно сжать поршнем, можно сжать воздух в воздушном шаре, ластик или кусок резины, тела сжимаются при охлаждении и расширяются при нагревании. Так, ненагретый шарик свободно проходит через кольцо, диаметр которого чуть больше диаметра шарика. Если шарик нагреть в пламени спиртовки, то он в кольцо не пройдет.

3. Из опытов, которые были рассмотрены выше, следует, что вещество можно разделить на отдельные частицы, сохраняющие его свойства. Однако существует определённый предел деления вещества, т.е. существует самая маленькая частица вещества, которая сохраняет его свойства. Меньшей частицы, которая сохраняет свойства данного вещества, просто не существует.

Наименьшая частица вещества, которая сохраняет его химические свойства, называется молекулой.

Слова «химические свойства» означают следующее. Поваренная соль - это вещество, представляющее собой соединение натрия и хлора (NaCl). Это соединение имеет определённые химические свойства, в частности, оно может вступать в реакцию с каким-либо другим веществом. При этом и кристалл соли, и молекула этого химического соединения будут вести себя в реакции одинаково. В этом смысле и говорят, что молекула сохраняет химические свойства данного вещества.

4. Опыты, которые были описаны, говорят о том, что молекулы имеют маленькие размеры. Увидеть их невооруженным глазом невозможно. Диаметр крупных молекул примерно 10 -8 см.

Поскольку молекулы так малы, то в телах их содержится очень много. Так, в 1 см 3 воздуха содержится 27·10 18 молекул.

Масса молекул, так же как и её размеры, очень мала. Например, масса одной молекулы водорода равна 3,3·10 -24 г или 3,3·10 -27 кг, а масса одной молекулы воды - 3·10 -26 кг. Масса молекул одного и того же вещества одинакова. В настоящее время масса и размеры молекул различных веществ определены достаточно точно.

5. Молекулы состоят из ещё более мелких частиц, которые называются атомами . Например, молекулу воды можно разделить на водород и кислород. Однако водород и кислород уже другие вещества, и они обладают свойствами, отличными от свойств воды. Разложить молекулу воды на такие вещества можно в процессе химической реакции.

Атом - наименьшая частица вещества, не делящаяся при химических реакциях.

Молекула воды состоит из двух атомов водорода и одного атома кислорода; молекула поваренной соли - из одного атома натрия и одного атома хлора. Молекула сахара более сложная: она состоит из б атомов углерода, 12 атомов водорода и 6 атомов кислорода, а молекула белков состоит из тысячи атомов.

Существуют вещества, молекулы которых содержат однородные атомы. Например, молекула водорода состоит из двух атомов водорода, молекула кислорода - из двух атомов кислорода.

В природе есть вещества, которые состоят не из молекул, а из атомов. Их называют простыми. Примерами таких веществ могут служить алюминий, железо, ртуть, олово и др.

Любое вещество, независимо от того, как оно получено, содержит одни и те же атомы. Например, молекула воды, полученная при таянии льда, или из сока ягод, или налитая из-под крана, содержит два атома водорода и один атом кислорода. Молекула кислорода, извлечённая из атмосферного воздуха или полученная в ходе какой-либо химической реакции, содержит два атома кислорода.

6. Положение 2. Молекулы находятся в непрерывном беспорядочном (хаотическом) движении . Поскольку молекулы малы, то непосредственно наблюдать и доказать их движение невозможно. Однако целый ряд экспериментальных фактов и наблюдаемых явлений является следствием движения молекул. К ним относятся прежде всего броуновское движение и диффузия.

7. Положение 3. Молекулы взаимодействуют между собой, между ними действуют силы и притяжения и отталкивания.

Наблюдения показывают, что тела не распадаются на отдельные молекулы. Твёрдые тела, например деревянную палку, металлический стержень, трудно растянуть или сломать. Их также трудно и сжать. Нелегко сжать и жидкость в сосуде. Газы сжать легче, но всё равно нужно приложить для этого некоторое усилие.

Если тела не распадаются на молекулы, то очевидно, что молекулы притягиваются друг к другу . Взаимное притяжение удерживает молекулы друг около друга.

Если взять два свинцовых цилиндра и прижать их друг к другу, а затем отпустить, то они разъединятся. Если поверхности цилиндров зачистить и вновь прижать их друг к другу, то цилиндры «слипнутся». Они не разъединятся даже в том случае, если к нижнему цилиндру подвесить груз массой несколько килограммов. Этот результат можно объяснить так: цилиндры удерживаются вместе, поскольку между молекулами действуют силы притяжения.

До того, как цилиндры зачистили, они разъединялись, поскольку поверхности цилиндров имели неровности, которые были устранены при зачистке. Поверхности стали гладкими, и это привело к уменьшению расстояний между молекулами, находящимися на поверхностях цилиндров, когда их прижали друг к другу. Следовательно, силы притяжения между молекулами действуют на малых расстояниях . Эти расстояния равны примерно размерам молекулы. Именно поэтому нельзя разбив чашку и соединив осколки, получить целую чашку. Нельзя, разломив палку на две части и соединив их, получить целую палку.

Наряду с силами притяжения, между молекулами действуют силы отталкивания, которые препятствуют сближению молекул. Это объясняет то, что тела трудно сжать, сжатая пружина принимает первоначальную форму после прекращения действия на неё внешней силы. Это происходит потому, что при сжатии молекулы сближаются и силы отталкивания, действующие между ними, возрастают. Они и приводят пружину в первоначальное состояние.

При растяжении тела сила отталкивания уменьшается в большей степени, чем сила притяжения. При сжатии тела сила отталкивания увеличивается в большей степени, чем сила притяжения.

8. Вещества могут находиться в трёх агрегатных состояниях: в твёрдом, жидком и газообразном. Свойства тел в разных агрегатных состояниях различны.

Так, твёрдое тело имеет определённую форму и определённый объём. Его трудно сжать или растянуть; если его сжать, а потом отпустить, то оно, как правило, восстанавливает свою форму и объём. Исключение составляют некоторые вещества, твёрдое состояние которых близко по своим свойствам к жидкостям (пластилин, воск, вар).

Жидкость принимает форму сосуда, в который она налита. Это говорит о том, что жидкость в условиях Земли не имеет своей формы. Только очень маленькие капли жидкости имеют свою форму - форму шара.

Объём жидкости изменить чрезвычайно трудно. Так, если набрать воду в насос, закрыть отверстие внизу и попытаться сжать воду, вряд ли это удастся. Это означает, что жидкость имеет собственный объём.

В отличие от жидкости объём газа изменить довольно легко. Это можно сделать, сжав руками мяч или воздушный шарик. Газ не имеет собственного объёма, он занимает полностью объём сосуда, в котором находится. То же можно сказать и о форме газа.

Таким образом, твёрдые тела имеют собственные форму и объём, жидкости имеют собственный объём, но не имеют собственной формы, газы не имеют ни собственного объёма, ни собственной формы . Твёрдые тела и жидкости трудно сжать, газы легко сжимаемы.

Объяснить эти свойства тел можно, используя знания о строении вещества.

Поскольку газы занимают весь предоставленный им объём, то очевидно, что силы притяжения между молекулами газа малы. А это значит, что молекулы находятся на сравнительно больших расстояниях друг от друга. В среднем они в десятки раз больше расстояний между молекулами жидкости. Это подтверждается тем, что газы легко сжимаемы.

Малые силы притяжения влияют и на характер движения молекул газа. Молекула газа движется прямолинейно до столкновения с другой молекулой, в результате чего меняет направление своего движения и движется прямолинейно до следующего столкновения.

Твёрдые тела трудно сжать. Это связано с тем, что молекулы находятся близко друг от друга и при небольшом изменении расстояния между ними резко возрастают силы отталкивания. Сравнительно большое притяжение между молекулами твёрдых тел приводит к тому, что они сохраняют форму и объём.

Атомы или молекулы большинства твёрдых тел расположены в определённом порядке и образуют кристаллическую решетку . На рисунке 63 изображена кристаллическая решётка поваренной соли. В узлах кристаллической решётки находятся атомы натрия (Na) и хлора (Cl). Частицы твёрдого тела (атомы или молекулы) совершают колебательное движение относительно узла кристаллической решётки.

В жидкостях молекулы расположены также довольно близко друг к другу. Поэтому их трудно сжать, и они имеют свой объём. Однако силы притяжения между молекулами жидкости не настолько велики, чтобы жидкость сохраняла свою форму.

Характер движения молекул жидкости очень сложен. Они располагаются не так упорядоченно, как молекулы твёрдых тел, но в большем порядке, чем молекулы газов. Молекулы жидкости совершают колебательное движение относительно положений равновесия, однако с течением времени эти положения равновесия смещаются.

На рисунке 64 показано расположение молекул воды в разных агрегатных состояниях: в твёрдом (в), жидком (б), газообразном (а).

Часть 1

1. Молекула - это

1) мельчайшая частица вещества
2) частица вещества, сохраняющая его химические свойства
3) мельчайшая частица вещества, сохраняющая все его свойства
4) мельчайшая частица вещества, сохраняющая его химические свойства

2. О том, что между частицами вещества существуют промежутки, свидетельствуют:

А. Сжимаемость газов
Б. Разделение вещества на части

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. При нагревании столбика воды в чайнике

1) уменьшается среднее расстояние между молекулами воды
2) увеличивается среднее расстояние между молекулами воды
3) увеличивается объём молекул воды
4) уменьшается объём молекул воды

4. При растяжении медной проволоки между молекулами

1) действуют только силы притяжения
2) действуют как силы притяжения, так и силы отталкивания, но силы притяжения больше сил отталкивания
3) действуют как силы притяжения, так и силы отталкивания, но силы отталкивания больше сил притяжения
4) действуют только силы отталкивания

5. Твёрдое упругое тело сжали, поставив на него груз. Как изменились силы взаимодействия между молекулами вещества этого тела?

1) увеличились только силы притяжения
2) увеличились только силы отталкивания
3) увеличились и силы притяжения, и силы отталкивания, но силы притяжения стали больше, чем силы отталкивания
4) увеличились и силы притяжения, и силы отталкивания, но силы отталкивания стали больше, чем силы притяжения

6. В каком агрегатном состоянии находится вещество, если оно не имеет собственной формы, но имеет собственный объём?

1) только в жидком
2) только в газообразном
3) в жидком или газообразном
4) только в твёрдом

7. В каком агрегатном состоянии находится вещество, если оно не имеет ни собственной формы, ни собственного объёма?

1) только в жидком
2) только в газообразном
3) в жидком или газообразном
4) только в твёрдом

8. Наименьшая упорядоченность в расположении частиц характерна для

1) газов
2) жидкостей
3) кристаллических тел
4) аморфных тел

9. В процессе перехода воды из жидкого состояния в кристаллическое

1) увеличивается расстояние между молекулами
2) молекулы начинают притягиваться друг к другу
3) увеличивается упорядоченность в расположении молекул
4) уменьшается расстояние между молекулами

10. При превращении леденца из аморфного состояния в кристаллическое на его поверхности образуются кристаллики сахара. При этом

1) существенно увеличиваютcя расстояния между молекулами сахара
2) молекулы сахара перестают хаотически двигаться
3) увеличивается упорядоченность в расположении молекул сахара
4) существенно уменьшаются расстояния между молекулами сахара

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Молекула - мельчайшая частица вещества.
2) Передача давления жидкостью и газом обусловлена подвижностью их молекул.
3) В не деформированном теле силы притяжения между молекулами равны силам отталкивания.
4) На малых расстояниях между молекулами действуют только силы отталкивания.
5) Взаимодействие между молекулами имеет гравитационную природу.

12. Из приведённых утверждений выберите два правильных и запишите их номера в таблицу.

1) Вода при переливании из одного сосуда в другой принимает форму сосуда.
2) Диффузия в жидкостях происходит быстрее, чем в газах.
3) Молекулы вещества находятся в непрерывном направленном движении.
4) При данной температуре все молекулы движутся с одинаковыми скоростями.
5) Вода растекается по деревянному столу, так как силы взаимодействия между молекулами воды меньше, чем силы взаимодействия между молекулами воды и дерева.

Ответы



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта