Главная » Маринование грибов » Градиентный метод. Простейший градиентный метод

Градиентный метод. Простейший градиентный метод

Как мы уже отметили, задача оптимизации – это задача отыскания таких значений факторов х 1 = х 1* , х 2 = х 2* , …, х k = х k * , при которых функция отклика (у ) достигает экстремального значения у = ext (оптимума).

Известны различные методы решения задачи оптимизации. Одним из наиболее широко применяемых является метод градиента, называемый также методом Бокса-Уилсона и методом крутого восхождения.

Рассмотрим сущность метода градиента на примере двухфакторной функции отклика y = f(x 1 , х 2 ). На рис. 4.3 в фак­торном пространстве изо­бражены кривые равных значений функции отклика (кривые уровня). Точке с координатами х 1 *, х 2 * соответствует экстремаль­ное значение функции от­клика у ext .

Если мы выбе­рем какую-либо точку фак­торного пространства в ка­честве исходной (х 1 0 , х 2 0), то наикратчайший путь к вершине функции откли­ка из этой точки – это путь, по кривой, касательная к которой в каждой точке совпадает с нормалью к кривой уровня, т.е. это путь в направлении гради­ента функции отклика.

Градиент непрерывной однозначной функции y = f (x 1 , х 2) – это вектор, определяемый по направлению градиентом с координатами:

где i, j – единичные векторы в направлении осей координат х 1 и х 2 . Частные производные и характеризуют направление вектора.

Поскольку нам неизвестен вид зависимости y = f (x 1 , х 2), мы не можем найти частные производные , и опреде­лить истинное направление градиента.

Согласно методу градиента в какой-то части факторного пространства выбирается исходная точка (исходные уровни) х 1 0 , х 2 0 . Относительно этих исходных уровней строится сим­метричный двухуровневый план эксперимента. Причем интер­вал варьирования выбирается настолько малым, чтобы ли­нейная модель оказалась адекватной. Известно, что любая кривая на достаточно малом участке может быть аппрокси­мирована линейной моделью.

После построения симметричного двухуровневого плана решается интерполяционная задача, т.е. строится линейная модель:

и проверяется ее адекватность.

Если для выбранного интервала варьирования линейная мо­дель оказалась адекватной, то может быть определено на­правление градиента:

Таким образом, направление градиента функции отклика определяется значениями коэффициентов регрессии. Это означает, что мы будем двигаться в направлении градиента, если из точки с координатами ( ) перейдем в точку с координатами:

где m – положительное число, определяющее величину шага в на­правлении градиента.

Поскольку х 1 0 = 0 и х 2 0 = 0, то .

Определив направление градиента () и выбрав ве­личину шага m , осуществляем опыт на исходном уровне х 1 0 , х 2 0 .


Затем делаем шаг в направлении градиента, т.е. осу­ществляем опыт в точке с координатами . Если значе­ние функции отклика возросло по сравнению с ее значением в исходном уровне, делаем еще шаг в направлении градиен­та, т.е. осуществляем опыт в точке с координатами:

Движение по градиенту продолжаем до тех пор, пока функция отклика не начнет уменьшаться. На рис. 4.3 движение по градиенту соответствует прямой, вы­ходящей из точки (х 1 0 , х 2 0). Она постепенно отклоняется от истинного направления градиента, показанного штриховой линией, вследствие нелинейности функции отклика.

Как только в очередном опыте значение функции отклика уменьшилось, движение по градиенту прекращают, прини­мают опыт с максимальным значением функции отклика за новый исходный уровень, составляют новый симметричный двухуровневый план и снова решают интерполяционную за­дачу.

Построив новую линейную модель , осуществляют регрессионный анализ. Если при этом провер­ка значимости факторов показывает, что хоть один коэф

фи­циент , значит, область экстремума функции откли­ка (область оптимума) еще не достигнута. Определяется новое направление градиента и начинается движение к обла­сти оптимума.

Уточнение направления градиента и движение по гради­енту продолжаются до тех пор, пока в процессе решения очередной интерполяционной задачи проверка значимости факторов не покажет, что все факторы незначимы, т.е. все . Это означает, что область оптимума достигнута. На этом решение оптимизационной задачи прекращают, и принимают опыт с максимальным значением функции отклика за оптимум.

В общем виде последовательность действий, необходимых для решения задачи оптимизации методом градиента, может быть представлена в виде блок-схемы (рис. 4.4).

1) исходные уровни факторов (х j 0) следует выбирать воз­можно ближе к точке оптимума, если есть какая-то априор­ная информация о ее положении;

2) интервалы варьирования (Δх j ) надо выбирать такими, чтобы линейная модель наверняка оказалась адекватной. Границей снизу Δх j при этом является минимальное значе­ние интервала варьирования, при котором функция отклика остается значимой;

3) значение шага (т ) при движении по градиенту выбирают таким образом, чтобы наибольшее из произведений не превышало разности верхнего и нижнего уровней факто­ров в нормированном виде

.

Следовательно, . При меньшем значении т разность функции отклика в исходном уровне и в точке с координа­тами может оказаться незначимой. При большем значении шага возникает опасность проскочить оптимум функ­ции отклика.

В основе метода лежит следующая итерационная модификация формулы

x k +1 = x k + a k s(x k),

x k+1 = x k - a k Ñ f(x k), где

a - заданный положительный коэффициент;

Ñ f(x k) - градиент целевой функции первого порядка.

Недостатки:

    необходимость выбора подходящего значения ;

    медленная сходимость к точке минимума ввиду малости f(x k) в окрестности этой точки.

Метод наискорейшего спуска

Свободен от первого недостатка простейшего градиентного метода, т.к. a k вычисляется путем решения задачи минимизации Ñ f(x k) вдоль направления Ñ f(x k) с помощью одного из методов одномерной оптимизации x k+1 = x k - a k Ñ f(x k).

Данный метод иногда называют методом Коши.

Алгоритм характеризуется низкой скоростью сходимости при решении практических задач. Это объясняется тем, что изменения переменных непосредственно зависит от величины градиента, которая стремится к нулю в окрестности точки минимума и отсутствует механизм ускорения на последних итерациях. Поэтому, учитывая устойчивость алгоритма, метод наискорейшего спуска часто используется как начальная процедура поиска решения (из точек, расположенных на значительных расстояниях от точки минимума).

Метод сопряженных направлений

Общая задача нелинейного программирования без ограничений сводится к следующему: минимизировать f(x), x E n , где f(x) является целевой функцией. При решении этой задачи мы используем методы минимизации, которые приводят к стационарной точке f(x), определяемой уравнением f(x *)=0. Метод сопряженных направлений относится к методам минимизации без ограничений, использующим производные. Задача: минимизировать f(x), x E n , где f(x) является целевой функцией n независимых переменных. Важной особенностью является быстрая сходимость за счет того, что при выборе направления используется матрица Гессе, которая описывает область топологии поверхности отклика. В частности, если целевая функция квадратичная, то можно получить точку минимума не более чем за количество шагов, равное размерности задачи.

Для применения метода на практике его необходимо дополнить процедурами проверки сходимости и линейной независимости системы направлений. Методы второго порядка

Метод Ньютона

Последовательное применение схемы квадратичной аппроксимации приводит к реализации оптимизационного метода Ньютона по формуле

x k +1 = x k - Ñ 2 f(x k -1) Ñ f(x k).

Недостатком метода Ньютона является его недостаточная надежность при оптимизации не квадратичных целевых функций. Поэтому его часто модифицируют:

x k +1 = x k - a k Ñ 2 f(x k -1) Ñ f(x k), где

a k - параметр, выбираемый таким образом, чтобы f(x k+1) min.

2. Нахождение экстремума функции без ограничения

Дана некоторая функция f(х) на открытом интервале (а, в) изменения аргумента х. Предполагаем, что exst внутри этого интервала существует (нужно сказать, что в общем случае математически заранее это утверждать не могут; однако в технических приложениях очень часто наличие exst внутри некоторого интервала изменения интервала изменения аргумента может быть предсказано из физических соображений).

Определение exst. Функция f(x) заданная на интервале (а, в) имеет в точке x * max(min), если эту точку можно окружить таким интервалом (x * -ε, x * +ε), содержащимся в интервале (а, в), что для всех ее точек х, принадлежащих интервалу (x * -ε, x * +ε), выполняется неравенство:

f(x) ≤ f(x *) → для max

f(x) ≥ f(x *) → для min

Это определение не накладывает никаких ограничений на класс функций f(x), что, конечно, очень ценно.

Если ограничится для функций f(x), достаточно распространенным, но все же более узким классом гладких функций (под гладкими функциями мы будем понимать такие функции, которые непрерывны вместе со своими производными на интервале изменения аргумента), то можно воспользоваться теоремой Ферма, которая дает необходимые условия существования exst.

Теорема Ферма. Пусть функция f(x) определена в некотором интервале (а, в) и в точке "с" этого интервала принимает наибольшее (наименьшее) значение. Если существует в этой точке двухсторонняя конечная производная , то существования необходимоexst .

Примечание. Двухсторонняя производная характеризуется свойством иными словами, речь идет о том, что в точке "с" производная в пределе одна и та же при подходе к точке "с" слева и справа, т.е.f(x) – гладкая функция.

* В случае имеет местоmin, а при →max. Наконец, если при х=х 0 , то использование 2-ой производной не помогает и нужно воспользоваться, например, определением exst.

При решении задачи I необходимые условия exst (т.е. теорема Ферма) используется очень часто.

Если уравнение exst имеет вещественные корни, то точки, соответствующие этим корням, являются подозрительными наexst (но не обязательно самыми экстремумами, ибо имеем дело с необходимыми, а не с необходимыми и достаточными условиями). Так, например, в точке перегиба Х п имеет место , однако, как известно, это не экстремум.

Заметим ещё, что:

    из необходимых условий нельзя сказать, какой вид экстремума найден max или min: для определения этого нужны дополнительные исследования;

    из необходимых условий нельзя определить, глобальный это экстремум или локальный.

Поэтому, когда находят точки подозрительные на exst, их дополнительно исследуют, например, на основе определения exst или 2-ой производной.

Рассмотрим задачу безусловной минимизации дифференцируемой функции многих переменных Пусть приближение к точке минимума значение градиента в точке Выше уже отмечалось, что в малой окрестности точки направление наискорейшего убывания функции задается антиградиентом Это свойство существенно используется в ряде методов минимизации. В рассматриваемом Ниже градиентном методе за направление спуска из точки непосредственно выбирается Таким образом, согласно градиентному методу

Существуют различные способы выбора шага каждый из которых задает определенный вариант градиентного метода.

1. Метод наискорейшего спуска.

Рассмотрим функцию одной скалярной переменной и выберем в качестве то значение, для которого выполняется равенство

Этот метод, предложенный в 1845 г. О. Коши, принято теперь называть методом наискорейшего спуска.

На рис. 10.5 изображена геометрическая иллюстрация этого метода для минимизации функции двух переменных. Из начальной точки перпендикулярно линии уровня в направлении спуск продолжают до тех пор, пока не будет достигнуто минимальное вдоль луча значение функции . В найденной точке этот луч касается линии уровня Затем из точки проводят спуск в перпендикулярном линии уровня направлении до тех пор, пока соответствующий луч не коснется в точке проходящей через эту точку линии уровня, и т. д.

Отметим, что на каждой итерации выбор шага предполагает решение задачи одномерной минимизации (10.23). Иногда эту операцию удается выполнить аналитически, например для квадратичной функции.

Применим метод наискорейшего спуска для минимизации квадратичной функции

с симметричной положительно определенной матрицей А.

Согласно формуле (10.8), в этом случае Поэтому формула (10.22) выглядит здесь так:

Заметим, что

Эта функция является квадратичной функцией параметра а и достигает минимума при таком значении для которого

Таким образом, применительно к минимизации квадратичной

функции (10.24) метод наискорейшего спуска эквивалентен расчету по формуле (10.25), где

Замечание 1. Поскольку точка минимума функции (10.24) совпадает с решением системы метод наискорейшего спуска (10.25), (10.26) может применяться и как итерационный метод решения систем линейных алгебраических уравнений с симметричными положительно определенными матрицами.

Замечание 2. Отметим, что где отношение Рэлея (см. § 8.1).

Пример 10.1. Применим метод наискорейшего спуска для минимизации квадратичной функции

Заметим, что Поэтому точное значение точки минимума нам заранее известно. Запишем данную функцию в виде (10.24), где матрица и вектор Как нетрудно видеть,

Возьмем начальное приближение и будем вести вычисления по формулам (10.25), (10.26).

I итерация.

II итерация.

Можно показать, что для всех на итерации будут получены значения

Заметим, что при Таким образом,

последовательность полученная методом наискорейшего спуска, сходится со скоростью геометрической прогрессии, знаменатель которой

На рис. 10.5 изображена именно та траектория спуска, которая была получена в данном примере.

Для случая минимизации квадратичной функции справедлив следующий общий результат .

Теорема 10.1. Пусть А - симметричная положительно определенная матрица и минимизируется квадратичная функция (10.24). Тогда при любом выборе начальною приближения метод наискорейшею спуска (10.25), (10.26) сходится и верна следующая оценка погрешности:

Здесь и Ладо - минимальное и максимальное собственные значения матрицы А.

Отметим, что этот метод сходится со скоростью геометрической прогрессии, знаменатель которой причем если их близки, то мало и метод сходится достаточно быстро. Например, в примере 10.1 имеем и поэтому Если же Ащах, то и 1 и следует ожидать медленной сходимости метода наискорейшего спуска.

Пример 10.2. Применение метода наискорейшего спуска для минимизации квадратичной функции при начальном приближении дает последовательность приближений где Траектория спуска изображена на рис. 10.6.

Последовательность сходится здесь со скоростью геометрической прогрессии, знаменатель которой равен т. е. существенно медленнее,

чем в предыдущем примерю. Так как здесь и полученный результат вполне согласуется с оценкой (10.27).

Замечание 1. Мы сформулировали теорему о сходимости метода наискорейшего спуска в случае, когда целевая функция является квадратичной. В общем случае, если минимизируемая функция строго выпуклая и имеет точку минимума х, то также независимо от выбора начального приближения полученная указанным методом последовательность сходится к х при . При этом после попадания в достаточно малую окрестность точки минимума сходимость становится линейной и знаменатель соответствующей геометрической прогрессии оценивается сверху величиной и где и минимальное и максимальное собственные числа матрицы Гессе

Замечание 2. Для квадратичной целевой функции (10.24) решение задачи одномерной минимизации (10.23) удается найти в виде простой явной формулы (10.26). Однако для большинства других нелинейных функций этого сделать нельзя и для вычисления методом наискорейшего спуска приходится применять численные методы одномерной минимизации типа тех, которые были рассмотрены в предыдущей главе.

2. Проблема "оврагов".

Из проведенного выше обсуждения следует, что градиентный метод сходится достаточно быстро, если для минимизируемой функции поверхности уровня близки к сферам (при линии уровня близки к окружностям). Для таких функций и 1. Теорема 10.1, замечание 1, а также результат примера 10.2 указывают на то, что скорость сходимости резко падает при увеличении величины Действительно, известно, что градиентный метод сходится очень медленно, если поверхности уровня минимизируемой функции сильно вытянуты в некоторых направлениях. В двумерном случае рельеф соответствующей поверхности напоминает рельеф местности с оврагом (рис. 10.7). Поэтому такие функции принято называть овражными. Вдоль направлений, характеризующих "дно оврага", овражная функция меняется незначительно, а в других направлениях, характеризующих "склон оврага", происходит резкое изменение функции.

Если начальная точка попадает на "склон оврага", то направление градиентного спуска оказывается почти перпендикулярным "дну оврага" и очередное приближение попадает на противоположный "склон оврага". Следующий шаг в направлении ко "дну оврага" возвращает приближение на первоначальный "склон оврага". В результате вместо того чтобы двигаться вдоль "дна оврага" в направлении к точке минимума, траектория спуска совершает зигзагообразные скачки поперек "оврага", почти не приближаясь к цели (рис. 10.7).

Для ускорения сходимости градиентного метода при минимизации овражных функций разработан ряд специальных "овражных" методов. Дадим представление об одном из простейших приемов. Из двух близких начальных точек совершают градиентный спуск на "дно оврага". Через найденные точки проводят прямую, вдоль которой совершают большой "овражный" шаг (рис. 10.8). Из найденной таким образом точки снова делают один шаг градиентного спуска в точку Затем совершают второй "овражный" шаг вдоль прямой, проходящей через точки . В результате движение вдоль "дна оврага" к точке минимума существенно ускоряется.

Более подробную информацию о проблеме "оврагов" и "овражных" методах можно найти, например, в , .

3. Другие подходы к определению шага спуска.

Как нетрудно понять, на каждой итерации было бы желательно выбирать направление спуска близкое к тому направлению, перемещение вдоль которого приводит из точки в точку х. К сожалению, антиградиент (является, как правило, неудачным направлением спуска. Особенно ярко это проявляется для овражных функций. Поэтому возникает сомнение в целесообразности тщательного поиска решения задачи одномерной минимизации (10.23) и появляется желание сделать в направлении лишь такой шаг, который бы обеспечил "существенное убывание" функции Более того, на практике иногда довольствуются определением значения которое просто обеспечивает уменьшение значения целевой функции.

Метод Гаусса-Зейделя

Метод заключается в поочерёдном нахождении частных экстремумов целевой функции по каждому фактору. При этом на каждом этапе стабилизируют (k-1) факторов и варьируют только один i-ый фактор

Порядок расчёта: в локальной области факторного пространства на основании предварительных опытов выбирают точку, соответствующую наилучшему результату процесса, и из неё начинают движение к оптимуму. Шаг движения по каждому фактору задаётся исследователем. Вначале фиксируют все факторы на одном уровне и изменяют один фактор до тех пор, пока будет увеличение (уменьшение) функции отклика (Y), затем изменяют другой фактор при стабилизации остальных и т. д. до тех пор пока не получат желаемый результат (Y). Главное правильно выбрать шаг движения по каждому фактору.

Этот способ наиболее прост, нагляден, но движение к оптимуму длительно и метод редко приводит в оптимальную точку. В настоящее время он иногда применяется при машинном эксперименте.

Эти методы обеспечивают движение к оптимуму по прямой перпендикулярной к линиям равного отклика, т. е. в направлении градиента функции отклика.

Градиентные методы имеют несколько разновидностей, различающихся правилами выбора ступеней варьирования и рабочих шагов на каждом этапе движения к экстремуму.

Сущность всех методов состоит в следующем: первоначально на основании предварительных опытов выбирают базовую точку. Затем на каждом этапе вокруг очередной базовой точки организуют пробные эксперименты, по результатам которых оценивают новое направление градиента, после чего в этом направлении совершают один рабочий шаг.

Метод градиента (обычный) осуществляется по следующей схеме:

а) выбирают базовую точку;

б) выбирают шаги движения по каждому фактору;

в) определяют координаты пробных точек;

г) проводят эксперименты в пробных точках. В результате получают значения параметра оптимизации (Y) в каждой точке.

д) по результатам опытов вычисляют оценки составляющих вектор-градиента в т. М для каждого i-го фактора:


где H i -шаг движения по X i .

X i – координаты предыдущей рабочей точки.

ж) координаты этой рабочей точки принимают за новую базовую точку, вокруг которой проводят эксперименты в пробных точках. Вычисляют градиент и т. д., пока не достигнут желаемого параметра оптимизации (Y). Корректировка направления движения производится после каждого шага.

Достоинства метода: простота, более высокая скорость движения к оптимуму.

Недостатки: большая чувствительность к помехам. Если кривая имеет сложную форму, метод может не привести к оптимуму. Если кривая отклика пологая - метод малоэффективен. Метод не даёт информации о взаимодействии факторов.

а) Метод крутого восхождения (Бокса - Уилсона).

б) Принятие решений после крутого восхождения.

в) Симплексный метод оптимизации.

г) Достоинства и недостатки методов.

5.7.3 Метод крутого восхождения (Бокса- Уилсона)

Этот метод является синтезом лучших черт градиентных методов, метода Гаусса-Зейделя и методов ПФЭ и ДФЭ – как средства получения математической модели процесса. Решение задачи оптимизации данным методом выполняется так, чтобы шаговое движение осуществлялось в направлении наискорейшего возрастания (убывания) параметра оптимизации. Корректировка направления движения (в отличие от градиентных методов) производится не после каждого шага, а по достижению частного экстремума целевой функции. Далее в точках частного экстремума ставится новый факторный эксперимент, составляется новая математическая модель и вновь повторяется крутое восхождение до достижения глобального оптимума. Движение по градиенту начинают из нулевой точки(центра плана).

Метод крутого восхождения предполагает движение к оптимуму по градиенту.

Где i,j,k-единичные векторы в направлении соответствующих координатных осей.

Порядок расчёта .

Исходными данными является математическая модель процесса, полученная любым способом (ПФЭ, ДФЭ и т.д.).

Расчеты проводят в следующем порядке:

а) уравнение регрессии лучше перевести в натуральный вид по формулам кодирования переменных:

где x i -кодированное значение переменной x i ;

X i - натуральное значение переменной x i ;

X i Ц -центральный уровень фактора в натуральном виде;

l i -интервал варьирования фактора x i в натуральном виде.

б) вычисляют шаги движения к оптимуму по каждому фактору.

Для этого вычисляют произведения коэффициентов уравнения регрессии в натуральном виде на соответствующие интервалы варьирования

B i *.l I ,

Затем выбирают из полученных произведений максимальное по модулю,а соответствующий этому произведению фактор принимают за базовый фактор(B a l a). Для базового фактора следует установить шаг движения, который рекомендуется задавать меньшим или равным интервалу варьирования базового фактоpa


Знак шага движения l a ’ должен совпадать со знаком коэффициента уравнения регрессии, соответствующего базовому фактору (B a). Величина шагов для других факторов вычисляется пропорционально базовому по формуле:

Знаки шагов движения также должны совпадать со знаками соответствующих коэффициентов уравнения регрессии.

в) вычисляют функцию отклика в центре плана, т. е. при значениях факторов равных центральному уровню факторов, т. к. движение к оптимуму начинают из центра плана.

Далее производят вычисление параметра оптимизации, увеличивая значения факторов на величину соответствующего шага движения, если хотят получить Y max . В противном случае, если необходимо получить Y min , значения факторов уменьшают на величину шага движения.

Процедуру повторяют, последовательно увеличивая количество шагов до тех пор, пока не достигнут желаемого значения параметра оптимизации (Y). Каждый из факторов после g шагов будет иметь значение:

Если Y® max X i =X i ц +gl i ` ’

если Y® min .X i =X i ц -gl i ` . (5.36)

Лекция 6.

Градиентные методы решения задач нелинейного программирования.

Вопросы: 1. Общая характеристика методов.

2. Метод градиента.

3. Метод наискорейшего спуска.

4. Метод Франка-Фулфа.

5. Метод штрафных функций.

1. Общая характеристика методов.

Градиентные методы представляют собой приближенные (итерационные) методы решения задачи нелинейного программирования и позволяют решить практически любую задачу. Однако при этом определяется локальный экстремум. Поэтому целесообразно применять эти методы для решения задач выпуклого программирования, в которых каждый локальный экстремум является и глобальным. Процесс решения задачи состоит в том, что, начиная с некоторой точки х (начальной), осуществляется последовательный переход в направлении gradF(x), если определяется точка максимума, и –gradF(x) (антиградиента), если определяется точка минимума, до точки, являющейся решением задачи. При этом эта точка может оказаться как внутри области допустимых значений, так и на ее границе.

Градиентные методы можно разделить на два класса (группы). К первой группе относятся методы, в которых все исследуемые точки принадлежат допустимой области. К таким методам относятся: метод градиента, наискорейшего спуска, Франка-Вулфа и др. Ко второй группе относятся методы, в которых исследуемые точки могут и не принадлежать допустимой области. Общим из таких методов является метод штрафных функций. Все методы штрафных функций отличаются друг от друга способом определения «штрафа».

Основным понятием, используемым во всех градиентных методах, является понятие градиента функции, как направления наискорейшего возрастания функции.

При определении решения градиентными методами итерационный процесс продолжается до тех пор, пока:

Либо grad F(x*) = 0, (точное решение);

где
- две последовательные точки,
- малое число, характеризующее точность решения.

2. Метод градиента.

Представим человека, стоящего на склоне оврага, которому необходимо спуститься вниз (на дно). Наиболее естественным, кажется, направление в сторону наибольшей крутизны спуска, т.е. направление (-grad F(x)). Получаемая при этом стратегия, называемая градиентным методом , представляет собой последовательность шагов, каждый из которых содержит две операции:

а) определение направления наибольшей крутизны спуска (подъема);

б) перемещение в выбранном направлении на некоторый шаг.

Правильный выбор шага имеет существенное значение. Чем шаг меньше, тем точнее результат, но больше вычислений. Различные модификации градиентного метода и состоят в использовании различных способов определения шага. Если на каком-либо шаге значение F(x) не уменьшилось, это означает, что точку минимума «проскочили», в этом случае необходимо вернуться к предыдущей точке и уменьшить шаг, например, вдвое.

Схема решения.

принадлежащей допустимой области

3. Выбор шага h.

x (k+1) = x (k)

«-» - если min.

5. Определение F(x (k +1)) и:

Если
, решение найдено;

Замечание. Если grad F(x (k)) = 0, то решение будет точным.

Пример. F(x) = -6x 1 + 2x 1 2 – 2x 1 x 2 + 2x 2 2
min,

x 1 +x 2 2,x 1 0, x 2 0,= 0,1.

3. Метод наискорейшего спуска.

В отличие от метода градиента, в котором градиент определяют на каждом шаге, в методе наискорейшего спуска градиент находят в начальной точке и движение в найденном направлении продолжают одинаковыми шагами до тех пор, пока значение функции уменьшается (увеличивается). Если на каком-либо шаге F(x) возросло (уменьшилось), то движение в данном направлении прекращается, последний шаг снимается полностью или наполовину и вычисляется новое значение градиента и новое направление.

Схема решения.

1. Определение х 0 = (х 1 ,x 2 ,…,x n),

принадлежащей допустимой области,

и F(x 0), k = 0.

2. Определение grad F(x 0) или –gradF(x 0).

3. Выбор шага h.

4. Определение следующей точки по формуле

x (k+1) = x (k) h grad F(x (k)), «+» - если max,

«-» - если min.

5. Определение F(x (k +1)) и:

Если
, решение найдено;

Если нет:

а) при поиске min: - если F(x (k +1))

Если F(x (k +1)) >F(x (k)) – переход к п. 2;

б) при поиске max: - еслиF(x (k +1)) >F(x (k)) – переход к п. 4;

Если F(x (k +1))

Замечания: 1. Если grad F(x (k)) = 0, то решение будет точным.

2. Преимуществом метода наискорейшего спуска является его простота и

сокращение расчетов, так как grad F(x) вычисляется не во всех точках, что

важно для задач большой размерности.

3. Недостатком является то, что шаги должны быть малыми, чтобы не

пропустить точку оптимума.

Пример. F(x) = 3x 1 – 0,2x 1 2 + x 2 - 0,2x 2 2
max,

x 1 + x 2 7, x 1 0,

x 1 + 2x 2 10, x 2 0.

4. Метод Франка-Вулфа.

Метод используется для оптимизации нелинейной целевой функции при линейных ограничениях. В окрестности исследуемой точки нелинейная целевая функция заменяется линейной функцией и задача сводится к последовательному решению задач линейного программирования.

Схема решения.

1. Определение х 0 = (х 1 ,x 2 ,…,x n), принадлежащей допустимой области, и F(x 0), k = 0.

2. Определение grad F(x (k)).

3. Строят функцию

(min – «-»;max– «+»).

4. Определение max(min)f(x) при исходных ограничениях. Пусть это будет точка z (k) .

5. Определение шага вычислений x (k +1) =x (k) + (k) (z (k) –x (k)), где (k) – шаг, коэффициент, 0 1. (k) выбирается так, чтобы значение функции F(x) было max (min) в точке х (k +1) . Для этого решают уравнение
и выбирают наименьший (наибольший) из корней, но 0 1.

6. Определение F(x (k +1)) и проверяют необходимость дальнейших вычислений:

Если
или grad F(x (k +1)) = 0, то решение найдено;

Если нет, то переход к п. 2.

Пример. F(x) = 4x 1 + 10x 2 –x 1 2 –x 2 2
max,

x 1 +x 2 4, x 1 0,

x 2 2, x 2 0.

5. Метод штрафных функций.

Пусть необходимо найти F(x 1 ,x 2 ,…,x n)
max(min),

g i (x 1 , x 2 ,…,x n) b i , i =
, x j 0, j =.

Функции F и g i – выпуклые или вогнутые.

Идея метода штрафных функций заключается в поиске оптимального значения новой целевой функции Q(x) = F(x) + H(x), которая является суммой исходной целевой функции и некоторой функции H(x), определяемой системой ограничений и называемой штрафной функцией. Штрафные функции строят таким образом, чтобы обеспечить либо быстрое возвращение в допустимую область, либо невозможность выходы из нее. Метод штрафных функций сводит задачу на условный экстремум к решению последовательности задач на безусловный экстремум, что проще. Существует множество способов построения штрафной функции. Наиболее часто она имеет вид:

H(x) =
,

где

- некоторые положительные Const.

Примечание :

Чем меньше , тем быстрее находится решение, однако, точность снижается;

Начинают решение с малых и увеличивают их на последующих шагах.

Используя штрафную функцию, последовательно переходят от одной точки к другой до тех пор, пока не получат приемлемое решение.

Схема решения.

1. Определение начальную точку х 0 = (х 1 ,x 2 ,…,x n), F(x 0) и k = 0.

2. Выбирают шаг вычислений h.

3. Определяют частные производные и.

4. Определяют координаты следующей точки по формуле:

x j (k +1)
.

5. Если x (k +1) Допустимой области, проверяют:

а) если
- решение найдено, если нет – переход к п. 2.

б) если grad F(x (k +1)) = 0, то найдено точное решение.

Если x (k +1) Допустимой области, задают новое значениеи переходят к п. 4.

Пример. F(x) = – x 1 2 – x 2 2
max,

(x 1 -5) 2 +(x 2 -5) 2 8, x 1 0, x 2 0.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта