Главная » Условно-съедобные грибы » Виды математических моделей. Математическое моделирование

Виды математических моделей. Математическое моделирование

Мастер – класс

« Использование моделирования в обучении математике»

Цель:

Содействовать систематизации знаний учителей о моделировании и подготовке педагогов к использованию учебных моделей в образовательном процессе по математике.

Задачи:

Создать условия для организации работы по освоению педагогами учебных моделей и определению возможностей и эффективности их применения в процессе обучении математике.

    Организационный этап.

Создание психологической готовности участников мастер-класса к совместной работе.

Уважаемые коллеги, здравствуйте! Я рада приветствовать вас на своём мастер-классе.

Тема моего мастер-класса «Использование моделирования в обучении математике ».

Перед вами лежит таблица-фиксация знаний, заполните, пожалуйста, вторую графу «Знаю» по данной теме и отложите.

Хочу узнать

Моделирование

Моя цель: Способствовать систематизации знаний учителей о моделировании и подготовке педагогов к использованию учебных моделей в образовательном процессе по математике.

А Ваша цель? (ответы)

2. Актуальность.

- Как вы думаете, почему именно математика так широко представлена в программе начального образования?

Математика как учебный предмет в начальной школе призвана максимально развивать личность младшего школьника, способствовать становлению его самостоятельности в учебно-познавательной деятельности, поэтому она широко представлена в программе начального образования: 4 часа в неделю или 536 часов за курс начальной школы. Задача учителя начальной школы – сформировать у всех детей базовый уровень математических представлений и способов деятельности, необходимых для социальной адаптации в обществе. Решение этой задачи часто вызывает большие трудности, так как ни один из математических объектов в реальной действительности не существует, а мышление детей младшего школьного возраста по преимуществу наглядно-образное, способности даже к простейшему осмыслению математического материала весьма различны.

Поэтому современные требования к формированию умственных действий на уроках математики требуют применения наиболее эффективных методов и приёмов обучения. Одним из них является метод моделирования.

Метод моделирования стал одним из основных методов научного исследования. Этот метод в отличие от других является всеобщим, используется во всех науках, на всех этапах научного исследования. Он обладает огромной эвристической силой, позволяет свести изучение сложного к простому, невидимого и неощутимого – к видимому и ощутимому, незнакомого – к знакомому, т.е. сделать сложное явление реальной действительности доступным для тщательного и всестороннего изучения. В связи с этим применение моделей и моделирования в обучении, по мнению большинства ученых теоретиков, приобретает особое значение для повышения теоретического уровня педагогической науки и практики.

Необходимость овладения младшими школьниками методом моделирования как методом познания в процессе обучения можно обосновать с разных позиций.

- Как вы думаете с каких?

Во-первых, как показывают эксперименты, введение в содержание обучения понятий модели и моделирования существенно меняет отношение учащихся к учебному предмету, делает их учебную деятельность более осмысленной и более продуктивной.

Во-вторых, целенаправленное и систематическое обучение методу моделирования приближает младших школьников к методам научного познания, обеспечивает их интеллектуальное развитие.

- В определении моделирования вставьте пропущенные слова.

«Моделирование – это метод опосредованного познания, при котором изучается не интересующий нас объект, а его заместитель (модель ), находящийся в некотором объективном соответствии с познавательным объектом, способный замещать его в определённых отношениях и дающий при этом новую информацию об объекте» (Л. М. Фридман) Слайд 2

При введение моделирования в содержание обучения математике важно, чтобы учащиеся сами овладели методом моделирования, научились строить и преобразовывать модели, отражая различные отношения и закономерности, сами изучали какие-либо объекты, явления с помощью моделирования.

Когда учащиеся, решая практическую математическую задачу, понимают, что она представляет собой знаковую модель некоторой реальной ситуации, составляют последовательность различных ее моделей, затем изучают (решают) эти модели и, наконец, переводят полученное решение на язык исходной задачи, то тем самым школьники овладевают методом моделирования.

    Знакомство с видами моделей.

- Какие виды моделей вы знаете и применяете на практике? (при затруднении предлагается выбрать из предложенных вариантов: вербальные, словесные, иллюстрационные, предметные, эвристические, схематические, математические, геометрические)

Виды моделей: вербальные, предметные, схематические, математические.

Можно выделить четыре модели, которые используются при работе над задачей на уроках математики: предметные, вербальные, схематические, математические.

Составляется кластер. (Сначала самостоятельно, а в процессе работы изменяется, пополняется, исправляются недочёты.)

Примерами предметных моделей могут быть сюжетные иллюстрации, отдельные предметы или их изображения. Слайд 3

К группе вербальных моделей мы относим в первую очередь сам текст задачи, кроме того, различные виды кратких записей текста задачи. Для некоторых текстовых задач более удобной формой вербальной модели является таблица. Слайд 4

Коля – 3

Таня - ?, на 2больше

Всего - ?

Схематические модели служат для визуального представления задачной ситуации, но здесь используются не конкретные предметы и их изображения, а различного рода условные обозначения, которые заменяют реальные предметы(например, круги, квадраты, отрезки, точки и т.п.).

Наиболее распространённые в начальной школе модели этого вида – схематические иллюстрации и схематические чертежи. Слайд 6

Под математическими моделями надо понимать математические выражения или равенства (3+4, 3+5=8). Слайд 7

Математическое выражение (например, запись вида 5+3);

Математическое равенство (например, запись вида 5+3=8).

(Раздаточный материал для групп «Виды моделей»)

4.Действия которые можно проводить с моделями.

Чтобы процесс переходов от одной модели к другой при решении текстовой задачи был продуманным, хорошо организованным и эффективным, важно разработать комплекс дидактических заданий по работе с учебными моделями.

- Давайте уточним, какие действия можно проводить с моделями?

1)Задания на соотнесение моделей: Слайд 8

при выполнении заданий на соотнесение моделей ребёнок должен определить, соответствуют ли друг другу предложенные для сравнения модели, и объяснить, почему соответствие есть или отсутствует. Например, дан рисунок, схема и равенство. Ученик рассказывает, почему схема подходит к рисунку и к равенству. Слайд 9

2) Задания на построение модели:

самостоятельно построить на парте из геометрических фигур схему, соответствующую рисунку, тексту задачи или математической записи, составить математическое выражение, соответствующее предложенному рисунку, схеме или тексту задачи. Слайд 10

3) Задания на выбор модели:

при выполнении заданий этой группы дети из нескольких предложенных вариантов выбирают тот, который соответствует другой модели. Слайд 11

4) Примеры заданий на изменение модели:

изменить предложенную схему так, чтобы новая схема соответствовала сюжетной иллюстрации, тексту задачи, числовому выражению или равенству;

изменить предложенный текст задачи так, чтобы новый текст соответствовал сюжетной иллюстрации, схеме, числовому выражению. Слайд 12

Многие задания в учебнике можно дифференцировать.

Использование учебных моделей позволяет сделать более доступным для ребёнка восприятие и понимание текста задачи, поскольку модели помогают визуализировать скрытые при непосредственном наблюдении связи и отношения, представленные в тексте задачи.

Благодаря возможности наглядно представлять наиболее существенные характеристики изучаемого объекта, модель служит весьма продуктивным видом визуализации.

Поскольку мышление детей младшего школьного возраста по преимуществу наглядно-образное, опора на модели делает возможным приобщение учеников к некоторым (пусть самым простым) теоретическим обобщениям. Это весьма значимо на первых шагах обучения решению задачи. Однако для того, чтобы работа с моделями приводила к максимальной «отдаче», их применение должно быть последовательным и систематическим.

Слайд 13 (пустой)

(Раздаточный материал « Группы заданий, ориентированных на выполнение одного из следующих действий:….»

5. Группы заданий, ориентированных на выполнение одного из следующих действий:

- задания на соотнесение моделей:

1. Соотнесение предметной и вербальной моделей.

2. Соотнесение предметной и схематической моделей. Подходит ли схема к рисунку?

3.Соотнесение предметной и математической моделей.

Верно ли составлен пример к рисунку?

4.Соотнесениевербальной и математической моделей.

Верно ли Ваня решил задачу?

5.Соотнесение вербальной и схематической моделей.

Проверь, верно ли Петя составил схему к задаче.

6.Соотнесение схематической и математической моделей.

Верно ли составлен пример к схеме

- выбор модели:

1. Задания на выбор модели при сравнении предметных и вербальных моделей.

Какая краткая запись подходит к рисунку?

2. Задания на выбор модели при сравнении предметных и схематических моделей.

Выбери схему к рисунку.

3. Задания на выбор модели при сравнении предметных и математических моделей.

Какой пример подходит к рисунку?

4.Задания на выбор модели при сравнении вербальных и математических моделей.

Выбери верное решение задачи .

5. Задания на выбор модели при сравнении вербальных и схематических моделей.

Выбери схему

6. Задания на выбор модели при сравнении схематических и математических моделей.

Какой пример подходит к схеме?

- изменение модели:

1. Задание на изменение модели в паре « Предметная модель – вербальная модель»

Измени рисунок так, чтобы он соответствовал тексту задачи. Или наоборот.

Измени краткую запись, чтобы она подходила к рисунку

2. Задание на изменение модели в паре « Предметная модель – схематическая модель»

Дополни схему

3. Задание на изменение модели в паре « Предметная модель – математическая модель»

Петя записал пример к рисунку. Часть примера не видна. Дополни запись.

4. Задание на изменение модели в паре « Вербальная модель – математическая модель»

Измените текст задачи, чтобы она решалась так:

5. Задание на изменение модели в паре « Вербальная модель – схематическая модель »

Исправь схему

6. . Задание на изменение модели в паре « Схематическая модель – математическая модель»

Катя сделала схему, исправь её ошибку.

- Дополни условие и вопрос, чтобы задача решалась сложением.

- Измени схему так, чтобы показать её с помощью действия вычитания

- построение модели:

1.Задание на построение модели в паре « Предметная модель – вербальная модель»

Составь задачу по рисунку или сделай рисунок к тексту задачи (краткой записи)

2. Задание на построение модели в паре « Предметная модель – схематическая модель»

Составь схему к предложенному рисунку или, наоборот, сделай рисунок к предложенной схеме

3.Задание на построение модели в паре « Предметная модель – математическая модель»

Составь пример к рисунку

4.Задание на построение модели в паре «Вербальная модель – математическая модель»

Составь задачу, которая решается так 5. Задание на построение модели в паре « Вербальная модель – схематическая модель»

Составь задачу по схеме

Составь пример по схеме или схему к выражению

6. Работа в группах:

Задания для работы в группах

1) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и вербальной моделей при работе над задачей.

2) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и вербальной моделей при работе над задачей.

а) Подходит ли схема к рисунку?

б)Проверь, верно ли Катя составила схему к задаче?

в) Проверь, верно ли Сергей решил задачу.

г) Подходит ли краткая запись к рисунку?

д) Верно ли составлен пример к рисунку?

е) Верно ли составлен пример к схеме?

3) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и схематической моделей при работе над задачей.

а) Верно ли составлен пример к схеме?

б) Подходит ли рисунок к задаче?

в) Проверь, верно ли Сергей решил задачу.

г) Подходит ли схема к рисунку?

д) Верно ли составлен пример к рисунку?

е) Проверь, верно ли Катя составила схему к задаче?

1) Определите задание на выбор модели . Слайд 14

    Определите задание на соотнесение моделей . Слайд 15

3) Определите задание на построение моделей. Слайд 16

7.Методические варианты использования моделей. Слайд 17

Методические варианты использования моделей: репродуктивно-наглядный, продуктивно-наглядный, репродуктивно-практический, продуктивно-практический. Рассмотрим примеры использование моделей для поиска решения текстовой задачи: « У Коли 3 яблока, а у Лены 2 яблока. Сколько яблок у детей вместе?»

Вариант 1. Репродуктивно-наглядный

Учитель демонстрирует модель (на доске, наборном полотне) и на её основе даёт словесное объяснение о способе решения задачи. При этом объяснение выступает репродуктивной передачей информации от учителя к детям.

Ребята, я располагаю на наборном полотне 3 кружка слева, потому что у нас в задаче сказано, что у Коли было 3 яблока, и 2 кружка справа - столько яблок, по условию задачи у Лены. В задаче нужно узнать, сколько всего яблок у детей, поэтому я придвину кружки друг к другу. Значит, эта задача решается с помощью действия сложения. Давайте запишем вместе решение задачи: 3+2=5.

Вариант 2. Продуктивно-наглядный

Учитель демонстрирует модель (на доске, на наборном полотне) и в процессе её построения проводит с детьми беседу эвристического характера с тем, чтобы дети сами «открыли» способ решения задачи. Здесь используется продуктивная форма получения знания.

Пример объяснения решения задачи:

Дети, сейчас я покажу слева яблоки Коли, а справа яблоки Лены. Сколько кружков я должна поставить слева? Почему? (После ответов детей учитель располагает на наборном полотне 3 кружка слева.) Сколько кружков нужно расположить на наборном полотне справа? Почему? (После ответов детей учитель располагает на наборном полотне 2 кружка справа.) Что нужно сделать, чтобы показать, что мы собираем вместе яблоки Коли и Лены? (После ответов детей учитель придвигает одни кружки к другим). Каким действием решается задача? Почему? Как запишем решение задачи?

Вариант 3. Репродуктивно-практический

Учитель строит модель (на доске, на наборном полотне) и одновременно просит детей построить такую же модель на парте или в тетради. В ходе построения модели учитель даёт словесное объяснение репродуктивного характера о способе решения задачи.

Пример объяснения решения задачи:

Дети, сейчас я на наборном полотне поставлю 3 кружка слева, потому что, по условию задачи, у Коли было 3 яблока, а 2 кружка справа – столько яблок у Лены. Положите вместе со мной 3 кружка на парте слева, а 2 кружка на парте справа. В задаче нужно узнать, сколько всего яблок у детей. Поэтому я придвину кружки друг к другу и вы тоже на партах придвиньте свои кружки друг к другу. Так как мы с вами придвигаем кружки, задача решается сложением. Давайте запишем вместе решение задачи: 3+2=5.

Вариант 4. Продуктивно - практический

Учитель строит модель (на доске, наборном полотне) и одновременно просит детей построить такую же модель на парте или в тетради. В процессе построения модели учитель проводит с детьми беседу эвристического характера с тем, чтобы дети сами «открыли» способ решения задачи.

Пример объяснения решения задачи

Дети, давайте покажем слева яблоки Коли, а справа яблоки Лены. Сколько кружков мы должны показать слева? Почему? Давайте вместе сделаем это: я поставлю кружки слева на наборном полотне, а вы положите их слева у себя на парте.

Сколько кружков мы должны показать справа? Почему? Давайте вместе сделаем это: я поставлю кружки справа на наборном полотне, а вы положите их справа у себя на парте. Что нужно сделать, чтобы показать, что мы собираем вместе яблоки Коли и Лены? Правильно, нужно придвинуть кружки друг к другу. Давайте вместе сделаем это: я на наборном полотне, а вы у себя на партах. Что мы сделали, чтобы найти ответ к задаче? Значит, каким действием решается задача? Как запишем решение задачи?

При объяснении трудного для детей материала рекомендуется чаще использовать продуктивно – практический вариант моделирования, поскольку при этом обеспечивается эвристическая форма передачи информации («субъективное открытие знания») и практическая деятельность ребёнка по построению и преобразованию моделей, что особенно важно для ребёнка со средними или слабыми математическими способностями.

8. Конструкции текста задачи: Слайд 18

(Раздаточный материал для учителей)

    Условие выражено в повествовательной форме, за ним следует вопрос, выраженный вопросительным предложением; наиболее часто встречающаяся конструкция текста.

    Условие выражено в повествовательной форме, за ним следует вопрос, выраженный повествовательным предложением.

    Часть условия выражена в повествовательной форме в начале текста, затем вопросительное предложение, включающее вопрос и часть условия.

    Часть условия выражена в повествовательной форме, затем следует также повествовательное предложение, включающее вопрос и часть условия.

    Текст задачи представляет одно сложное вопросительное предложение, в котором сначала стоит вопрос задачи, затем условие.

9. Задания для работы в группах:

1 . Каждой группе подобрать из учебника или составить задачу 2,3,4,5 конструкций.

2. Практикум « Виды работ над задачей»

1) на нахождение остатка (опорное слово: осталось)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 1(блок « Задания на изменение модели»)

    изменить конструкцию задачи

2)на нахождение суммы (опорное слово: стало)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 2 (блок « Задания на соотнесение модели»)

    изменить конструкцию задачи

3)на нахождение разности (опорное слово: на сколько)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 1 (блок « Задания на построение модели»)

    изменить конструкцию задачи

10. Практикум «Разработка вспомогательных моделей, которые используются при решении задач в начальной школе» Объединение моделей в систему.

1 тип схем

a b

2 тип схем

?, на б/м

a b

3 тип схем

Было –

Стало --

a b

4 тип схем

Было –

Осталось --

a

b c

5 тип схем

a c

Рефлексия мастер-класса

Возьмите карточку с таблицей-фиксацией, если есть, чем дополнить, впишите в третий столбик. Кто может зачитать данные своей таблицы? (Ответы участников)

Метод « Чемодан, Корзина, Мясорубка»

Определить доминирующие признаки классификации объекта локализации и разработать математическую модель под задачи анализа изображений мимики.

Задачи

Поиск и анализ способов локализации лица, определение доминирующих признаков классификации, разработка математической модели оптимальной под задачи распознавания движения мимики.

Тема

Помимо определения оптимального цветового пространства для построения выделяющихся объектов на заданном классе изображения, которая проводилась на предыдущем этапе исследования, немаловажное значение также играет определение доминирующих признаков классификации и разработка математической модели изображений мимики.

Для решения данной задачи необходимо, прежде всего, задать системе особенности модификации задачи обнаружения лица видеокамерой, а затем уже проводить локализацию движения губ.

Что касается первой задачи, то следует выделить две их разновидности:
Локализация лица (Face localization);
Отслеживание перемещения лица (Face tracking) .
Так как перед нами стоит задача разработки алгоритма распознавания мимики, то логично предположить, что данную систему будет использовать один пользователь, который не слишком активно будет двигать головой. Следовательно, для реализации технологии распознавания движения губ необходимо взять за основу упрощенный вариант задачи обнаружения, где на изображении присутствует одно и только одно лицо.

А это значит, что поиск лица можно будет проводить сравнительно редко (порядка 10 кадров/сек. и даже менее). Вместе с тем, движения губ говорящего во время разговора являются достаточно активными, а, следовательно, оценка их контура должна проводиться с большей интенсивностью.

Задача поиска лица на изображении может быть решена существующими средствами. Сегодня имеются несколько методов обнаружения и локализации лица на изображении, которые можно разделить на 2 категории:
1. Эмпирическое распознавание;
2. Моделирование изображения лица. .

К первой категории относятся методы распознавания «сверху-вниз» на основе инвариантных свойств (invariant features) изображений лица, опираясь на предположение, что существуют некоторые признаки присутствия лиц на изображении инвариантные относительно условий съемки. Данные методы можно разделить на 2 подкатегории:
1.1. Обнаружение элементов и особенностей (features), которые характерны для изображения лица (края, яркость, цвет, характерная форма черт лица и др.) , .;
1.2. Анализ обнаруженных особенностей, вынесение решения о количестве и расположении лиц (эмпирический алгоритм, статистика взаимного расположения признаков, моделирование процессов визуальных образов, применение жестких и деформируемых шаблонов и т.д.) , .

Для корректной работы алгоритма необходимо создание базы данных особенностей лица с последующим тестированием. Для более точной реализации эмпирических методов могут быть использованы модели, которые позволяют учесть возможности трансформации лица, а, следовательно, имеют либо расширенный набор базовых данных для распознавания, либо механизм, позволяющий моделировать трансформацию на базовых элементах. Сложности с построением базы данных классификатора ориентированных на самый различный спектр пользователей с индивидуальными особенностями, чертами лица и так далее, способствует снижению точности распознавания данного метода.

Ко второй категории относятся методы математической статистики и машинного обучения. Методы этой категории опираются на инструментарий распознавания образов, рассматривая задачу обнаружения лица, как частный случай задачи распознавания. Изображению ставится некий вектор признаков, который используется для классификации изображений на два класса: лицо/не лицо. Самый распространенный способ получения вектора признаков это использование самого изображения: каждый пиксель становится компонентом вектора, превращая изображение n×m в вектор пространства R^(n×m), где n и m – целые положительные числа. . Недостатком такого представления является чрезвычайно высокая размерность пространства признаков. Достоинство этого метода стоит в исключении из всей процедуры построение классификатора участия человека, а также возможность тренировки самой системы под конкретного пользователя. Поэтому использование методов моделирования изображения для построения математической модели локализации лица является оптимальным для решения нашей задачи.

Что касается сегментирования профиля лица и отслеживания положение точек губ по последовательности кадров, то для решения данной задачи также следует использовать математические методы моделирования. Имеются несколько способов определения движения мимики, самыми известными из них являются использование математической модели на основе активных контурных моделей:

Локализация области мимики на основе математической модели активных контурных моделей

Активный контур (змейка) – это деформирующаяся модель, шаблон которой задан в форме параметрической кривой, инициализированный вручную набором контрольных точек, лежащих на открытой или замкнутой кривой на входном изображении.

Для адаптации активного контура к изображению мимики необходимо провести соответствующую бинариризацию исследуемого объекта, то есть его преобразование в разновидность цифровых растровых изображений, а затем уже следует проводить соответствующую оценку параметров активного контура и вычисление вектора признаков.

Активная контурная модель определяется как:
Множество точек N;
Внутренних областей энергии интереса (internal elastic energy term);
Внешних областей энергии интереса (external edge based energy term).

Для улучшения качества распознавания выделяются два цветовых класса – кожа и губы. Функция принадлежности цветовому классу имеет значение в диапазоне от 0 до 1.

Уравнение активной контурной модели (змейки) представляется выражающейся формулой v(s) как:

Где E – это энергия змейки (активной контурной модели). Первые два терма описывают энергию регулярности активной контурной модели (змейки). В нашей полярной координатной системе v(s) = , s от 0 до 1. Третье слагаемое – энергия, относящаяся ко внешней силе, полученной из изображения, четвертое – с силой давления.

Внешняя сила определяется, исходя из вышеописанных характеристик. Она способна сдвинуть контрольные точки к некоторому значению интенсивности. Она вычисляется как:

Множитель градиента (производная) вычисляется в точках змейки вдоль соответствующей радиальной линии. Сила увеличивается, если градиент отрицательный и уменьшается в обратном случае. Коэффициент перед градиентом – это весовой фактор, зависящий от топологии изображения. Сжимающая сила – это просто константа, используется ½ от минимального весового коэффициента. Наилучшая форма змейки получается при минимизации энергетического функционала после некоторого числа итераций.

Рассмотрим основные операции обработки изображения более подробно. Для простоты предположим, что мы уже каким-то образом выделили область рта диктора. В этом случае основные операции по обработке полученного изображения, которые нам необходимо выполнить, представлены на рис. 3.

Заключение

Для определения доминирующих признаков классификации изображения в ходе проведения исследовательской работы было выявлены особенности модификации задачи обнаружения лица видеокамерой. Среди всех методов локализации лица и обнаружения исследуемой области мимики наиболее подходящими под задачи создания универсальной системы распознавания для мобильных устройств являются методы моделирования изображения лица.
Разработка математической модели изображений движения мимики основана на системе активных контурных моделей бинаризации исследуемого объекта. Так как данная математическая модель позволяет после смены цветового пространства с RGB в цветовую модель YCbCr осуществлять эффективное преобразование интересуемого объекта, для последующего его анализа на основе активных контурных моделей и выявления четких границ мимики после соответствующих итераций изображения.

Список использованных источников

1. Вежневец В., Дягтерева А. Обнаружение и локализация лица на изображении. CGM Journal, 2003
2. Там же.
3. E. Hjelmas and B.K. Low, Face detection: A survey, Journal of Computer vision and image understanding, vol.83, pp. 236-274, 2001.
4. G. Yang and T.S. Huang, Human face detection in complex background, Pattern recognition, vol.27, no.1, pp.53-63, 1994
5. K. Sobottka and I. Pitas, A novel method for automatic face segmentation, facial feature extraction and tracking, Signal processing: Image communication, Vol. 12, №3, pp. 263-281, June, 1998
6. F. Smeraldi, O. Cormona, and J.Big.un., Saccadic search with Gabor features applied to eye detection and real-time head tracking, Image Vision Comput. 18, pp. 323-329, 200
7. Гомозов А.А., Крюков А.Ф. Анализ эмпирических и математических алгоритмов распознавания человеческого лица. Network-journal. Московский энергетический институт (Технический университет). №1 (18), 2011

Продолжение следует

Для эффективного решения различных задач обработки И необходима их математическая постановка, которая прежде всего включает в себя математическое описание, т. е. модель И как объекта исследования. К настоящему времени разработан целый ряд таких моделей , некоторые из них рассматриваются в этой главе.

1.1. Случайные поля

Наиболее распространенными в настоящее время являются информационные комплексы, включающие в себя пространственные системы датчиков и цифровую вычислительную технику. Поэтому мы будем в основном рассматривать МИ с дискретными пространственными и временными переменными. Не ограничивая общности, будем считать, что МИ заданы на многомерных прямоугольных сетках с единичным шагом. На рис. 1.1,а и 1.1,б изображены двумерная и трехмерная сетки. В общем случае И задано в узлах n-мерной сетки .

В зависимости от физической природы значения И могут быть скалярными (например, яркость монохроматического изображения), векторными (поле скоростей, цветные изображения, поле смещений) и более сложнозначными (например, матричными). Если обозначить через значение И в узле (пикселе) , то И есть совокупность этих значений на сетке: .

Если данные представляют собой временную последовательность И, то иногда удобно считать эту последовательность одним И, увеличив размерность сетки на единицу. Например, последовательность из плоских И (рис. 1.1,а) можно рассматривать как одно трехмерное И (рис. 2.1,б).

Если требуется временную переменную выделить особо, то будем ее записывать сверху: . Это И задано на прямом произведении сеток и I, где I – множество значений временного индекса. Сечение , т.е. совокупность отсчетов И при фиксированном значении временного индекса i, называется i-м кадром И . Каждый кадр задан на сетке . Например, на рис. 1.1,б изображено три двухмерных кадра.

Таким образом, МИ можно рассматривать как некоторую функцию, определенную на многомерной сетке. Значение элементов И невозможно точно предсказать заранее (иначе система наблюдения была бы не нужна), поэтому естественно рассматривать эти значения как случайные величины (СВ), применяя аппарат теории вероятностей и математической статистики. Итак, приходим к основной модели МИ – системе СВ, заданных на многомерной сетке. Такие системы называются дискретными случайными полями (СП) или случайными функциями нескольких переменных.

Для описания СП, как и любой другой системы СВ, можно задать сов-местную функцию распределения вероятностей (ФР) его элементов или совместную плотность распределения вероятностей (ПРВ) . Однако И обычно состоит из очень большого количества элементов (тысячи и миллионы), поэтому ФР (или ПРВ) при таком количестве переменных становится необозримой и требуются другие, менее громоздкие методы описания СП.

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

МОДЕЛИРОВАНИЕ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ ЭЛЕКТРОПРИВОДА

Методические указания и лабораторный практикум для студентов дневного и заочного отделения

Специальность 140604 "Электропривод и автоматика промышленных установок и технологических комплексов"


Печатается по решению редакционно-издательского совета Вятского государственного университета

УДК 621.31112: 621.313

Рецензент: кандидат технических наук доцент каф. АТ В. И. Семёновых

Составитель: преподаватель кафедры ЭПиАПУ Д.В. Ишутинов

Подписано в печать Усл. печ. л. 2,5

Бумага офсетная. Печать копир Aficio 1022

Заказ № 340 Тираж 52 Бесплатно.

Текст напечатан с оригинал-макета, предоставленного составителем

610000, г. Киров, ул. Московская, 36.

Оформление обложки, изготовление – ПРИП ВятГУ

Ó Вятский государственный университет, 2011

ВВЕДЕНИЕ

Аналогия – это частное сходство двух объектов, которое может быть существенным или менее существенным. Существенность сходства зависит от уровня абстрагирования и определяется целью исследования.

Аналогии, отражающие реальный, объективно существующий мир, обладают наглядностью, а значит, упрощают рассуждения и помогают проводить эксперименты, уточняющие природу явлений. Такие аналогии называют моделями .

Модель – это объект-заменитель объекта оригинала, обеспечивающий изучение некоторых свойств оригинала.

Моделирование – это представление реального физического объекта его моделью для получения информации о важнейших свойствах и физических процессах, протекающих в нем, путем проведения экспериментов с его моделью.

В процессе моделирования модель выступает в роли самостоятельного объекта, позволяющие получить некоторые знания – результаты моделирования. Если они подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то модель считается адекватной объекту. На основании адекватных моделей могут исследоваться подобные объекты.


1. КЛАССИФИКАЦИЯ ВИДОВ МОДЕЛИРОВАНИЯ

При разработке и проектировании современных электромеханических систем, представляющих собой сочетание электродвигателя, механической части электропривода и системы управления, возникает необходимость в решении сложных расчетных задач. Для этого во многих случаях прибегают к моделированию.

Виды моделирования можно классифицировать по различным критериям. С точки зрения типа модели и способа представления математического описания классификация представлена на рисунке 1.1.

Таким образом, моделирование может быть условно разделено на два основных вида: математическое и физическое.

Физическим моделированием называют проведение исследований на реальном объекте или его макете. При проведении экспериментов на реальном объекте различные характеристики исследуются на самом объекте или его части. Физическое моделирование может проводиться на объектах, работающих в нормальном режиме или в специальных режимах. Реальное моделирование является наиболее адекватным, но его возможности ограничены физическими, техническими и другими особенностями реальных объектов и систем.

Другим видом физического моделирования является моделирование на макете, которое применяется, в случае если эксперименты с реальным объектом затруднены, невозможны или опасны. Исследования с помощью макета проводятся на установках, которые обладают физическим подобием и сохраняют природу явлений в изучаемом объекте.

Физическое моделирование может протекать в реальном или произвольном масштабе времени. Наибольшую сложность и интерес представляет моделирование в реальном масштабе времени, позволяющее получить наиболее достоверные результаты исследований.

Математическое моделирование может проводиться при помощи аналитических методов исследования, а также с использованием аналоговых (АВМ) и цифровых (ЭВМ) вычислительных машин.

При использовании аналитических методов исследования можно получить в общем виде явные зависимости для искомых характеристик объекта. Аналитическое исследование позволяет получить наиболее общее представление о процессах функционирования системы, однако оно возможно для относительно простых систем, и связано с проведением трудоёмких расчётов. Даже в простейших случаях (для линейных систем) аналитическое моделирование не позволяет получить исчерпывающие результаты. При наличии в системе нелинейных элементов, переменных параметров и других усложняющих расчеты факторов возможности аналитических методов расчёта ещё более ограничены.

Современные вычислительные машины позволяют с достаточной точностью имитировать любые передаточные функции, нелинейные статические характеристики, произведения и частные. Вычислительные машины, а, следовательно, и модели бывают аналоговыми и цифровыми.

Под аналоговой моделью понимается такая, которая описывается уравнениями, связывающими непрерывные величины. Решение дифференциальных уравнений в АВМ носит непрерывный характер. Реальный физический объект заменяется при аналоговом моделировании подобным физическим объектом. В АВМ в качестве такого объекта выступает решающий операционный усилитель. Основным преимуществом моделирования на АВМ является высокая наглядность модели и возможность подключения к модели других технических средств. Также применение АВМ может ускорить исследование достаточно простых систем. С другой стороны возникают проблемы связанные с настройкой сложных моделей; появляются погрешности, обусловленные дрейфом параметров АВМ и кусочной линеаризацией нелинейностей. Максимальная величина выходного напряжения решающего операционного усилителя в АВМ ограничена значением в сто вольт. Поэтому для всех переменных модели вводятся масштабные коэффициенты, в результате чего могут накапливаться дополнительные ошибки.

Под цифровой моделью понимается модель, в которой решение уравнений и процессы, протекающие в ней, носят дискретный характер. Следовательно, все рассчитываемые величины определены в некоторые дискретные интервалы времени. Цифровая модель обладает меньшей физической наглядностью, однако лишена недостатков присущих аналоговой модели. Для проектирования цифровых моделей применяются современные средства вычислительной техники, а расчёт таких моделей основан на применении численных методов.

С помощью средств вычислительной техники математические модели могут исследоваться как прямым решением систем дифференциальных уравнений, так и на основе моделирования по структурным схемам.

В первом случае математическое моделирование заключается в численном решении системы дифференциальных уравнений, описывающей поведение исследуемого объекта. Такая модель не отражает реальной структуры физического объекта. В данном случае для расчета модели не нужно знание специализированных САПР, однако затрудняется понимание структуры реального физического объекта.

Во втором случае строится структурная модель, в которой элементы соединены в соответствии со структурой исследуемой системы. При использовании структурного метода модель системы представляется в виде моделей типовых динамических звеньев ТАР и нелинейных блоков, имитирующих работу отдельных физических узлов исследуемой системы. Применение структурных моделей позволяет при моделировании сохранить структуру исследуемого объекта, и поэтому на модели легко воспроизводится изменение параметров и структуры реального физического объекта, например, включение корректирующих устройств, выбор глубины обратных связей, изменение момента инерции механической части и жесткости механических характеристик.


Методы математического моделирования

Для исследования характеристик технических систем и физических процессов, протекающих при функционировании любой системы, математическими методами должна быть проведена формализация процессов, т.е. построена математическая модель.

Математическое моделирование - это процесс установления соответствия реальному физическому объекту некоторого математического объекта (математического описания), называемого математической моделью , и исследование этой модели, позволяющее получить, с некоторым приближением, характеристики рассматриваемого реального объекта. Математическое моделирование может быть динамическим, имитационным и комбинированным.

При решении задач электропривода используются динамические модели объектов. Такие модели описываются системами дифференциальных уравнений и исследуются при помощи аналитических, численных или качественных методов.

Аналитическое исследование позволяет получить наиболее общее представление о процессах функционирования системы, однако оно возможно лишь для относительно простых или линейных систем.

Численные методы используются, если невозможно разрешить математическое описание системы в общем виде или система существенно не линейна. Численные методы наиболее эффективны при использовании ЭВМ.

В некоторых случаях для исследования системы достаточно качественных методов анализа математической модели. Такие методы применяются в теории автоматического регулирования и позволяют судить, например, об устойчивости системы при определённом управлении.

В общем виде некоторый динамический объект описывается системой дифференциальных уравнений n-го порядка вида:

, (2.1)

где x 1 , x 2 , … x n – переменные динамического объекта;

– скорость изменения (производные) переменных динамического объекта;

– значение переменных в начальный момент времени;

t – независимая переменная.

Математическое моделирование, основанное на решении обыкновенных дифференциальных уравнений, опирается на численные методы. Численные методы позволяют получить приближенные значения реального непрерывного процесса, которые отстоят друг от друга на некоторый интервал времени, называемый шагом интегрирования. Выбор шага интегрирования зависит от динамических свойств моделируемой системы. Для широкого спектра динамических систем численное решение тем точнее, чем меньше шаг интегрирования. Однако, следует иметь ввиду, что чрезмерное уменьшение шага интегрирования может приводить к существенному увеличению затрат машинного времени.

К наиболее часто применяемым методам численного интегрирования дифференциальных уравнений относятся метод Эйлера (метод конечных приращений) и метод Рунге – Кутта четвёртого порядка.

Метод Эйлера основан на разложении подынтегральной функции в окрестности исследуемой точки в ряд Тейлора:

, (2.2)

где h – малая окрестность исследуемой точки (шаг интегрирования);

e - погрешность разложения в ряд Тейлора.

Метод Эйлера учитывает только первую производную ряда Тейлора. Тогда уравнение (2.2) будет иметь вид:

где - правая часть дифференциального уравнения, вычисленная в точке .

Следовательно, для решения уравнения или системы дифференциальных уравнений первого порядка методом Эйлера должна быть составлена следующей система уравнений с начальными условиями:

, (2.4)

где t i , t i +1

x j , i , x j , i+1 – значение j

f j – подынтегральная функция для j – ой переменной;

h – шаг интегрирования;

i = 0 .. m

j = 0 .. n


К достоинствам метода Эйлера можно отнести следующие:

· При достаточно малом шаге интегрирования можно получить высокую точность решения. Погрешность метода примерно равна квадрату шага интегрирования: e » h 2 ;

· Метод Эйлера имеет устойчивый алгоритм вычислений при решении широкого круга задач, связанных с исследованием электромеханических систем электропривода.

К недостаткам метода Эйлера можно отнести то, что уменьшение шага интегрирования необходимое для обеспечения требуемой точности существенно замедляет вычисления.

Метод Рунге – Кутта основан на разложении подынтегральной функции в окрестности исследуемой точки в ряд Тейлора. Вычисление коэффициентов ряда Тейлора (до четвёртого порядка) осуществляется с помощью специальных коэффициентов Рунге – Кутта. Такой подход позволяет получить более высокую точность решения.

Формулы для нахождения численного решения дифференциального уравнения или системы дифференциальных уравнений первого порядка методом Рунге – Кутта имеют следующий вид:

, (2.5)

где t i , t i +1 – значение независимой переменной (времени) на предыдущем и следующем шаге интегрирования;

x j , i , x j , i+1 – значение j – ой переменной динамического объекта на предыдущем и следующем шаге интегрирования;

f j – подынтегральная функция для j – ой переменной;

k l i, j – коэффициенты Рунге – Кутта (l = 1 .. 4 );

h – шаг интегрирования;

i = 0 .. m – число шагов интегрирования;

j = 0 .. n – количество переменных динамического объекта.

К достоинствам метода Рунге – Кутта можно отнести следующие. Высокая точность численного решения. При фиксированном шаге интегрирования погрешность решения примерно равна пятой степени шага интегрирования: e » h 5 .

Однако данный метод не всегда обеспечивает устойчивые решения. Устойчивость решения зависит как от величины шага интегрирования, так и от особенностей динамики исследуемой системы.


3. Динамические расчеты систем по структурным схемам

с использованием системы САПР System View

САПР System View позволяет на уровне структурных моделей производить расчеты динамических систем и получать результаты в виде таблиц, графиков переходных процессов и частотных характерис­тик, а также комплексных показателей качества регулирования.

Структурная схема набирается на рабочем поле основного окна пакета SV (рис. 3.1) с помощью блоков, которые для удобства работы объединены в четыре библиотеки. Блоки суммирования и умножения выполнены отдельно.



Рисунок 3.1 – Основное окно System View

Библиотеки элементов расположены в левой части рабочего окна SV и содержат в своём составе набор различных функциональных и динамических элементов. Графически элементы представляются в виде прямоугольника с вхо­дами и выходами. В верхнем левом углу записывается порядковый номер элемента в структурной схеме, в центре в виде рисунка - тип элемента.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта