Главная » Ядовитые грибы » За что отвечает рефлекторный принцип деятельности нервной системы? Строение рефлекторной дуги. Рефлекторное кольцо

За что отвечает рефлекторный принцип деятельности нервной системы? Строение рефлекторной дуги. Рефлекторное кольцо

Введение

1. Рефлекторная теория и ее основные принципы

2. Рефлекс – понятие, его роль и значение в организме

3. Рефлекторный принцип построение нервной системы. Принцип обратной связи

Заключение

Литература


Введение

Взаимодействие человека с действительностью осуществляется посредством нервной системы.

У человека нервная система состоит из трех отделов: центральной, периферической и вегетативной нервных систем. Нервная система функционирует как единая и целостная система.

Сложная, саморегулирующая деятельность нервной системы человека осуществляется благодаря рефлекторной природе этой деятельности.

В данной работе будет раскрыто понятие «рефлекс», его роль и значение в организме.


1. Рефлекторная теория и ее основные принципы

Положения рефлекторной теории, разработанные И. М. Сеченовым. И. П. Павловым и развитые Н. Е. Введенским. А. А. Ухтомским. В. М. Бехтеревым, П. К. Анохиным и другими физиологами, являются научно-теоретической основой советской физиологии и психологии. Эти положения находят свое творческое развитие в исследованиях советских физиологов и психологов.

Рефлекторная теория, признающая рефлекторную сущность деятельности нервной системы, основывается на трех главных принципах:

1) принципе материалистического детерминизма;

2) принципе структурности;

3) принципе анализа и синтеза.

Принцип материалистического детерминизма означает, что каждый нервный процесс в головном мозге обусловливается (вызывается) действием определенных раздражителей.

Принцип структурности заключается в том, что различия функций разных отделов нервной системы зависят от особенностей их строения, а изменение строения отделов нервной системы в процессе развития обусловливается изменением функций. Так, у животных, которые не имеют головного мозга, высшая нервная деятельность отличается значительно большей примитивностью по сравнению с высшей нервной деятельностью животных, у которых есть головной мозг. У человека в ходе исторического развития головной мозг достиг особенно сложного строения и совершенства, что связано с его трудовой деятельностью и общественными условиями жизни, требующими постоянного речевого общения.

Принцип анализа и синтеза выражается в следующем. При поступлении в центральную нервную систему центростремительных импульсов в одних нейронах возникает возбуждение, в других - торможение, т. е. происходит физиологический анализ. Результатом является различение конкретных предметов и явлений действительности и процессов, происходящих внутри организма.

Одновременно при образовании условного рефлекса устанавливается временная нервная связь (замыкание) между двумя очагами возбуждения, что физиологически выражает собой синтез. Условный рефлекс есть единство анализа и синтеза.

2. Рефлекс – понятие, его роль и значение в организме

Рефлексами (от латинского слота reflexus - отраженный) называют ответные реакции организма на раздражение рецепторов. В рецепторах возникают нервные импульсы, которые по чувствующим (центростремительным) нейронам поступают в центральную нервную систему. Там полученная информация обрабатывается вставочными нейронами, после чего возбуждаются двигательные (центробежные) нейроны и нервные импульсы приводят в действие исполнительные органы - мышцы или железы. Вставочными называют нейроны, тела и отростки которых, не выходят за пределы центральной нервной системы. Путь, по которому проходят нервные импульсы от рецептора до исполнительного органа, называется рефлекторной дугой.

Рефлекторные действия - это целостные действия, направленные на удовлетворение определенной потребности, в пище, воде, безопасности и др. Они способствуют выживанию особи или вида в целом. Их классифицируют на пищевые, вододобывающие, оборонительные, половые, ориентировочные, гнездостроительные и др. Есть рефлексы, устанавливающие определенный порядок (иерархию) в стаде или стае, и территориальные, определяющие территорию, захваченную той или иной особью или стаей.

Различают рефлексы положительные, когда раздражитель вызывает определенную деятельность, и отрицательные, тормозные, при которых деятельность прекращается. К последним, например, относится пассивно-оборонительный рефлекс у животных, когда они замирают при появлении хищника, незнакомом звуке.

Рефлексы играют исключительную роль в поддержании постоянства внутренней среды организма, его гомеостаза. Так, например, при повышении артериального давления происходит рефлекторное замедление сердечной деятельности и расширение просвета артерий, поэтому давление снижается. При его сильном падении возникают противоположные рефлексы, усиливающие и учащающие сокращения сердца и суживающие просвет артерий, в результате давление повышается. Оно непрерывно колеблется вокруг некоторой постоянной величины, которая называется физиологической константой. Эта величина обусловлена генетически.

Известный советский физиолог П. К. Анохин показал, что действия животных и человека определяются их потребностями. Например, недостаток воды в организме сначала восполняется за счет внутренних резервов. Возникают рефлексы, задерживающие потерю воды в почках, усиливается всасывание воды из кишечника и т. д. Если это не приводит к нужному результату, в центрах головного мозга, регулирующих поступление воды, возникает возбуждение и появляется ощущение жажды. Это возбуждение вызывает целенаправленное поведение, поиск воды. Благодаря прямым связям, нервным импульсам, идущим от мозга к исполнительным органам, обеспечиваются необходимые действия (животное находит и пьет воду), а благодаря обратным связям, нервным импульсам, идущим в обратном направлении - от периферических органов: ротовой полости и желудка - к мозгу, информирует последний о результатах действия. Так, во время питья возбуждается центр водного насыщения, и, когда жажда удовлетворена, соответствующий центр затормаживается. Так осуществляется контролирующая функция центральной нервной системы.

Большим достижением физиологии стало открытие И. П. Павловым условных рефлексов.

Безусловные рефлексы представляют собой прирожденные, наследуемые организмом реакции на воздействия окружающей среды. Безусловные рефлексы характеризуются постоянством и не зависят от обучения и специальных условий для их возникновения. Например, на болевое раздражение организм отвечает оборонительной реакцией. Наблюдается большое многообразие безусловных рефлексов: оборонительные, пищевые, ориентировочные, половые и т. д.

Реакции, лежащие в основе безусловных рефлексов у животных, вырабатывались тысячелетиями в ходе приспособления различных видов животных к окружающей среде, в процессе борьбы за существование. Постепенно в условиях длительной эволюции безусловно-рефлекторные реакции, необходимые для удовлетворения биологических потребностей и сохранения жизнедеятельности организма, закреплялись и передавались по наследству, а те из безусловно-рефлекторных реакций, которые утрачивали свою ценность для жизни организма, теряли свою целесообразность, наоборот, исчезали, не восстанавливаясь.

Под влиянием постоянного изменения окружающей среды потребовались более прочные и совершенные формы реагирования животных, обеспечивающие приспособление организма к изменившимся условиям жизни. В процессе индивидуального развития у высокоорганизованных животных образуется особый вид рефлексов, которые И. П. Павлов назвал условными.

Условные рефлексы, приобретенные организмом при жизни, обеспечивают соответствующую реакцию живого организма на изменения в окружающей среде и на этой основе уравновешивание организма со средой. В отличие от безусловных рефлексов, которые обычно осуществляются низшими отделами центральной нервной системы (спинным, продолговатым мозгом, подкорковыми узлами), условные рефлексы у высокоорганизованных животных и у человека осуществляются в основном высшим отделом центральной нервной системы (корой больших полушарий головного мозга).

Наблюдение явления «психической секреции» у собаки помогло И. П. Павлову открыть условный рефлекс. Животное, увидев на расстоянии пищу усиленно выделяло слюну еще до подачи пищи. Этот факт истолковывался по-разному. Сущность «психической секреции» объяснил И. П. Павлов. Он установил, что, во-первых, для того чтобы у собаки началось слюноотделение при виде мяса, она должна была раньше хотя бы один раз его увидеть и съесть. И, во-вторых, любой раздражитель (например, вид пищи, звонок, мигание лампочки и т. д.) способен вызвать слюноотделение при условии совпадения времени действия этого раздражителя и времени кормления. Если, например, кормлению постоянно предшествовал стук чашки, в которой находилась пища, то всегда наступил момент, когда на один только стук у собаки начинала выделяться слюна. Реакции, которые вызываются раздражителями, ранее безразличными. И. П. Павлов назвал условно-рефлекторными. Условный рефлекс, отмечал И. П. Павлов, это явление физиологическое, так как оно связано с деятельностью центральной нервной системы, и в то же время - психологическое, поскольку представляет собой отражение в мозге конкретных свойств раздражителей из внешнего мира.

Условные рефлексы у животных в опытах И. П. Павлова чаще всего вырабатывались на основе пищевого безусловного рефлекса, когда безусловным раздражителем служила пища, а функцию условного раздражителя выполнял один из индифферентных (безразличных) но отношению к пище раздражителей (световой, звуковой и т. п.).

Различают натуральные условные раздражители, которые служат одним из признаков безусловных раздражителей (запах пищи, писк цыпленка для курицы, вызывающий у нее родительский условный рефлекс, писк мыши для кошки и др.), и искусственные условные раздражители, совершенно не связанные с безусловно-рефлекторными раздражителями (например, лампочка, на свет которой выработали у собаки слюноотделительный рефлекс, звон гонга, на который собираются лоси на кормежку, и др.). Однако любой условный рефлекс имеет сигнальное значение, и если условный раздражитель его теряет, то и условный рефлекс постепенно угасает.

3. Рефлекторный принцип построение нервной системы Принцип обратной связи

С точки зрения современной науки нервная система - это совокупность нейронов, соединённых при помощи синапсов в клеточные цепи, которые действуют по принципу отражения, т. е. рефлекторно. Рефлекс (от лат. reflexus- «повёрнутый назад», «отражённый») - реакция организма на раздражение, осуществляемая при помощи нервной системы. Первые представления об отражённой деятельности мозга были высказаны в 1649 г. французским учёным и философом Рене Декартом (1590- 1650). Он рассматривал рефлексы как простейшие движения. Однако со временем понятие расширилось.

В 1863 г. создатель русской школы физиологов Иван Михайлович Сеченов произнёс фразу, вошедшую в историю медицины: «Все акты сознательной и бессознательной деятельности по способу происхождения суть рефлексы». Тремя годами позднее он обосновал своё утверждение в классическом труде «Рефлексы головного мозга». Другой русский учёный И. П. Павлов построил на высказывании гениального соотечественника учение о высшей нервной деятельности. Рефлексы, лежащие в её основе, Павлов разделил на безусловные, с которыми человек рождается, и условные, приобретаемые в течение жизни.

Структурная основа любого рефлекса - рефлекторная дуга. Самая короткая состоит из трёх нейронов и функционирует в пределах туловища. Она включается при раздражении рецепторов (от лат. . recipio - «принимать»); ими служат чувствительные нервные окончания или специальные клетки, преобразующие то или иное воздействие (свет, звук и т. д.) в биопотенциалы (от греч. «биос» - «жизнь» плат. potentia - «сила»).

По центростремительным - афферентным (от лат. affero - «приношу») волокнам сигналы поступают к так называемому первому (чувствительному) нейрону, расположенному в спинномозговом узле. Именно он пропускает сквозь себя первоначальную информацию, которую мозг через доли секунды преобразует в привычные ощущения: прикосновение, укол, тепло... По аксону чувствительной нервной клетки импульсы следуют ко второму нейрону - промежуточному (вставочному). Он находится в задних отделах, или, как говорят специалисты, задних рогах, спинного мозга; горизонтальный срез спинного мозга действительно похож на голову диковинного зверя с четырьмя рогами.

Отсюда сигналам прямая дорога в передние рога: к третьему - двигательному - нейрону. Аксон двигательной клетки выходит за пределы спинного мозга вместе с другими эфферентными (от лат. effero - «выношу») волокнами в составе нервных корешков и нервов. Они передают команды центральной нервной системы рабочим органам: мышце, например, приказывают сократиться, железе - выделить сок, сосудам - расшириться и т. д.

Однако одними «высочайшими указами» деятельность нервной системы не ограничивается. Она не только отдаёт распоряжения, но и строго следит за их исполнением - анализирует сигналы от рецепторов, расположенных в органах, которые трудятся по её заданию. Благодаря этому корректируется объём работ в зависимости от состояния «подчинённых». По сути дела, организм является саморегулирующейся системой: он осуществляет жизнедеятельность по принципу замкнутых циклов, с обратной информацией о достигнутом результате. К такому выводу ещё в 1934 г. пришёл академик Пётр Кузьмич Анохин (1898-1974), соединивший учение о рефлексах с биологической кибернетикой.

Чувствительный и двигательный нейроны - альфа и омега простой рефлекторной дуги: с одного она начинается, другим заканчивается. В сложных рефлекторных дугах образуются восходящие и нисходящие клеточные цепи, соединённые каскадом вставочных нейронов. Так осуществляются обширные двусторонние связи между головным мозгом и спинным.

Образование условнорефлекторной связи требует ряда условий:

1. Многократное совпадение во времени действия безусловного и условного раздражителей (точнее, с некоторым предшествованием действия условного раздражителя). Иногда связь образуется даже при однократном совпадении действия раздражителей.

2.Отсутствие посторонних раздражителей. Действие постороннего раздражителя во время выработки условного рефлекса приводит к торможению (или вообще к прекращению) условно-рефлекторной реакции.

3.Большая физиологическая сила (фактор биологической значимости) безусловного раздражителя по - сравнению с условным раздражителем.

4. Деятельное состояние коры головного мозга.

Согласно современным представлениям, нервные импульсы передаются при осуществлении рефлексов по рефлекторным кольцам. Рефлекторное кольцо включает не меньше 5 звеньев.

Необходимо отметить, что последние данные исследований ученых (П. К. Анохин и др.) подтверждают именно такую кольцеобразную схему рефлекса, а не схему рефлекторной дуги, не раскрывающей полностью этот сложный процесс. Организм необходимо получает информацию о результатах совершенного действия, информацию о каждом этапе протекающего действия. Не имея ее, мозг не может организовать целенаправленную деятельность, не может выправить действие при вмешательстве в реакцию каких-либо случайных (мешающих) факторов, не может остановить деятельности в необходимый момент, при достижении результата. Это привело к необходимости перейти от представления о разомкнутой рефлекторной дуге к представлению о циклической иннервационной структуре, в которой имеется обратная связь - от эффектора и объекта деятельности через рецепторы к центральным нервным структурам.

Эта связь (обратный поток информации от объекта деятельности) является обязательным элементом. Без него организм оказался бы оторванным от среды, в которой живет и на изменение которой направлена его деятельность, в том числе и человеческая деятельность, связанная с использованием орудий производства. .

теория рефлекс нерв система


Заключение

Таким образом, испытывая на себе воздействие множества разнообразных сигналов из внешнего мира и из организма, кора больших полушарий мозга совершает сложную аналитико-синтетическую деятельность, заключающуюся в разложении на части сложных сигналов, раздражителей, сопоставлении их со своим прошлым опытом, выделении в них основного, главного, существенного и объединении элементов этого главного, существенного. Эта сложная аналитико-синтетическая деятельность коры больших полушарий головного мозга, обусловливающая широту, многообразие, активность обратных нервных связей, обеспечивает человеку лучшую приспособляемость к внешнему миру, к изменившимся условиям жизни.


Литература

1. Аспиз М.Е. – Энциклопедический словарь юного биолога. – М.: Педагогика, 1986. – 352 с.: ил.

2. Володин В.А. – Энциклопедия для детей. Т. 18. Человек. – М.: Аванта+, 2001. – 464 с.: ил.

3. Гращенков Н.И., Латаш Н.П., Фейгенберг И.М. – Философские вопросы физиологии высшей нервной деятельности и психологии. – М.: 1963. – 370 с.: ил.

4. Козлов В.И. – Анатомия человека. Учебник для студентов институтов физической культуры. – М.: «Физкультура и спорт», 1978. – 462 с.: ил.

5. Кузин В.С. – Психология. – М.: Высш. школа, 1982. – 256 с.: ил.

6. Петровский Б.В. – Популярная медицинская энциклопедия. – М.: «Советская Энциклопедия», 1979. – 483 с.: ил.

Приспособление процессов жизнедеятельности организма, его органов, тканей и систем к меняющимся условиям среды называется регуляцией. Регуляция, обеспечиваемая нервной и гормональной системами, называется нервно-гормональной. Нервная система, организм осуществляют свою деятельность по принципу рефлекса.

РЕФЛЕКТОРНАЯ РЕГУЛЯЦИЯ ДЕЯТЕЛЬНОСТИ ОРГАНОВ, СИСТЕМ И ОРГАНИЗМА

Регуляция по принципу рефлекса глубоко изучена и оформлена в учение нервизм И. М. Сеченовым, И. П. Павловым. Согласно их концепции, нервная система осуществляет свою деятельность по принципу рефлекса. Деятельность нервной системы по принципу рефлекса называется рефлекторной.

Рефлекс -- это закономерная ответная реакция организма на раздражение рецепторов, осуществляемая с участием центральной нервной системы.

Рефлекс осуществляется через специальное структурное образование нервной системы, которое называется рефлекторной дугой . В образовании рефлекторной дуги участвуют три вида нейронов: чувствительные, контактные и двигательные


Они объединяются в нейронные Цепи. Нейроны между собой и с исполнительным органом контактируют с помощью синапсов. Рецепторные нейроны расположены вне ЦНС, контактные и двигательные -- в ЦНС. Рефлекторная дуга может быть образована разным числом нейронов всех трех видов. В свою очередь в рефлекторной дуге различают 5 звеньев: рецептор, афферентный путь, нервный центр, эфферентный путь и рабочий орган, или эффектор.

Рецептор -- это образование, воспринимающее раздражение. Представляет собой или ветвящееся окончание дендрита рецепторного нейрона, или специализированные, высокочувствительные клетки, или клетки с вспомогательными структурами, образующими рецепторный орган.

Афферентное звено образовано рецепторным нейроном, проводит возбуждение от рецептора к нервному центру.

Нервный центр образован большим количеством интернейронов и двигательных нейронов.

Это сложное образование рефлекторной дуги, представляющее собой ансамбль нейронов, расположенных в различных отделах центральной нервной системы, включая кору больших полушарий и обеспечивающих конкретную приспособительную реакцию.

Нервному центру присущи четыре физиологические роли: восприятие импульсов от рецепторов через афферентный путь; анализ и синтез воспринятой информации; передача сформированной программы по центробежному пути; восприятие обратной информации с исполнительного органа о выполнении программы, о совершенном действии.

Эфферентное звено образовано аксоном двигательного нейрона, проводит возбуждение от нервного центра к рабочему органу.

Рабочий орган -- тот или иной орган организма, осуществляющий свойственную ему деятельность.

Принцип осуществления рефлекса. Через рефлекторные дуги осуществляются ответные приспособительные реакции на действие раздражителей, т. е. рефлексы.

Рецепторы воспринимают действие раздражителей, возникает поток импульсов, который передается на афферентное звено и по нему поступает к нейронам нервного центра. Нервный центр воспринимает информацию с афферентного звена, осуществляет ее анализ и синтез, определяет биологическую значимость, осуществляет формирование программы действия и в виде потока эфферентных импульсов передает ее на эфферентное звено. Эфферентное звено обеспечивает проведение программы действия от нервного центра к рабочему органу. Рабочий орган осуществляет свойственную ему деятельность. Время от начала действия раздражителя до начала ответной реакции органа называется временем рефлекса.

Специальное звено обратной афферентации воспринимает параметры совершенного рабочим органом действия и передает эту информацию в нервный центр. Нервный центр воспринимает обратную информацию с рабочего органа о свершенном действии.

Классификация рефлексов. Рефлексы животных и человека разнообразны, поэтому их классифицируют по ряду принципов: по природе на безусловные и условные.

Безусловные рефлексы -- это врожденные, наследственно передающиеся. Осуществляются безусловные рефлексы через сформированные рефлекторные дуги. Безусловные рефлексы являются видовыми, т. е. свойственны всем животным данного вида. Они относительно постоянны и возникают в ответ на адекватные раздражения определенных рецепторов. Безусловные рефлексы классифицируются по биологическому значению на пищевые, оборонительные, половые, статокинетические и локомоторные, ориентировочные, поддерживающие гомеостаз и др.; по расположению рецепторов: экстероцептивные; интероцептивные; проприоцептивные; по характеру ответной реакции: двигательные, секреторные и пр.; по месту нахождения центров, через которые осуществляются рефлексы: спинальные, бульбарные, мезэнцефальные, диэнцефальные, кортикальные.

Условные рефлексы -- это рефлексы, приобретенные организмом в процессе его индивидуальной жизни. Условные рефлексы осуществляются через вновь сформированные рефлекторные дуги на базе рефлекторных дуг безусловных рефлексов с временной связью в коре больших полушарий между теми или иными сенсорной зоной и корковым представительством нервного центра рефлекторной дуги безусловного рефлекса.

Каждый рефлекс имеет свое название, в зависимости от реакции, которую он обеспечивает.

Рефлексы в организме чаще осуществляются с участием желез внутренней секреции, гормонов. Совместная рефлекторно-гормональная регуляция является основной формой регуляции в организме.

Свойства нервных центров. Особенности рефлекторной деятельности в значительной степени обуславливаются свойствами нервных центров:

одностороннее проведение возбуждения: с афферентного нейрона на эффекторный;

проведение возбуждения осуществляется замедленно;

действие одного потока импульсов облегчает действие последующего; свойство облегчение, или суммация;

происходит трансформация ритма импульсов, изменяется и сила импульсов;

свойственна окклюзия ; при одновременном поступлении двух афферентных потоков количество возбужденных нейронов оказывается меньше, чем арифметическая сумма возбуждений на каждый поток импульсов в отдельности;

проявляется последействие", возбуждение сохраняется некоторое время, после того как приток импульсов прекращается. Последействие обусловливается кольцевыми связями нейронов;

свойственно утомление, понижение активности при длительной деятельности в связи с уменьшением резервов медиатора в синапсах;

находятся в состоянии постоянного тонуса, некоторого возбуждения;

при определенных условиях, после длительного предшествующего поступления импульсов частого ритма, нервный центр определенное время остается в состоянии повышенной возбудимости -- посттетанинеская потенция;

свойственно торможение, ослабление или прекращение деятельности.

Координация рефлекторной деятельности. Рефлекторная деятельность связана с координацией -- взаимодействием нейронов, а следовательно, и нервных процессов в центральной нервной системе, обеспечивающим согласованную деятельность нервных центров. Координация осуществляется на основе определенных принципов, явлений и феноменов.

Принцип конвергенции . К нервному центру сходятся импульсы с многих афферентных путей, их в 4--5 раз больше, чем эфферентных.

Явление иррадиации. Возбуждение возникающее в центре иррадиирует -- распространяется на соседние области центральной нервной системы.

Принцип реципрокной иннервации. Такие взаимоотношения нервных центров, когда возбуждение одного тормозит деятельность другого.

Явление индукции -- наведения с одного нервного центра на другой противоположного нервного процесса. Если торможение наводит возбуждение, то индукция положительная, если возбуждение наводит торможение, то индукция отрицательная.

Феномен «отдачи» -- состоит в быстрой смене возбуждения одного центра возбуждением другого, обеспечивающего противоположные по значению рефлексы.

Феномен цепных и ритмических возбуждений нервных центров. Возбуждение одного нервного центра обусловливает возбуждение другого и т. д. Так, прием корма связан с захватом корма, жеванием, глотанием.

Чередование в определенной последовательности одних и тех же простых рефлекторных актов называется ритмическим возбуждением нервных центров.

Принцип обратной связи. В организме в результате деятельности органов рождаются определенные импульсы, которые поступают в центр, информируют о параметрах совершенного действия.

Принцип общего конечного пути. Одна и та же ответная реакция может быть вызвана с различных рецепторных полей через один центр. Эффекторный нейрон центра образует общий конечный путь.

Принцип доминанты. В каждый отрезок времени в центральной нервной системе доминирует, господствует тот или иной центр. Он в определенной степени подчиняет себе деятельность других центров.

Пластичность нервных центров; проявляется в приспособляемости и изменчивости своего функционального значения при изменении характера связей с рецепторами и эффектором.

Нервным центрам свойственна роль трофического регулятора, которая проявляется в приспособлении обменных процессов в тканях органов к меняющимся условиям в целях поддержания их структурной организации и деятельности.

В деятельности нервной системы основным является рефлектор­ный механизм. Рефлекс - это ответная реакция организма на внешнее раздражение, осуществляемая с участием нервной сис­темы.

Нервный путь рефлекса называется рефлекторной дугой. В состав рефлекторной дуги входят: 1) воспринимающее образова­ние - рецептор, 2) чувствительный или афферентный нейрон, свя­зывающий рецепторе нервными центрами, 3) промежуточные (или вставочные) нейроны нервных центров, 4) эфферентный нейрон, связывающий нервные центры с периферией, 5) рабочий орган, от­вечающий на раздражение - мышца или железа.

Наиболее простые рефлекторные дуги включают всего две не­рвные клетки, однако множество рефлекторных дуг в организме состоят из значительного количества разнообразных нейронов, рас­положенных в различных отделах центральной нервной системы. Выполняя ответные реакции, нервные центры посылают команды к рабочему органу (например, скелетной мышце) через эфферент­ные пути, которые выполняют роль так называемых к а н а л о в прямой связи. В свою очередь, в ходе осуществления рефлек­торного ответа или после него рецепторы, находящиеся в рабочем органе, и другие рецепторы тела посылают в центральную нервную систему информацию о результате действия. Афферентные пути этих сообщений - каналы обратной связи. Полученная информация используется нервными центрами для управления дальнейшими действиями, т. е. прекращением рефлекторной реак­ции, ее продолжением или изменением. Следовательно, основу

целостной рефлекторной деятельности составляет не отдельная реф­лекторная дуга, а замкнутое рефлекторное кольцо, образованное прямыми и обратными связями нервных центров с пе­риферией.

ГОМЕОСТАЗ

Внутренняя среда организма, в которой живут все его клетки, - это кровь, лимфа, межтканевая жидкость. Ее характеризует от­носительное постоянство - гомеостаз различных показателей, так как любые ее изменения приводят к нарушению функций кле­ток и тканей организма, особенно высокоспециализированных клеток центральной нервной системы. К таким постоянным пока­зателям гомеостаза относятся температура внутренних отделов тела, сохраняемая в пределах 36-37° С, кислотно-основное равновесие крови, характеризуемое величиной рН = 7.4-7.35, осмотическое дав­ление крови (7.6-7.8 атм.), концентрация гемоглобина в крови - 130-160 г. ּлֿ¹ и др.

Гомеостаз представляет собой не статическое явление, а динами­ческое равновесие. Способность сохранять гомеостаз в условиях по­стоянного обмена веществ и значительных колебаний факторов внешней среды обеспечивается комплексом регуляторных функ­ций организма. Эти регуляторные процессы поддержания динами­ческого равновесия получили название гомеокинеза.

Степень сдвига показателей гомеостаза при существенных ко­лебаниях условий внешней среды или при тяжелой работе у боль­шинства людей очень невелика. Например, длительное изменение рН крови всего на 0.1 -0.2 может привести к смертельному исходу. Однако, в общей популяции имеются отдельные индивиды, обла­дающие способностью переносить гораздо большие сдвиги показа­телей внутренней среды. У высококвалифицированных спортсме­нов-бегунов в результате большого поступления молочной кисло­ты из скелетных мышц в кровь во время бега на средние и длинные дистанции рН крови может снижаться до величин 7.0 и даже 6.9. Лишь несколько человек в мире оказались способными подняться на высоту порядка 8800 м над уровнем моря (на вершину Эвереста) без кислородного прибора, т. е. существовать и двигаться в услови­ях крайнего недостатка кислорода в воздухе и, соответственно, в тканях организма. Эта способность определяется врожденными особенностями человека - так называемой его генетической нор­мой реакции, которая даже для достаточно постоянных функцио­нальных показателей организма имеет широкие индивидуальные различия.

2.5. ВОЗНИКНОВЕНИЕ ВОЗБУЖДЕНИЯ И ЕГО ПРОВЕДЕНИЕ 2.5.1. МЕМБРАННЫЕ ПОТЕНЦИАЛЫ

Мембрана клетки состоит из двойного слоя молекул липидов, по­вернутых «головками» наружу, а «хвостами» друг к другу. Между ними свободно плавают глыбы белковых молекул. Некоторые из них пронизывают мембрану насквозь. В части таких белков имеются, особые по­ры или ионные каналы, через которые могут проходить ионы, участвующие в образовании мембранных потенциалов (рис. I -А).

В возникновении и поддержании мембранного потенциала покоя основную роль играют два специальных белка. Один из них выполняет роль особогонатрий- калиевого насоса, который за счет энергии АТФ активно перекачивает натрий из клетки наружу, а калий внутрь клетки. В результате концентрация ионов калия стано­вится внутри клетки выше, чем в омывающей клетку жидкости, а ионов натрия - выше снаружи.

Рис. 1. Мембрана возбудимых клеток в покое (А) и при возбуждении (Б).

(По: Б.Альберте и др., 1986)

а - двойной слой липидов, б - белки мембраны.

На А: каналы «утечки калия» (1), «натрий-калиевый насос» (2)

и закрытый в покое натриевый канал (3).

На Б: открытый при возбуждении натриевый канал (1), вхождение ионов натрия в клетку и смена зарядов на наружной и внутренней стороне

мембраны.

Второй белок служит каналом утечки калия, через который ионы калия в силу диффузии стремятся выйти из клетки, где они содержатся в избытке. Ионы калия, выходя из клетки, созда­ют положительный заряд на наружной поверхности мембраны. В ре­зультате внутренняя поверхность мембраны оказывается заряжен­ной отрицательно по отношению к наружной. Таким образом, мемб­рана в состоянии покоя поляризована, т. е. имеется определенная раз­ность потенциалов по обе стороны мембраны, называемая потен­циалом покоя. Она равна для нейрона примерно минус 70 м В, для мышечного волокна - минус 90 мВ. Измеряют мембранный потен­циал покоя, вводя тонкий кончик микроэлектрода внутрь клетки, а второй электрод помещая в окружающую жидкость. В момент про­кола мембраны и вхождения микроэлектрода внутрь клетки на экра­не осциллографа наблюдают смещение луча, пропорциональное ве­личине потенциала покоя.

В основе возбуждения нервных и мышечных клеток лежит повыше­ние проницаемости мембраны для ионов натрия - открывание натриевых каналов. Внешнее раздражение вызывает перемещение заряженных частиц внутри мембраны и уменьшение исходной раз­ности потенциалов по обе стороны или деполяризацию мем­браны. Небольшие величины деполяризации приводят к открыва­нию части натриевых каналов и незначительному проникновению натрия внутрь клетки. Эти реакции являются подпороговыми и вы­зывают л и ш ь местные (локальные) изменения.

При увеличении раздражения изменения мембранного потенциала достигают порога возбудимости или критического уровня деполяризации - около 20 мВ, при этом величина потенциала покоя снижается примерно до минус 50 мВ. В результате открывается значительная часть натриевых каналов. Происходит ла­винообразное вхождение ионов натрия внутрь клетки, вызывающее резкое изменение мембранного потенциала, которое регистрируется в виде потенциала действия. Внутренняя сторона мембраны в месте возбуждения оказывается заряженной положительно, а вне­шняя - отрицательно (рис. 1 -Б).

Весь этот процесс чрезвычайно кратковременный. Он занимает всего около

1-2 мс, после чего ворота натриевых каналов закрываются. К этому моменту достигает большой величины медленно нараставшая при возбуждении проницаемость для ионов калия. Выходящие из клетки ионы калия вызывают быстрое снижение потенциала дей­ствия. Однако окончательное восстановление исходного заряда про­должается еще некоторое время. В связи с этим в потенциале действия различают кратковременную высоковольтную часть - пик (или с п а й к) и длительные малые колебания - следовые потенциалы. Потенциалы действия мотонейронов имеют амплитуду пика около

100 мВ и длительность около 1.5 мс, в скелетных мышцах - амплитуда потенциала действия 120-130 мВ, адлительность2-3 мс.

В процессе восстановления после потенциалайействия работа натрий-калиевого насоса обеспечивает «откачку» излишних ионов натрия наружу и «накачивание» потерянных ионов калия внутрь, т. е. возвращение к исходной асимметрии их концентрации по обе стороны мембраны. На работу этого механизма тратится около 70% всей необходимой клетке энергии.

Возникновение возбуждения (потенциаладействия) возможно лишь при сохранении достаточного количества ионов натрия в окру­жающей клетку среде. Большие потери натрия организмом (напри­мер, с потом при длительной мышечной работе в условиях высокой температуры воздуха) могут нарушить нормальную деятельность не­рвных и мышечных клеток, снизив работоспособность человека. В условиях кислородного голодания тканей (например, при наличии большого кислородного долга во время мышечной работы) процесс возбуждения также нарушается из-за поражения (инактивации) меха­низма вхождения в клетку ионов натрия, и клетка становится невозбу­димой. На процесс инактивации натриевого механизма влияет кон­центрация ионов Са в крови. При повышении содержания Са сни­жается клеточная возбудимость, а при дефиците Са возбудимость повышается, и появляются непроизвольные мышечные судороги.

ПРОВЕДЕНИЕ ВОЗБУЖДЕНИЯ

Потенциалы действия (импульсы возбуждения) обладают способ­ностью распространяться вдоль по нервным и мышечным волокнам.

В нервном волокне потенциал действия является очень сильным раздражителем для соседних участков волокна. Амплитуда потенциала действия обычно в 5-6 раз превышает пороговую величину деполяриза­ции. Это обеспечивает высокую скорость и надежность проведения.

Между зоной возбуждения (имеющей на поверхности волокна отри­цательный заряд и на внутренней стороне мембраны - положитель­ный) и соседним не возбужденным участком мембраны нервного во­локна (с обратным соотношением зарядов) возникают электрические токи - так называемые местные токи. В результате развивается деполяризация соседнего участка, увеличение его ионной проницаемо­сти и появление потенциала действия. В исходной же зоне возбуждения восстанавливается потенциал покоя. Затем возбуждением охватывается следующий участок мембраны и т. д. Таким образом с помощью мест­ных токов происходит распространение возбуждения на соседние участ­ки нервного волокна, т.е. проведение нервного импульса. По мере проведения амплитуда потенциала действия не уменьшается, т. е. возбуждение не затухает даже при большой длине нерва.

В процессе эволюции с переходом от безмякотных нервных волокон к мякотным произошло существенное повышение скорости проведения нервного импульса. Для безмякотных волокон характерно непрерыв­ное проведение возбуждения, которое охватывает последовательно каждый соседний участокнерва. Мякотные же нервы почти полностью покрыты изолирующей миелиновой оболочкой. Ионные токи в них могут проходить только в оголенных участках мембраны - перехва­тах Ранвье, лишенныхэтой оболочки. При проведении нервного им пульса возбуждение перескакивает от одного перехвата к другому и можетохватыватьдаже несколько перехватов. Такое проведение получи­ло название сальтаторного (лат. saltus-прыжок). При этом повышается не только скорость, но и экономичность проведения. Возбуждение зах­ватывает не всю поверхность мембраны волокна, а лишь небольшую ее часть. Следовательно, меньше энергии тратится на активный транспорт ионов через мембрану при возбуждении и в процессе восстановления.

Скорость проведения в разных волокнах различна. Более толстые нервные волокна проводят возбуждение с большей скоростью: у них расстояния между перехватами Ранвье больше и длиннее скачки. Наибольшую скорость проведения имеют двигательные и проприо-цептивные афферентные нервные волокна - до 100 . В тонких симпатических нервных волокнах (особенно в немиелинизированных волокнах) скорость проведения мала - порядка 0.5 - 15 .

Во время развития потенциала действия мембрана полностью теряет возбудимость Это состояние называют полной не возбудимос­тью или абсолютной рефрактерностью. За ним следует относительная рефрактерность, когда потенциал действия может возникать лишь при очень сильном раздражении. Постепенно возбудимость восстанавливается до исходного уровня.

НЕРВНАЯ СИСТЕМА

Нервную систему подразделяют на периферическую (нервные волокна и узлы) и центральную. К центральной нервной системе (ЦНС) относят спинной и головной мозг.

ОСНОВНЫЕ ФУНКЦИИ ЦНС

Все важнейшие поведенческие реакции человека осуществляются с помощью ЦНС.

Основными функциями ЦНС являются:

Объединение всех частей организма в единое целое и их регуляция;

Управление состоянием и поведением организма в соответствии с условиями внешней среды и его потребностями.

У высших животных и человека ведущим отделом ЦНС является кора больших полушарий. Она управляет наиболее сложными функ­циями в жизнедеятельности человека - психическими процессами (сознание, мышление, речь, память и др.).

Основными методами изучения функций ЦНС являются методы удаления и раздражения (в клинике и на животных), регистрации электрических явлений, метод условных рефлексов.

Продолжают разрабатываться новые методы изучения ЦНС: с помощью так называемой компьютерной томографии можно уви­деть морфофункциональные изменения мозга на различной его глу­бине; фотосъемки в инфракрасных лучах (тепловидение) позволяют обнаружить наиболее «горячие» точки мозга; новые данные о работе мозга дает изучение его магнитных колебаний.


Похожая информация.


В рефлекторном механизме принято различать три части: чувствующую, центральную и двигательную . Возбуждение по чувствующему нерву передается в центр (мозг), где переключается на двигательный орган и по нему идет к рабочему органу. Возникает ответная реакция на раздражение. Эти части рефлекторного механизма вместе называются рефлекторной дугой .

Согласно последним исследованиям физиологов установлено, что структура сложного рефлекса имеет не три, а четыре части. Эта последняя часть контролирует и корректирует (уточняет, поправляет) протекание третьей части – двигательной. Как это происходит? Оказывается, как только нервный сигнал по двигательному – центробежному – нерву доходит до рабочего органа (к мышце или железе), то последний в свою очередь посылает обратный сигнал в центр – мозг. Поступивший обратный сигнал информирует мозг о характере тех изменений, которые в данный момент произошли в организме, т. е. сообщает мозгу, в какой мере – правильно или неправильно – рабочий орган выполнил полученную из центра команду. Как только мозг обнаруживает отклонение от заданной программы, если ответное действие выполнено неудачно, он тут же посылает сигнал о соответствующей корректировке действия и направляет деятельность организма по ранее намеченному пути. Это четвертое звено рефлекторного акта получило название обратной связи.

Благодаря наличию обратной связи обеспечивается саморегуляция, самоуправление организма в процессе правильного приспособления к окружающей среде. Без этого мы никогда не могли бы научиться ходить, писать, пользоваться ножом и вилкой, одеваться, совершать различного рода профессиональные движения, овладевать спортивными навыками.

Нервные процессы в коре больших полушарий головного мозга.

Виды торможения. Первая и вторая сигнальные системы

Координация функций коры больших полушарий головного мозга осуществляется благодаря взаимодействию двух основных нервных процессов – возбуждения и торможения . По характеру деятельности эти процессы противоположны друг другу. Если процессы возбуждения связаны с активной деятельностью коры, с образованием новых условных нервных связей, то процессы торможения направлены на изменение этой деятельности, на прекращение возникшего в коре возбуждения, на блокирование временных связей. Но не надо считать, что торможение – это прекращение деятельности, пассивное состояние нервных клеток. Торможение также активный процесс, но противоположного характера, чем возбуждение. Торможение обеспечивает необходимые условия для восстановления их работоспособности. Такое же охранительное и восстановительное значение имеет сон как торможение, широко распространившееся на ряд важных участков коры. Сон предохраняет кору от истощения и разрушения. Однако и сон не есть остановка работы мозга. Еще И. П. Павлов отмечал, что сон – это своеобразный активный процесс, а не состояние полной бездеятельности. Во сне мозг отдыхает, но не бездействует, при этом отдыхают клетки, активные днем. Многие ученые предполагают, что во время сна происходит своеобразная переработка накопленной за день информации, но человек не осознает этого, т. к. соответствующие функциональные системы коры, обеспечивающие осознание, заторможены.

Существует два основных вида коркового торможения : внешнее (результат действия какого-либо внешнего сильного постороннего раздражителя) и внутреннее (проявление внутренних закономерностей работы коры).

Особой формой внешнего торможения является так называемое охранительное торможение . Оно возникает под влиянием очень сильных (или продолжительно действующих) раздражителей, которые вызывают сверхсильное возбуждение нервных клеток. Как только раздражение достигает определенного предела, вступает в действие охранительное торможение. Например, перевозбужденный впечатлениями, переутомленный ребенок быстро засыпает, иногда даже сидя у телевизора. Это проявление охранительного торможения.

Кора больших полушарий мозга испытывает воздействие разнообразных сигналов, идущих как извне, так и из самого организма. И. П. Павлов различал два принципиально отличных друг от друга типа сигналов (сигнальных систем). Сигналы – это, прежде всего, предметы и явления окружающего мира. Эти разнообразные зрительные, слуховые, осязательные, вкусовые, обонятельные раздражители И. П. Павлов назвал первой сигнальной системой . Она имеется у человека и животных.

Но кора головного мозга человека способна реагировать и на слова. Слова и сочетания слов также сигнализируют человеку об определенных предметах и явлениях действительности. Слова и словосочетания И. П. Палов назвал второй сигнальной системой . Вторая сигнальная система – продукт общественной жизни человека и присуща только ему, у животных нет второй сигнальной системы.

Нервная система выполняет две основные функции:

1. Обеспечение адекватных реакций организма на постоянно меняющиеся условия внешней среды.

2. Регуляция и координация работы внутренних органов.

В основе представлений о нервной регуляции функций лежит учение о рефлексе.Рефлекс определяется как ответная реакция организма на раздражение, осуществляемая при участии нервной системы. При этом не каждая ответная реакция организма является рефлексом. Например, синяк в ответ на механическое раздражение возникает за счет разрыва сосудов кожи и свертывания крови; однако нервная система не принимает в этом участия, и появление синяка нельзя назвать рефлексом. Для того, чтобы обеспечить ответную реакцию, НС должна в первую очередь получить информацию о текущей ситуации от органов чувств. На основании этой информации, а также сигналов от центров памяти, потребностей, мотиваций и некоторых других НС «принимает решение» о том, какая ответная реакция будет наиболее оптимальной. После этого НС посылает управляющие импульсы к исполнительным органам (мышцам или железам), которые и осуществляют соответствующую реакцию.

Понятно, что для осуществления рефлекса в первую очередь необходимо, чтобы нервное возбуждение, которое возникает в ЦНС в ответ на какое-либо раздражение, дошло до исполнительного органа. Структурной основой осуществления этого процесса служит рефлекторная дуга.

Рефлекторная дуга – путь, по которому проходит нервный импульс в ходе реализации рефлекса. Она состоит из пяти отделов: 1) рецептор; 2) чувствительный нейрон, передающий импульс в ЦНС; 3) нервный центр; 4) двигательный нейрон; 5) рабочий орган, реагирующий на полученное раздражение.

Рецептор – чувствительное образование, которое трансформирует энергию раздражителя в нервный процесс (как правило, электрическое возбуждение). За рецептором идет чувствительный нейрон, находящийся в периферической нервной системе. Периферические отростки (дендриты) таких нейронов образуют чувствительный нерв и идут к рецепторам, а центральные (аксоны) входят в ЦНС и формируют синапсы на ее вставочных нейронах. В некоторых случаях (кожная чувствительность, обоняние) рецепторами являются окончания периферических отростков чувствительных нейронов. В этом случае первые два отдела рефлекторной дуги образованы одним и тем же нейроном. Вставочный нейрон ЦНС (или, точнее, нейроны, т.к. их обычно несколько) являются нервным центром каждого конкретного рефлекса. Аксоны вставочных нейронов образуют синапсы на двигательных нейронах, по аксонам которых нервный импульс в свою очередь доходит до исполнительного органа, вызывая соответствующую деятельность. Аксоны двигательных нейронов образуют двигательные нервы.


Таким образом, в дуги даже простых рефлексов входит обычно около 5-10 последовательно расположенных нейронов. В самом простом случае в рефлекторную дугу входит только два нейрона – чувствительный и двигательный. Примерами таких рефлексов могут быть коленный, возникающий в ответ на удар по сухожилию четырехглавой мышцы бедра, или ахиллов, возникающий в ответ на удар по сухожилию икроножной мышцы (см. рис. 18).

Для более адекватного понимания регуляции работы организма необходимо подробнее разобрать понятие «нервный центр». Нервный центр – это группа нейронов, необходимая для осуществления определенного рефлекса или более сложных форм поведения. Нервный центр перерабатывает информацию, которая поступает к нему от органов чувств или от других нервных центров и, в свою очередь, посылает команды к периферическим органам (мышцам и железам) или другим нервным центрам.

У беспозвоночных животных нервный центр может состоять только из нескольких нейронов. Так, у морского моллюска аплизии работой сердца управляют только четыре нейрона. У позвоночных нервные центры входят в состав ЦНС и могут включать тысячи и даже миллионы нейронов.

Каждый нервный центр находится в определенном месте нервной системы. Например, дыхательный центр, регулирующий работу дыхательных мышц, находится в продолговатом мозгу. При разрушении этого центра дыхание прекращается. Но на самом деле в дыхании принимают участие многие другие нейроны. Так, нервные волокна от дыхательного центра в продолговатом мозгу идут к группам двигательных нейронов спинного мозга, непосредственно управляющих дыхательными мышцами. В варолиевом мосту есть нервный центр, регулирующий правильное чередование вдоха и выдоха. Высший центр головного мозга – кора больших полушарий – тоже принимает участие в дыхании, благодаря чему дыхание можно регулировать произвольно. То же самое можно сказать о большинстве других функций организма (перемещение в пространстве, движения глаз, реакции на боль и т.д.). Поэтому в широком смысле слова нервный центр – это все структуры, согласованно влияющие на выполнение той или иной функции.

Именно благодаря рефлекторному принципу нервная система обеспечивает процессы саморегуляции . Если какой-либо физиологический параметр чрезмерно уменьшается, то автоматически (рефлекторно) включаются механизмы, обеспечивающие его увеличение. И наоборот, если какой-либо параметр увеличивается, включаются механизмы его уменьшения. Например, при повышении температуры тела ВНС обеспечивает расширение сосудов кожи и потоотделение, благодаря чему удаляются избытки тепла. Такой принцип функционирования называется еще механизмом отрицательной обратной связи.

В некоторых физиологических системах обнаружен также механизм положительной обратной связи, благодаря которой процесс, возникнув, некоторое время усиливает и поддерживает себя сам.

Для объяснения механизмов саморегуляции русский физиолог академик П.К.Анохин предложил концепцию «функциональной системы».

Функциональная система – временное или постоянное объединение различных элементов нервной системы (от рецепторов до исполнительных органов), возникшее или существующее для выполнения какой-либо конкретной физиологической задачи. Очень важным в этой концепции является идея о том, что при выполнении любого действия информация о его результатах поступает в ЦНС (в форме импульсов от соответствующих рецепторов). Это звено функциональной системы замыкает рефлекторную дугу в кольцо. Если результат действий частично или полностью не соответствует ожидаемому, то ЦНС по механизму обратной связи направляет протекание реакций в необходимую сторону. Таким образом, поведение строится по принципу непрерывного кольцевого взаимодействия организма и среды, постоянной оценки результатов деятельности – принципу рефлекторного кольца. Этот принцип существенно дополняет представление о рефлекторной дуге, известное еще со времен Р.Декарта.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта