Главная » 3 Как собирать » Метод экономико математического моделирования пример. По способу отражения фактора времени

Метод экономико математического моделирования пример. По способу отражения фактора времени

Современная экономическая теория включает в качестве необходимого инструмента математические модели и методы. Использование математики в экономике позволяет решить комплекс взаимосвязанных проблем.

Во-первых, выделить и формально описать наиболее важные, существенные связи экономических переменных и объектов.

Это положение имеет принципиальный характер, поскольку изучение любого явления или процесса ввиду определенной степени сложности предполагает высокую степень абстракции.

Во-вторых, из сформулированных исходных данных и соотношений методами дедукции можно получать выводы, адекватные изучаемому объекту в той же мере, что и сделанные предпосылки.

В-третьих, методы математики и статистики позволяют путем индукции получать новые знания об объекте, например, оценивать форму и параметры зависимостей его переменных в наибольшей степени соответствующие имеющимся наблюдениям.

В-четвертых, использование математической терминологии позволяет точно и компактно излагать положения экономической теории, формулировать ее понятия и выводы.

Развитие макроэкономического планирования в современных условиях связано с ростом уровня его формализации. Основу для этого процесса заложил прогресс в области прикладной математики, а именно: теории игр, математического программирования, математической статистики и других научных дисциплин. Большой вклад в математическое моделирование экономики бывшего СССР внесли известные советские ученые В.С. Немчинов, В.В. Новожилов, Л.В. Канторович, Н.П. Федоренко. С. С. Шаталин и др. Развитие экономико-математического направления было связано в основном с попытками формально описать так называемую «систему оптимального функционирования социалистической экономики» (СОФЭ), в соответствии с которой строились многоуровневые системы моделей народнохозяйственного планирования, оптимизационные модели отраслей и предприятий.

Экономико-математические методы имеют следующие направления:

Экономико-статистические методы, включают методы экономической и математической статистики. Экономическая статистика занимается статистическим изучением народного хозяйства в целом и отдельных его отраслей на основе периодической отчетности. Инструментарием математической статистики, используемым для экономических исследований, являются дисперсионный и факторный анализ корреляции и регрессии.

Моделирование экономических процессов заключается в построении экономикоматематических моделей и алгоритмов, проведении расчетов по ним с целью получения новой информацию о моделируемом объекте. С помощью экономико-математического моделирования могут решаться задачи анализа экономических объектов и процессов, прогнозирования возможных путей их развития (проигрывание различных сценариев), подготовки информации для принятия решений специалистами.

При моделировании экономических процессов широкое распространение получили: производственные функции, модели экономического роста, межотраслевой баланс, методы имитационного моделирования и др.

Исследование операций - научное направление, связанное с разработкой методов анализа целенаправленных действий и количественного обоснования решений.

Типовые задачи исследования операций включают: задачи массового обслуживания, управления запасами, ремонта и замены оборудования, календарного планирования, распределительные задачи и др. Для их решения используются методы математического программирования (линейного, дискретного, динамического и стохастического), методы теории массового обслуживания, теории игр, теории управления запасами, теории расписаний и др., а также программно-целевые методы и методы сетевого планирования и управления.

Экономическая кибернетика - научное направление, занимающееся исследованием и совершенствованием экономических систем на основе общей теории кибернетики. Основные ее направления: теория экономических систем, теория

экономической информации, теория систем управления в экономике. Рассматривая управление народным хозяйством как информационный процесс, экономическая кибернетика служит научной основой разработки автоматизированных систем управления.

В основе экономико-математических методов лежит описание наблюдаемых экономических процессов и явлений посредством моделей.

Математическая модель экономического объекта - его гомоморфное отображение в виде совокупности уравнений, неравенств, логических отношений, графиков, объединяющее группы отношений элементов изучаемого объекта в аналогичные отношения элементов модели. Модель - это условный образ экономического объекта, построенная для упрощения исследования последнего. Предполагается, что изучение модели имеет двоякий смысл: с одной стороны, оно дает новые знания об объекте, с другой - позволяет определить наилучшее решение применительно к различным ситуациям.

Математические модели, используемые в экономике, можно подразделить на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария.

Это модели макро- и микроэкономические, теоретические и прикладные, равновесные и оптимизационные, описательные, матричные, статические и динамические, детерминированные и стохастические, имитационные и др. 5.5.

Еще по теме Экономико-математические методы:

  1. Методы моделирования и экономико-математические методы

1. Экономико-математические методы, применяемые в анализе хозяйственной деятельности

Список использованных источников

1. Экономико-математические методы, применяемые в анализе хозяйственной деятельности

Одним из направлений совершенствования анализа хозяйственной деятельности является внедрение экономико-математических методов и современных ЭВМ. Их применение повышает эффективность экономического анализа за счет расширения изучаемых факторов, обоснования принимаемых управленческих решений, выбора оптимального варианта использования хозяйственных ресурсов, выявления и мобилизации резервов повышения эффективности производства.

Математические методы опираются на методологию экономико-математического моделирования и научно обоснованную классификацию задач анализа хозяйственной деятельности. В зависимости от целей экономического анализа различают следующие экономико-математические модели: в детерминированных моделях - логарифмирование, долевое участие, дифференцирование; в стохастических моделях - корреляционно-регрессивный метод, линейное программирование, теорию массового обслуживания, теорию графов и др.

Стохастический анализ - это метод решения широкого класса задач статистического оценивания. Он предполагает изучение массовых эмпирических данных путем построения моделей изменения показателей за счет факторов, не находящихся в прямых связях, в прямой взаимозависимости и взаимообусловленности. Стохастическая связь существует между случайными величинами и проявляется в том, что при изменении одной из них меняется закон распределения другой.

В экономическом анализе выделяются следующие наиболее типичные задачи стохастического анализа:

Изучение наличия и тесноты связи между функцией и факторами, а также между факторами;

Ранжирование и классификация факторов экономических явлений;

Выявление аналитической формы связи между изучаемыми явлениями;

Сглаживание динамики изменения уровня показателей;

Выявление параметров закономерных периодических колебаний уровня показателей;

Изучение размерности (сложности, многогранности) экономических явлений;

Количественное изменение информативных показателей;

Количественное изменение влияния факторов на изменение анализируемых показателей (экономическая интерпретация полученных уравнений).

Стохастическое моделирование и анализ связей между изученными показателями начинаются с корреляционного анализа. Корреляция состоит в том, что средняя величина одного из признаков изменяется в зависимости от значения другого. Признак, от которого зависит другой признак, принято называть факторным. Зависимый признак именуют результативным. В каждом конкретном случае для установления факторного и результативного признаков в неодинаковых совокупностях необходим анализ природы связи. Так, при анализе различных признаков в одной совокупности заработная плата рабочих в связи с их производственным стажем выступает как результативный признак, а в связи с показателями жизненного уровня или культурными потребностями - как факторный. Часто зависимости рассматривают не от одного факторного признака, а от нескольких. Для этого применяется совокупность методов и приемов выявления и количественной оценки взаимосвязей и взаимозависимостей между признаками.

При исследовании массовых общественно-экономических явлений между факторными признаками проявляется корреляционная связь, при которой на величину результативного признака влияет, помимо факторного, множество других признаков, действующих в разных направлениях одновременно или последовательно. Часто корреляционную связь называют неполной статистической или частичной в отличие от функциональной, которая выражается в том, что при определенном значении переменной (независимая переменная - аргумент) другая (зависимая переменная - функция) принимает строгое значение.

Корреляционную связь можно выявить только в виде общей тенденции при массовом сопоставлении фактов. Каждому значению факторного признака будет соответствовать не одно значение результативного признака, а их совокупность. В этом случае для вскрытия связи необходимо найти среднее значение результативного признака для каждого значения факторного.

Если зависимость прямолинейная:

Значения коэффициентов а и b находится из системы уравнений, полученных по способу наименьших квадратов по формуле:

N - число наблюдений.

В случае прямолинейной формы связи между изучаемыми показателями коэффициент корреляции рассчитывается по формуле:

Если коэффициент корреляции возвести в квадрат, то получим коэффициент детерминации.

Дисконтирование - это процесс пересчета будущей стоимости капитала, денежных потоков или чистого дохода в настоящую. Ставка, по которой производится дисконтирование, называется ставкой дисконтирования (ставкой дисконта). Основная посылка, лежащая в основе понятия дисконтированного потока реальных денег, состоит в том, что деньги имеют временную цену, то есть сумма денег, имеющаяся в наличии сегодня, обладает большей ценностью, чем такая же сумма в будущем. Эта разница может быть выражена как процентная ставка, характеризующая относительные изменения за определенный период (обычно равный году).

Многие задачи, с которыми приходится сталкиваться экономисту в повседневной практике при анализе хозяйственной деятельности предприятий, многовариантны. Так как не все варианты одинаково хороши, среди множества возможных приходится отыскивать оптимальный. Значительная часть подобных задач на протяжении долгого времени решалась исходя из здравого смысла и опыта. При этом не было никакой уверенности, что найденный вариант является наилучшим.

В современных условиях даже незначительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяются в одну группу под общим названием "оптимизационные методы принятия решений в экономике". Чтобы решить экономическую задачу математическими методами, прежде всего, необходимо построить адекватную ей математическую модель, то есть формализовать цель и условия задачи в виде математических функций, уравнений и (или) неравенств.

В общем случае математическая модель оптимизационной задачи имеет вид:

max (min): Z = Z(x),

при ограничениях

f i (x) Rb i , i = ,

где R - отношения равенства, меньше или больше.

Если целевая функция и функции, входящие в систему ограничений, линейны относительно входящих в задачу неизвестных, такая задача называется задачей линейного программирования. Если же целевая функция или система ограничений не линейна, такая задача называется задачей нелинейного программирования.

В основном, на практике, задачи нелинейного программирования путем линеаризации сводятся к задаче линейного программирования. Особый практический интерес среди задач нелинейного программирования представляют задачи динамического программирования, которые из-за своей многоэтапности нельзя линеаризовать. Поэтому мы рассмотрим только эти два вида оптимизационных моделей, для которых сегодня имеется хорошее математическое и программное обеспечение.

Метод динамического программирования представляет собой особый математический прием оптимизации нелинейных задач математического программирования, который специально приспособлен к многошаговым процессам. Многошаговым обычно считают процесс, развивающийся во времени и распадающийся на ряд "шагов", или "этапов". При этом метод динамического программирования используется и для решения задач, в которых время не фигурирует. Некоторые процессы распадаются на шаги естественным образом (например, процесс планирования хозяйственной деятельности предприятия на отрезок времени, состоящий из нескольких лет). Многие процессы можно расчленить на этапы искусственно.

Суть метода динамического программирования состоит в том, что вместо поиска оптимального решения сразу для всей сложной задачи предпочитают находить оптимальные решения для нескольких более простых задач аналогичного содержания, на которые расчленяется исходная задача.

Метод динамического программирования также характеризуется тем, что выбор оптимального решения на каждом шаге должен производиться с учетом последствий в будущем. Это означает, что, оптимизируя процесс на каждом отдельном шаге, ни в коем случае нельзя забывать обо всех последующих шагах. Таким образом, динамическое программирование - это дальновидное планирование с учетом перспективы.

Принцип выбора решения в динамическом программировании является определяющим и носит название принципа оптимальности Беллмана. Сформулируем его следующим образом: оптимальная стратегия обладает тем свойством, что, каковы бы ни были первоначальное состояние и решение, принятое в начальный момент, последующие решения должны вести к улучшению ситуации относительно состояния, являющегося результатом первоначального решения.

Таким образом, при решении оптимизационной задачи методом динамического программирования необходимо на каждом шаге учитывать последствия, к которым приведет в будущем решение, принимаемое в данный момент. Исключением является последний шаг, которым заканчивается процесс. Здесь можно принимать такое решение, чтобы обеспечить максимальный эффект. Спланировав оптимальным образом последний шаг, можно "пристраивать" к нему предпоследний так, чтобы результат этих двух шагов был оптимальным, и т.д. Именно таким образом - от конца к началу - можно развернуть процедуру принятия решений. Оптимальное решение, найденное при условии, что предыдущий шаг закончился определенным образом, называют условно-оптимальным решением.

Статистическая теория игр является составной частью общей теории игр, которая представляет собой раздел современной прикладной математики, изучающий методы обоснования оптимальных решений в конфликтных ситуациях. В теории статистических игр различают такие понятия, как исходная стратегическая игра и собственно статистическая игра. В этой теории первого игрока называют "природой", под которой понимают совокупность обстоятельств, в условиях которой приходится принимать решения второму игроку - "статистику". В стратегической игре оба игрока действуют активно, предполагая, что противник - "разумный" игрок. Для стратегической игры характерна полная неопределенность в выборе стратегии каждым игроком, то есть игроки ничего не знают о стратегиях друг друга. В стратегической игре оба игрока действуют на основе детерминированной информации, определенной матрицей потерь.

В собственно статистической игре природа не является активно действующим игроком в том смысле, что она "не разумна" и не пытается противодействовать максимальному выигрышу второго игрока. Статистик (второй игрок) в статистической игре стремится выиграть игру у воображаемого противника - природы. Если в стратегической игре игроки действуют в условиях полной неопределенности, то для статистической игры характерна частичная неопределенность. Дело в том, что природа развивается и "действует" в соответствии со своими объективно существующими законами. У статистика есть возможность постепенно изучать эти законы, например, на основе статистического эксперимента.

Теория массового обслуживания - прикладная область теории случайных процессов. Предметом ее исследования являются вероятностные модели реальных систем обслуживания, где в случайные (или не в случайные) моменты времени возникают заявки на обслуживание и имеются устройства (каналы) выполнения заявок. Теория массового обслуживания исследует математические методы количественной оценки процессов массового обслуживания, качества функционирования систем, где случайными могут быть как моменты появления требований (заявок), так и затраты времени на их исполнение.

Система массового обслуживания находит применение в решении следующих задач: например, тогда, когда в массовом порядке поступают заявки (требования) на обслуживание с последующим их удовлетворением. На практике это могут быть поступление сырья, материалов, полуфабрикатов, изделий на склад и их выдача со склада; обработка широкой номенклатуры деталей на одном и том же технологическом оборудовании; организация наладки и ремонта оборудования; транспортные операции; планирование резервных и страховых запасов ресурсов; определение оптимальной численности отделов и служб предприятия; обработка плановой и отчетной документации и др.

Балансовая модель - это система уравнений, характеризующих наличие ресурсов (продуктов) в натуральном или денежном выражении и направления их использования. При этом наличие ресурсов (продуктов) и потребность в них количественно совпадают. В основу решения таких моделей положены методы линейной векторно-матричной алгебры. Поэтому балансовые методы и модели называют матричными методами анализа. Наглядность изображений различных экономических процессов в матричных моделях и элементарные способы разрешения систем уравнений позволяют применять их в различных производственно-хозяйственных ситуациях.

Математическая теория нечетких множеств, разработанная в 60-е годы XX столетия, сегодня все шире применяется в финансовом анализе деятельности предприятия, включающем анализ и прогноз финансового положения предприятия, анализ изменений оборотного фонда, потоков свободных денежных средств, экономического риска, оценки влияния затрат на прибыль, расчета стоимости капитала. В основе данной теории лежат понятия "нечеткое множество" и "функции принадлежности".

В общем случае решение задач такого типа довольно громоздко, так как имеет место большой объем информации. Практическое использование теории нечетких множеств позволяет развивать традиционные методы финансово-хозяйственной деятельности, адаптировать их к новым потребностям учета неопределенности в будущем основных показателей деятельности предприятий.

Задача 1

По приведенным данным о численности персонала промышленного предприятия рассчитать коэффициент оборота по приему и выбытию рабочих и коэффициент текучести. Сделать выводы.

Решение:

Определим:

1) коэффициент по приему (К пр):

Прошлый год: Кпр = 610 / (2490 + 3500) = 0,102

Отчетный год: Кпр. = 650 / (2539 + 4200) = 0,096

В отчетном году коэффициент внешнего оборота по принятию уменьшился на 0,006 (0,096 - 0,102).

2) коэффициент по увольнению (выбытию) работников (К ув):

Прошлый год: Квыб. = 690 / (2490 + 3500) = 0,115

Отчетный год: Квыб. = 725 / (2539 + 4200) = 0,108

В отчетном году коэффициент внешнего оборота по выбытию также снизился на 0,007 (0,108 - 0,115).

3) коэффициент текучести кадров (К тек):

Прошлый год: Ктек. = (110 + 30) / (2490 + 3500) = 0,023

Отчетный год: Ктек. = (192 + 25) / (2539 + 4200) = 0,032

В отчетном году коэффициент текучести кадров также вырос на 0,009 (0,032 - 0,023), что является отрицательной тенденцией в движении кадров.

4) коэффициент общего оборота рабочей силы (К об):

Прошлый год: Коб = (610 + 690) / (2490 + 3500) = 0,217

Отчетный год: Коб. = (650 + 725) / (2539 + 4200) = 0,204

Коэффициент общего оборота рабочей силы снизился на 0,013 (0,204 - 0,217).

Задача 2

Составить исходную модель объема продукции. Определить тип факторной модели. Рассчитать влияние факторов на изменение объема продукции всеми известными приемами.

Решение:

Результативный показатель - фондоотдача.

Исходная математическая модель:

ФО = ВП / ОФ.

Тип модели - кратный. Общее количество используемых для расчета результативных показателей - 3, т. к. рассчитывается влияние 2-х факторов (2 + 1 = 3). Количество условных результативных показателей - 1, т. к. оно равно количеству факторов минус 1.

Для данной модели применимы следующие приемы: цепной подстановки, индексный и интегральный.

1. Рассчитаем уровень влияния факторов изменения результативного показателя способом цепной подстановки.

Алгоритм решения:

ФО пл = ВП пл /ОФ пл = 20433 / 2593 = 7,88 руб.

ФО усл1 = ВП ф /ОФ пл =20193 / 2593 = 7,786 руб.

ФО ф = ВП ф /ОФ ф =20193 / 2577 = 7,836 руб.

Расчет факторов, повлиявших на изменение фондоотдачи, оформим в таблице.

№ фак-торов

Название факторов

Расчет уровня влияния факторов

Уровень влияния факторов изменения общей суммы прибыли

Измените фондоотдачи за счет изменения объема продукции

7,786-7,88 =-0,094

Измените фондоотдачи за счет изменения основных фондов

7,836-7,786 = 0,05

ИТОГО (балансовая увязка)

2. Рассчитаем уровень влияния факторов изменения результативного показателя интегральным способом.

ВП = ВП ф - ВП пл = 20193 - 20433 = -240;

ОФ = ОФ ф - ОФ пл = 2577 - 2593 = -16.

ФО пл = 20433 / 2593 = 7,88 руб.

ФО ф = 20193 / 2577 = 7,836 руб.

ФО вп = = 15 ln|0,99| = -0,09284

ФО оф = ?ФО общ - ?ФО вп = (7,836-7,88) - (-0,09284) = 0,04884

3. Рассчитаем уровень влияния факторов изменения результативного показателя индексным способом.

I ФО = I ВП I ОФ.

I ФО = (ВП ф / ОФ ф) : (ВП пл / ОФ пл) = 7,836/7,88 = 0,99

I ВП = (ВП ф / ОФ пл) : (ВП пл / ОФ пл) = 7,786 /7,88 = 0,988

I ОФ = (ВП ф / ОФ ф) : (ВП ф / ОФ пл) = 7,836/7,786 = 1,006

I ФО = I ВП I ОФ = 0,988 1,006 = 0,99.

Если из числителя вышеприведенных формул вычесть знаменатель, то получим абсолютные приросты фондоотдачи в целом и за счет каждого фактора в отдельности, т. е. те же результаты, что и способом цепной подстановки.

Задача 3

Определить каким будет средний уровень урожайности, если количество внесенных удобрений составит 20 ц. Определить тесноту связи между показателем "у" и фактором "х".

Дано: Уравнение регрессии

где у - среднее изменение урожайности, ц /га

х - количество внесенных удобрений, ц.

Коэффициент детерминации - 0,92.

Решение:

Средний уровень урожайности равен 62 ц /га.

Регрессионный анализ своей целью имеет вывод, определение (идентификацию) уравнения регрессии, включая статистическую оценку его параметров. Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна.

Коэффициент корреляции вычисляется по формуле:

Доказано, что коэффициент корреляции находится в интервале от минус единицы до плюс единицы (-1 < R x, y <1). Коэффициент корреляции в квадрате () называется коэффициентом детерминации. Коэффициент корреляции R для данной выборки равен 0,9592 (). Чем он ближе к единице, тем теснее связь между признаками. В данном случае связь очень тесная, почти абсолютная корреляция. Коэффициент детерминации R 2 равен 0,92. Это означает, что уравнение регрессии определяется на 92 % дисперсией результативного признака, а на долю сторонних факторов приходится 8 %.

Коэффициент детерминации показывает долю разброса, учитываемого регрессией, в общем разбросе результативного признака. Этот показатель, равный отношению факторной вариации к полной вариации признака, позволяет судить о том, насколько "удачно" выбран вид функции. Чем больше R 2 , тем больше изменение факторного признака объясняет изменение результативного признака и тем, следовательно, лучше уравнение регрессии, лучше выбор функции.

Список использованных источников

Анализ хозяйственной деятельности предприятия: Учеб. пособие/ Под общ. ред. Л. Л. Ермолович. - Мн.: Интерпрессервис; Экоперспектива, 2001. - 576 с.

Савицкая Г. В. Анализ хозяйственной деятельности предприятия, 7-е изд., испр. - Мн.: Новое знание, 2002. - 704 с.

Савицкая Г. В. Теория анализа хозяйственной деятельности. - М.: Инфра-М, 2007.

Савицкая Г. В. Экономический анализ: Учеб. - 10-е изд., испр. - М.: Новое знание, 2004. - 640 с.

Скамай Л. Г., Трубочкина М. И. Экономический анализ деятельности предприятия. - М.: Инфра-М, 2007.

МЕТОДЫ ЭКОНОМИКО-МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

1.1. ПРЕДМЕТ И НАЗНАЧЕНИЕ МОДЕЛИРОВАНИЯ

Принцип аналогии в моделировании, общее понятие модели

Моделирование основывается на принципе аналогии (подобия, сходства) между двумя объектами или явлениями, имеющими за­частую качественно различную природу. В этом случае один из объектов рассматривается как оригинал, а второй - как его мо­дель, копия. Наиболее существенным сходством между оригина­лом и его моделью является сходство их поведения при определен­ных условиях. Моделирование используется как способ исследования, изуче­ния сложных систем и явлений.

При изучении методом аналогии непосредственному исследо­ванию всегда подвергается одна система, а вывод делается для другой. Система, которая исследуется непосредственно, является отображением или моделью изучаемой системы, оригинала.

Модель (лат. modulus) - мера, мерило, образец, норма. В математике существует теория моделей, в которой под моделью понимается произвольное множество с заданным на нем набо­ром свойств и отношений. Модель представляет собой отображение каким-либо способом наиболее существенных характеристик, процессов и взаимосвязей реальных систем, а под моделированием понимает­ся воспроизведение или имитирование какой-либо существующей системы на специально построенном аналоге или модели.

Под моделированием понимается ис­следование объектов познания не непосредственно, а косвенным путем, с помощью анализа некоторых других вспомогательных объектов - моделей.

Все экономические модели можно в общем смысле разбить на два класса:

Модели позитивного анализа - для познания свойств реаль­ных или гипотетических экономических систем. Значение их па­раметров невозможно оценить по эмпирическим данным;

Модели нормативного анализа - для прогнозирования или принятия управляющих решений. Их параметры можно оценить по опытным данным.

Объектом моделирования является зафиксированный или по крайней мере наблюдаемый процесс развития экономического объекта во времени.

Экономико-математические модели

Для более глубокого исследования и изучения сложных систем используется математическое моделирование, под которым пони­мается описание или представление наиболее важных причинных и функциональных взаимосвязей и зависимостей, существующих в реальной действительности, в математической форме.

Математическая модель имеет другую по сравнению с реаль­ным объектом природу и представляет собой уравнение или систему уравнений и неравенств, описывающую взаимосвязи, происходящие в оригинале.

Математическое моделирование получило широкое распростра­нение в исследовании экономических систем. Это обусловлено тем, что экономические системы характеризуются сложными количественными взаимозависимостями, которые можно выразить как взаимосвязь множества переменных и которые хорошо поддаются ма­тематическому описанию в виде уравнений и неравенств. Исполь­зуется оно как средство изучения, как инструмент познания эко­номических явлений. Анализируя уравнения и неравенства, кото­рые описывают количественные взаимосвязи данной системы, мож­но анализировать и саму экономическую систему.

Следовательно, под экономико-математической моделью пони­мается описание количественных взаимосвязей и взаимозависимо­стей экономических систем или процессов в математической форме.

Экономические системы характеризуются огромным количест­вом взаимосвязей, детальный учет которых привел бы к очень громоздким и практически неиспользуемым моделям или системе моделей. Важно включить в модель факторы, оказывающие основ­ное влияние на производство, и не менее важно опускать те из них, которые не оказывают на него существенного влияния. Таким об­разом, экономико-математическая модель характеризует наиболее важные свойства конкретных экономических систем, абстрагируясь от деталей и частностей.

По определению академика, экономико-математическая модель есть концентрированное выражение существующих взаимосвязей и закономерностей экономического явления в математической форме. Модель выступает как аналог исследуемого процесса, так как она отобра­жает наиболее существенные и основные связи моделируемого объекта.

Математическое моделирование открыло широкие возможно­сти для изучения экономических взаимосвязей и закономерностей. С появлением математического модели­рования и ЭВМ стало возможным экспериментирование и в эко­номике, но не на реальных объектах, а на математических моделях экономических систем и явлений. Для этого необходимо представить экономический процесс в виде экономико-мате­матической задачи и решить ее на ЭВМ. Причем, изменяя условия, можно проанализировать множество вариантов и выбрать наибо­лее выгодный из них. Это открывает новые возможности, как в проверке различных гипотез, предположений, так и в совершенствовании реального про­цесса воспроизводства.

Математическое моделирование предполагает предварительный качественный анализ условий, в которых будут проявляться коли­чественные взаимосвязи моделируемого объекта. Вид и характер математической модели определяются взаимо­связями и взаимозависимостями экономических систем.

Математическая модель экономического объекта, экономико-математическая модель - совокупность математических уравнений и неравенств, описывающая функционирование экономического объекта с заданной степенью детализации. Структурны­ми элементами экономико-математической модели являются технико-экономические показатели деятельности объекта, представленные в виде известных (заданных) и неизвестных (пе­ременных) величин.

Основными переменными, с помощью которых описывается экономическая система, являются объемы различных товаров и ус­луг, которые производятся и потребляются, прибавляются и вы­читаются из имеющихся запасов, продаются и покупаются, а так­же цены , по которым покупаются и продаются товары и услуги.

Для построения уравнений нужны данные: имеющееся количе­ство природных и людских ресурсов, уровень технических знаний, природа потребительских предпочтений. Из этих данных и переменных формируются условия функционирования некоторого экономического объекта, т. е. система уравнений (или неравенств).

Сложность природы экономических объектов состоит в том, что основные переменные (объемы товаров и цены) хотя и сущест­вуют объективно, но зависят от поведения отдельных людей, ин­дивидуумов, корпоративного поведения групп взаимосвязанных людей, совокупного поведения больших масс людей, а также пове­дения государственных и политических деятелей. Аналитическое описание их поведения - наиболее сложная часть в формализации развития экономических систем. Но нельзя также забывать, что одно из основных понятий поведен­ческой деятельности - выбор, выбор одного из многих вариантов поведения (стратегий). Выбор всегда делает индивидуум, основы­ваясь на своих соображениях, предпочтениях, руководствуясь той или иной целевой установкой - экономической выгодой.

Экономико-математическая модель должна включать форма­лизованное описание критерия выбора, т. е. экономической цели: целевую функцию.

Делая свой выбор, люди всегда учитывают не только сущест­вующую экономическую ситуацию, но и ее будущие изменения, т. е. изменившиеся ожидания. Следовательно, выбор осуществля­ется в динамике.

Исследуя поведение отдельного индивидуума на рынке това­ров, можно сделать вывод о поведении населения (индивидуаль­ный и массовый спрос) или групп взаимосвязанных людей (орга­низаций, фирм), чтобы управлять спросом на товары и услуги. Итак, если основные задачи экономической теории - объяс­нить текущее состояние и предсказать будущее развитие экономи­ческих систем (объектов), то основная задача математической эко­номики - дать для этого необходимый аналитический аппарат.

1.2. ОБЩАЯ ЗАДАЧА ОПТИМИЗАЦИИ

Первые задачи, связанные с отысканием наименьших и наибольших величин, были поставлены в древности. Упоминания о максимумах и минимумах встречаются в трудах Евклида, Аполло­ния, Архимеда. Потребность решать экстремальные проблемы спо­собствовала созданию математического анализа и вариационного исчисления. В XVII и XVIII веках были открыты вариационные принципы в оптике и механике, вариационное исчисление стало языком экономики и естествознания.

В становлении современных методов оптимизации сыграли оп­ределенную роль ученые Куисни (1759) и Л. Вальрас (1874), предло­жившие первые элементарные модели математического программи­рования. Фон Нейман (1937) и (1939) разработали экономические модели оптимизации. Математические основы линейного программирования разрабатывались
М. Жорданом (1873), Г. Мынковским (1896) и Ю. Фаркашем (1903). Серьезный вклад в| динамическое программирование внес (1954), а также
(1920), разработавший элементы теории массового обслуживания. Важную роль в теории оптимизации сыграл фундаментальный труд Г. Вагнера (1969), который является одним из ведущих специалистов по исследованию операций.

Оптимизация имеет важное значение в экономических исследованиях.

Изучение экономико-математических моделей начнем с микроэкономического уровня, на котором функционируют предприятия (фирмы), т. е. товаропроизводители, а также домашние хозяйства, т. е. потребители.

Домашнее хозяйство - один или несколько человек, объединенных общим доходом , сообща планирующие его расходование на приобретение товаров и услуг.

Предприятие (фирма) - группа лиц, организующих совместную деятельность для производства товаров и услуг и реализации их домашним хозяйствам и другим фирмам.

Основная экономическая цель потребителя - достичь максимального уровня удовлетворения при расходовании дохода, выбрав среди доступных ему вариантов поведения один - наи­лучший.

Основная экономическая цель производителя - достичь максимума прибыли при выборе наилучшей производственной прог­раммы.

При планировании производственной деятельности на любом уровне управления предполагаются заданными те производ­ственные ресурсы, которыми мы располагаем и которыми можем распоряжаться. Известными являются и нормативы затрат производственных ресурсов при различных способах производства. Неизвестные (переменные) - количество производимых товаров и услуг, которое можно произвести в заданный промежуток време­ни, чтобы достичь экономического эффекта (цели производства).

aij - норма затрат /-го вида ресурса на единицу j-го вида деятельности;

bi - объем имеющегося ресурса i-го вида.

Дадим определения основных структурных элементов задачи линейного программирования.

Итак, задача линейного программирования (1.5, 1.6) в экономике называется линейной моделью оптимального планирования. Целевая функция f - критерий оптимальности модели. Решение - план (производственная программа, способ функционирования). Множество решений системы линейных неравенств (1.6) без учета целевой функции - множество допустимых решений (в математике) и совокупность допустимых планов (в экономике). Точка оптимума (n-мерный вектор , при котором достигается f(х)), т. е. оптимальное решение задачи линейно­го программирования (1.5, 1.6), в экономике называется оптимальным планом.

Повторим: задача линейного программирования состоит в отыскании значений п переменных x1, х2,…,хn доставляющих экстремум функции f(x1x2,..,хn) при условиях (1.6), представляющих собой систему линейных нестрогих неравенств, которые в случае необходимости могут быть превращены в равенства посредством присоединения искусственных переменных xn+i (i =1,2,.., m). Обычно добавляются условия неотрицательности переменных x j ≥ 0 (j = 1, 2,.., n).

Поскольку целевая функция линейна, она не имеет критических точек. Следовательно, все точки оптимумов являются граничными. Допустимое множество выпукло, так как все ограничения линейны. Линейная целевая функция одновременно и выпукла, и вогнута, поэтому все максимумы и минимумы являются глобальными. Если решение задачи линейного программирования существует, то в принципе оно может быть точно найдено (рассчитано). Универсальный метод решения общей задачи линейного программирования (симплекс-метод) введен Дж. Данцигом. Для других классов задач оптимизации нет хороших конечных численных методов, поэтому для экономистов-практиков, заинтересованных в непосредственном численном решении задач оптимизации, теория ЛП очень важна. Если исходные модели могут быть приближены к линейным с приемлемой точностью, то симплекс-метод дает возможность получить численное решение для последующего анализа.

Свойства решений задачи линейного программирования во многом зависят от особенностей области определения, заданной условиями (1.6). Для изучения этих свойств введем основные понятия.

1. Множество точек {х}, х = (х1 х2,…, х n ), удовлетворяющих системе (1.6), есть область определения задачи линейного программирования. Когда
п = 2, область определения - многоугольник на плоскости, в общем случае - n - мерный многогранник.

2. Функция f(x) - целевая функция (плоскость при п = 2, в общем случае - гиперплоскость); она достигает экстремума в одной или нескольких допустимых точках области определения. Эти точки называются оптимальным решением.

3. Область определения называется выпуклой, если вместе с двумя любыми точками она содержит и весь отрезок, соединяющий эти точки.

4. Область определения является замкнутой (т. е. содержащей собственную границу), так как в выражении (1.6) все неравенства нестрогие.

Точка х , принадлежащая выпуклой области, называется крайней, если в данной области нет двух таких точек х1 и х2 , что х находится на отрезке между х1 и х2 .

Крайняя точка не совпадает с граничной.

Область определения, заданная условиями (1.6), - выпуклый замкнутый многогранник, вершины которого - крайние точки, число их конечно.

5. Если не существует точки х = (х1 х2,.., х n ), удовлетворяющей системе (1.6), тогда область определения задачи линейного программирования - пустое множество, а система (1.6) называется несовместной. Экстремум целевой функции не существует.

6. Экстремум целевой функции в задаче линейного программирования (если он существует) всегда является абсолютным (глобальным), т. е. единственным.

7. Множество экстремальных точек х* (точек, в которых f = extr) в задаче линейного программирования (если оно непусто) всегда содержит, хотя бы одну крайнюю точку многогранника (области определения).

Перечисленные свойства задач линейного программирования легко можно проиллюстрировать графически в двумерном случае.

На рис. 1.3 точки О, Е1 Е2 Е3, Е4 - экстремальные. Оптимум задачи лежит в одной из них либо на множестве экстремальных точек (отрезок в двумерном случае).

Из свойств 1-7 следует, что всякая процедура, предусматривающая направленный перебор крайних точек области определения задачи (1.5, 1.6), должна привести к отысканию среди них точки экстремума х *, т. е. оптимального решения. Эта идея отражена в симплекс-методе. Он позволяет найти крайнюю точку области определения и оценить, является ли она точкой экстремума целевой функции f . Если нет, то обеспечивается переход к соседней крайней точке, где значение f больше (меньше) предыдущего. Через конечное число шагов точка экстремума либо оказывается найденной, либо признается несуществующей (система условий (1.6) несовместна).

Рис. 1.3. Геометрическая схема решения задачи линейного программирования

Симплекс-метод часто называют методом последовательного улучшения плана. Для обоснования алгоритма расчетов симплекс-метода будем рассматривать каноническую задачу линейного программирования (простейшую): min сх при Ах = b , х ≥ 0, где А - матрица; b , с, х - векторы.

Пусть известна угловая (крайняя) точка х = (х1 х2,.., хп) - опорный план.

Ненулевые значения компонент хj образуют вектор, который называется базисом. Для невырожденных задач базис содержит т компонент (т < п). Итерационный шаг метода состоит в переходе от угловой точки х к угловой точке х", при котором значение целевой функции убывает: (сх") < (сх).

Метод реализован в виде стандартных пакетов прикладных программ на всех массовых моделях ЭВМ и широко используется при решении практических задач экономического анализа и планирования.

Перечислим другие классы задач оптимизации, для которых существуют эффективные (не всегда конечные) методы решения .

1. Квадратичное программирование - задача минимизации положительно определенной квадратичной формы при линейных ограничениях.

2. Целочисленное программирование - задача ЛП, в которой все или некоторые переменные могут принимать только дискретные значения.

3. Выпуклое программирование - задача максимизации вогнутых целевых функций на выпуклых множествах.

4. Стохастическое программирование - задача Л П, в которой матрица А и вектор b содержат случайные параметры с известным законом распределения либо сами ограничения носят вероятностный характер.

5. Блочная задача линейного программирования большой
размерности - задача ЛП, в которой матрица А имеет вид шахматной доски со связующими переменными и (или) ограничениями, а общая размерность превышает (500*500).

6. Динамическое программирование - система методов, поз­воляющих решать многоэтапные задачи планирования.

7. Многокритериальная оптимизация - с несколькими целе­выми функциями.

1.5. ДВОЙСТВЕННАЯ ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Для экономического анализа весьма важным является анализ двойственной задачи ЛП, так как принципы двойственности проясняют природу цен. Цена - самое фундаментальное понятие экономической теории.

Пусть стандартная задача ЛП в векторно-матричных обозначениях записывается в виде: найти

х = (х1 х2,…, хп)

чтобы получить

max cx (1.7)

при ограничениях

Ax b , x ≥0. (1.8)

Где с - n-мерная вектор-строка;

b - m-мерный вектор-столбец;

А – матрица m*n;

m – произвольное число, m < n.

Двойственной по отношению к исходной задаче (1.7, 1.8) называется задача вида: найти

y (y 1 , y 2 ,…, ym ) (1.9)

чтобы обеспечить

min yb

при условиях

yA c , y ≥ 0. (1.10)

Здесь А, b , с имеют тот же смысл, что в задаче (1.7, 1.8).

Тогда исходная задача является прямой. Двойственная к двойственной задаче - исходная. Двойственность - формальное математическое соотношение. Двойственная задача по построению всегда существует. Если прямая задача выражает функционирование реального экономического объекта, то и двойственная имеет экономическую интерпретацию. Для анализа этого вопроса сформулируем теоремы.

1-я теорема двойственности (теорема существования). Допустимый вектор прямой задачи х* оптимален тогда и только тогда, когда существует допустимый вектор двойственной задачи у* , такой, что сх* = y *b. В этом случае у* - оптимальный вектор двойственной задачи.

Иными словами, если одна из задач двойственной пары имеет оптимальное решение, то и другая задача имеет оптимальное решение, причем максимальное значение целевой функции исходной задачи и минималь­ное значение целевой функции двойственной задачи численно равны. (Если же одна из задач не имеет оптимального решения, то систе­ма ограничений двойственной задачи противоречива.)

2-я теорема двойственности (теорема равновесия).

1. Пусть векторы х* и у* допустимы в прямой и двойственных задачах соответственно. Они оптимальны тогда и только тогда, когда выполняются следующие условия:

а) у* i ≥ 0, но у* i = 0, если https://pandia.ru/text/79/131/images/image011.gif" width="114" height="50">, j=1,…,n.

2.Оптимальная точка всегда будет такова, что число ненулевых переменных в решении каждой задачи не превосходит числа функциональных ограничений задачи.

Иными словами, если в оптимальном плане исходной задачи значение какой-либо переменной строго больше нуля, то соот­ветствующее ограничение двойственной задачи при подстановке в не­го оптимального плана становится равенством.

2-я теорема двойственности дает возможность экономической интерпретации двойственной задачи, что иллюстрирует следующий пример.

Задана линейная модель производства, в которой выпускается п продуктов [ x j ] и затрачивается т факторов [ bi ], ij ] - постоянные коэффициенты затрат.

С другой стороны, заданы векторы цен и вектор ресурсов , ограничивающий использование факторов.

По 1-й теореме двойственности имеем рх* = y*b (стоимость продукции равна стоимости затраченных факторов. Следова­тельно, у* - вектор цен на факторы).

Двойственные переменные часто называются условными оценками (двойственными оценками, объективно обусловленными оценками). В данном случае они дают ответ на вопрос: какова наименьшая стоимость набора факторов b , дающая возможность обращения факторов в продукты и продажи продуктов по ценам р. Если оценка затрат, необходимых для производства продукта, меньше цены продукта, то более выгодно произвести и продать продукт, чем продать эти факторы. При оптимальных значениях х* и у* фирме безразлично, выпускать ли продукты, чтобы продать по ценам р, или продать ресурсы по ценами y*, так как y* b = р х* .

По 2-й теореме двойственности имеем:

а) всякий фактор, который не может быть использован при производстве оптимального набора продуктов, получает нулевую оценку (т. е. избыточно предлагаемые факторы не представляют ценности);

б) продукт, издержки на производство которого превосходят его цену (когда факторы оцениваются в оптимальных условных оценках), не будет производиться при оптимальном производстве. Поскольку эти соотношения соответствуют состоянию равновесия конкурентной экономики, 2-я теорема получила название теоремы равновесия.

Прямая задача Двойственная задача

m ax px min yb

Ах ≤ Ь, х ≥0 y А ≥ р, у ≥ 0

Запись прямой и двойственной задач в развернутой форме приведена ниже.

Задача I (исходная)

Задача II (двойственная)

F = c1 x1 + c2 x2 + …+ cn xn ® max

при ограничениях

a 11 x 1 + a 12 x 2 +… + a 1n xn ≤ b1

a21 x1+ a 22 x2 +… + a 2 n xn ≤ b2

……………………………….

am1 x1 + a m2 x2 +… + a mn xn ≤ bm

и условии неотрицательности

x 1 ≥ 0 , x 2 ≥ 0,…, xn ≥ 0.

Составить такой план выпуска про­дукции Х= (x 1 , x 2 ,…, xn ), при кото­ром прибыль (выручка) от реализа­ции продукции будет максималь­ной при условии, что потребление ресурсов по каждому виду продукции не превзойдет имеющихся запасов

Z = b1 y1 + b2 y2 + …+ bn yn ® min

при ограничениях

a 11 y 1 + a 21 y 2 +… + a m1 ym p1

a12 y1 + a 22 y2 +… + a m2 ym p2

……………………………….

a1n y1 + a 2n y2 +… + a mn ym pm

и условии неотрицательности

y 1 ≥ 0 , y 2 ≥ 0,…, ym ≥ 0.

Найти такой набор цен (оценок) ре­сурсов

У = (у1 у2 ,..., ут), при кото­ром общие затраты на ресурсы бу­дут минимальными при условии, что затраты на ресурсы при произ­водстве каждого вида продукции будут не менее прибыли (выручки) от реализации этой продукции

Пусть ν * - оптимальное значение целевой функции, у* - оптимальный вектор двойственной задачи. Заменим b на b+ https://pandia.ru/text/79/131/images/image013.gif" width="15" height="18 src=">v* оптимального значения целевой функции определяется соотношением: v* = у* https://pandia.ru/text/79/131/images/image013.gif" width="15" height="18 src=">v* = yi * b i .

Экономико-математическое моделирование - это исследование экономики, ее систем с применением экономических и математических дисциплин. ЭММ изучает количественные взаимосвязи и закономерности с использованием научных методов. Таким образом, моделировать можно объект любой сложности и получить результат, которого нельзя добиться другими способами.

Одноэтапные и двухэтапные схемы ;

Проводятся расчеты с помощью теории игр;

Используется для расчетов теория управления запасами;

Проводятся расчеты с помощью сетевого планирования;

Используется для расчетов теория массового обслуживания.

Для решения проблемы также необходимо:

1. Знание экономической теории, то есть законов, закономерностей развития экономического общества.

2. Знание сущности проблемы.

3. Знание приемов и методов исследования, изучающихся в статистике, эконометрике, экономике и т.д.

4. Знание компьютера и владение пакетом прикладных программ.

    Характеристика основных экономико-математических методов АХД

    Применение методов линейного программирования для решения конкретных аналитических задач.

    Применение методов динамического программирования для решения конкретных аналитических задач.

1. Экономико-математические методы - это математические методы, применяемые для анализа экономических явлений и процессов. Использование математических методов в экономическом анализе позволяет повысить его эффективность за счет сокращения сроков проведения анализа, более полного охвата влияния факторов на результаты коммерческой деятельности, замены приближенных или упрощенных расчетов точными вычислениями, постановки и решения новых многомерных задач анализа, практически не выполнимых вручную или традиционными методами.

Применение математических методов в экономическом анализе требует соблюдения ряда условий, среди которых:

Системный подход к изучению экономики предприятий, учета всего множества существенных взаимосвязей между различными сторонами деятельности предприятий;

Разработка комплекса экономико-математических моделей, отражающих количественную характеристику экономических процессов и задач, решаемых с помощью экономического анализа;

Совершенствование системы экономической информации о работе предприятий;

Наличие технических средств (ЭВМ и др.), осуществляющих хранение, обработку и передачу экономической информации в целях экономического анализа;

Организация специального коллектива аналитиков, состоящего из экономистов-производственников, специалистов по экономико-математическому моделированию, математиков-вычислителей, программистов-операторов и др.

Современное состояние разработки принципов и конкретных форм использования математики и других точных наук для решения экономических задач отражает примерная схема основных математических методов, применяющихся в анализе хозяйственной деятельности предприятий.

Приведенная схема еще не является классификатором экономико-математических методов, поскольку она составлена безотносительно к какому-либо классификационному признаку. Она необходима для инвентаризации и характеристики основных математических методов, используемых в анализе хозяйственной деятельности предприятий. Рассмотрим ее

Экономико-математические методы в анализе

Методы элементарной математики

Эвристические методы

Методы исследования операций

Математическая теория оптимальных процессов

Методы экономической кибернетики

Классические методы математического анализа

Методы математической статистики

Эконометрические методы

Методы математического программирования

Экономико-математические методы анализа хозяйственной деятельности.

Методы элементарной математики используются в обычныхтрадиционных экономических расчетах при обосновании потребностейв ресурсах, учете затрат на производство, разработке планов, проектов,при балансовых расчетах и т. д. Выделение методов классической высшей математики на схемеобусловлено тем, что они применяются не только в рамках другихметодов, например, методов математической статистики иматематического программирования, но и отдельно. Так, факторныйанализ изменения многих экономических показателей может бытьосуществлен с помощью дифференцирования и интегрирования.

Методы математической статистики широко применяются в экономическом анализе. Они используются в тех случаях, когда изменение анализируемых показателей можно представить как случайным процесс. Статистические методы, являясь основным средством изучения массовых, повторяющихся явлений, играют важную роль в прогнозировании поведения экономических показателей. Когда связь между анализируемыми характеристиками не детерминированная, а стохастическая, то статистические и вероятностные методы - это практически единственный инструмент исследования. Наибольшее распространение из математико-статистических методов в экономическом анализе получили методы множественного и парного корреляционного анализа.

Для изучения одномерных статистических совокупностей используются: вариационный ряд, законы распределения, выборочный метод. Для изучения многомерных статистических совокупностей применяют корреляции, регрессии, дисперсионный, ковариационный, спектральный, компонентный, факторный виды анализа, изучаемые в курсах теории статистики.

Следующая группа экономико-математических методов - эконометрические методы. Эконометрия - научная дисциплина, изучающая количественные стороны экономических явлений и процессов средствами математического и статистического анализа на основе моделирования экономических процессов. Соответственно эконометрические методы строятся на синтезе трех областей знаний: экономики, математики и статистики. Основой эконометрии является экономическая модель, под которой понимается схематическое представление экономического явления или процесса с помощью научной абстракции, отражения их характерных черт. Из э ко неметрических методов наибольшее распространение в современной экономике получил метод анализа "затраты - выпуск". За его разработку выдающийся экономист В. Леонтьев в 1973 году получил Нобелевскую премию. Метод анализа "затраты-выпуск" - это эконометрический метод анализа, заключающийся в построении матричных (балансовых) моделей, по шахматной схеме и позволяющих в наиболее компактной форме представить взаимосвязь затрат ирезультатов производства. Удобство расчетов и четкость экономической интерпретации - главные преимущества использования матричных моделей. Это важно при создании систем механизированной обработки данных, при планировании производства продукции с использованием ЭВМ.

Методы математического программирования в экономике - это многочисленные методы решения задач оптимизации производственно-хозяйственной и прежде всего плановой деятельности хозяйствующего субъекта. По своей сути эти методы - средство плановых расчетов. Ценность их для экономического анализа выполнения бизнес-планов состоит в том, что они позволяют оценивать напряженность плановых заданий, определять лимитирующие группы оборудования, виды сырья и материалов, получать оценки дефицитности производственных ресурсов и т. п.

Под исследованием операций понимается метод целенаправленных действий (операций), количественная оценка полученных решений и выбор из них наилучшего. Предметом исследования операций являются экономические системы, в том числе производственно-хозяйственная деятельность предприятий. Целью является такое сочетание структурных взаимосвязанных элементов систем, которое в наибольшей степени отвечает задаче получения наилучшего экономического показателя из ряда возможных.

Как раздел исследования операций теория игр - это теория построения математических моделей для принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.

Теория массового обслуживания - это теория, разрабатывающая математические методы количественной оценки процессов массового обслуживания на основе теории вероятности. Так, любое из структурных подразделений промышленного предприятия можно представить как объект системы обслуживания.

Общей особенностью всех задач, связанных с массовым обслуживанием, является случайный характер исследуемых явлений. Количество требований на обслуживание и временные интервалы между их поступлением носят случайный характер, их нельзя предсказать с однозначной определенностью. Однако в своей совокупности множество таких требований подчиняется определенным статистическим закономерностям, количественное изучение которых и является предметом теории массового обслуживания.

Методы экономической кибернетики разрабатываются экономической кибернетикой - научной дисциплиной, анализирующей экономические явления и процессы в качестве очень сложных систем, с точки зрения законов и механизмов управления и движения информации в них. Из методов экономической кибернетики наибольшее распространение в экономическом анализе получили

31методы моделирования и системного анализа.

В последние годы в экономической науке усилился интерес к методам эмпирического поиска оптимальных условий протекания процесса, использующих человеческий опыт и интуицию. Это нашло отражение в применении эвристических методов (решений), которые представляют собой неформализованные методы решения экономических задач, связанных со сложившейся хозяйственной ситуацией, на основе интуиции, прошлого опыта, экспертных оценок специалистов и т. п.

Для анализа производственно-хозяйственной, коммерческой деятельности многие методы из приведенной примерной схемы не нашли практического применения и только разрабатываются в теории экономического анализа. В то же время в этой схеме не нашли отражения некоторые экономико-математические методы, рассматриваемые в специальной литературе по экономическому анализу: теория нечетких множеств, теория катастроф и др. В данном учебном пособии внимание сосредоточено на основных экономико-математических методах, получивших уже широкое применение в практике экономического анализа.

Применение того или иного математического метода в экономическом анализе опирается на методологию экономико-математического моделирования хозяйственных процессов и научно обоснованную классификацию методов и задач анализа.

По классификационному признаку оптимальности все экономико-математические методы (задачи) подразделяются на две группы: оптимизационные и неоптимизационные. Оптимизационные методы - группа экономико-математических методов анализа, позволяющих искать решение задачи по заданному критерию оптимальности. Неоптимизационные методы - группа экономико-математических методов анализа, использующихся для решения задач без критерия оптимальности.

По признаку получения точного решения все экономико-математические методы делятся на точные и приближенные. К точным методам относят группу экономико-математических методов, алгоритм которых позволяет получить только одно решение по заданному критерию оптимальности или без него. К приближенным методам относят группу экономико-математических методов, применяемых в случае, когда при поиске решения используется стохастическая информация и решение задачи можно получить с любой степенью точности, а также такие, при применении которых не гарантируется получение единственного решения по заданному критерию оптимальности или без него.

Таким образом, на основе использования только двух признаков классификации, все экономико-математические методы делятся на четыре группы:

1) оптимизационные точные методы;

2} оптимизационные приближенные методы;

3) неоптимизационные точные методы;

4) неоптимизационные приближенные методы.

Так, к оптимизационным точным методам можно отнести методы теории оптимальных процессов, некоторые методы математического программирования и методы исследования операций. К оптимизационным приближенным методам относятся: отдельные методы математического программирования; методы исследования операций, методы экономической кибернетики; методы математической теории планирования экстремальных экспериментов; эвристические методы. К неоптимизационным точным методам относятся: методы элементарной математики и классические методы математического анализа, эконометрические методы. К неоптимизационным приближенным методам относятся: метод статистических испытаний и другие методы математической статистики.

Из представленных нами укрупненных групп экономико-математических методов, некоторые методы из этих групп используются для решения различных задач - как оптимизационных, так и неоптимизационных; как точных, так и приближенных.

2 . Методы линейного программирования. Все экономические задачи, решаемые с применением методов линейного программирования, отличаются альтернативностью решения и определенными ограничивающими условиями. Решить такую задачу - значит выбрать из значительного количества всех допустимых вариантов лучший, оптимальный. В этом состоит важность и ценность использования в экономике методов линейного программирования. При помощи других способов решать такие задачи практически невозможно.

Линейное программирование основано на решении системы линейных уравнений (с преобразованием в уравнения и неравенства), когда зависимость между изучаемыми явлениями строго функциональна. Для него характерны: математическое выражение переменных величин, определенный порядок, последовательность расчетов (алгоритм), логический анализ. Применять его можно только в тех случаях, когда изучаемые переменные величины и факторы имеют математическую определенность и количественную ограниченность, когда в результате известной последовательности расчетов происходит взаимо­заменяемость факторов, когда логика в расчетах, математическая логика совмещаются с логически обоснованным пониманием сущности изучаемого явления.

С помощью методов линейного программирования в промышленном производстве, например, исчисляется оптимальная общая производительность машин, агрегатов, поточных линий (при заданном ассортименте продукции и иных заданных величинах), решается задача рационального раскроя материалов (с оптимальным выходом заготовок}. В сельском хозяйстве они используются для определения минимальной стоимости кормовых рационов при заданном количестве кормов (по видам и содержащимся в них питательным веществам). Задача о смесях может найти применение и в литейном производстве (состав металлургической шихты). Этими же методами решаются транспортная задача, задача рационального прикрепления предприятий-потребителей к предприятиям-производителям.

3. Методы динамического программирования. Методы динамического программирования применяются при решении оптимизационных задач, в которых целевая функция и/или ограничения, характеризуются нелинейными зависимостями.

Признаками нелинейности является, в частности, наличие переменны/, у которых показатель степени отличается от единицы, а также наличие переменной в показателе степени, под корнем, под знаком логарифма.

В экономике вообще и в экономике предприятия, в частности, примеров нелинейных зависимостей достаточно много. Так, экономическая эффективность производства возрастает или убывает непропорционально изменению масштабов производства; величина затрат на производство партии деталей возрастает вместе с увеличением размеров партии, но не пропорционально им. Нелинейной связью характеризуется изменение величины износа производственного оборудования в зависимости от времени его работы, удельный расход бензина (на 1 км пути) - от скорости движения автотранспорта и многие другие хозяйственные ситуации.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта