Главная » Несъедобные грибы » Эволюция природы. Соотношение равновесия и эволюции

Эволюция природы. Соотношение равновесия и эволюции

Биологическая эволюция -- это необратимое и в известной степени направленное историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптации, образованием и вымиранием видов, преобразованиями биогеоценозов и биосферы в целом. Иными словами, под биологической эволюцией следует понимать процесс приспособительного исторического развития живых форм на всех уровнях организации живого.

В додарвиновский период (до 1859 г.) в естествознании господствовали метафизические взгляды на природу, когда явления и тела природы рассматривались как раз и навсегда данные, неизменные, изолированные, не связанные между собой. Они были тесно связаны с креационизмом (лат. creatio - сотворение) и теологией (греч. teos - боги, logos - слово, учение, наука), согласно которым многообразие органического мира есть результат творения его Богом. Креационисты (К. Линней, Ж. Кювье) доказывали, что виды живой природы реальны и неизменны со времени своего появления, при этом К. Линней утверждал, что видов существует столько, сколько их было создано во время «сотворения мира».

К концу XVIII в. в биологии накопился огромный описательный материал, который позволял сделать следующие выводы: 1) даже внешне далекие виды по внутреннему строению обнаруживают определенные черты сходства; 2) современные виды отличаются от давно живших на Земле ископаемых; 3) внешний вид, строение и продуктивность сельскохозяйственных растений и животных могут существенно изменяться в зависимости от условий их выращивания и содержания.

Появившиеся сомнения в неизменности видов привели к возникновению трансформизма - системы взглядов об изменяемости и превращении форм растений и животных под влиянием естественных причин.

Идеи трансформизма нашли дальнейшее развитие в трудах выдающегося французского биолога Ж. Б. Ламарка (1744- 1829) - создателя первого эволюционного учения. Свои взгляды на историческое развитие органического мира он изложил в книге «Философия зоологии» (1809).

Ж. Б. Ламарк создал естественную систему животных, основанную на принципе родства между организмами. Занимаясь классификацией животных, Ламарк пришел к выводу, что виды не остаются постоянными, они медленно и непрерывно изменяются. Всех известных в то время животных по уровню их организации Ламарк разделил на 14 классов. В его системе, в отличие от системы Линнея, животные размешены в восходящем порядке - от инфузорий и полипов до высокоорганизованных существ (птицы и млекопитающие). Ламарк считал, что классификация должна отражать «порядок самой природы», т. е. ее прогрессивное развитие. Все 14 классов животных Ламарк разделил на 6 градаций, или последовательных ступеней усложнения их организации.

Усложнение животного мира носит как бы ступенчатый характер и поэтому названо Ламарком градацией. В факте градации ученый увидел отражение хода исторического развития органического мира. Ламарк впервые в истории биологии сформулировал положение об эволюционном развитии живой природы: жизнь возникает путем самозарождения простейших живых тел из веществ неживой природы. Дальнейшее развитие идет по пути прогрессивного усложнения организмов, т. е. путем эволюции.

В попытке найти движущие силы прогрессивной эволюции Ламарк пришел к произвольному выводу, что в природе существует некий изначальный закон внутреннего стремления организмов к совершенствованию. Согласно этим представлениям, все живое, начиная с самозародившихся инфузорий, постоянно стремится к усложнению своей организации в длинном ряду поколений, что в конечном итоге приводит к превращению одних форм живых существ в другие (например, инфузории постепенно превращаются в полипов, полипы - в лучистых и т. д.).

Главным фактором изменчивости организмов Ламарк считал влияние внешней среды: изменяются условия (климат, пища), а вслед за этим из поколения в поколение изменяются и виды.

У организмов, лишенных центральной нервной системы (растения, низшие животные), эти изменения возникают прямым путем. Так, у лютика жестколистного подводные листья сильно рассечены и имеют вид нитей (прямое влияние водной среды), а надводные листья - лопастные (прямое влияние воздушной среды). У животных, имеющих центральную нервную систему, влияние среды на организм, по Ламарку, осуществляется косвенным путем: условия жизни определяют потребности животного, а значит, действия, привычки и поведение. Вследствие этого одни органы больше и чаще употребляются в работе (упражняются), а другие меньше и реже (не упражняются), причем при упражнении органы развиваются (длинная шея и передние ноги у жирафа, широкие плавательные перепонки между пальцами у водоплавающих птиц, длинный язык у муравьеда и дятла и др.), а при неупражнении - недоразвиваются (недоразвитие глаз у крота, крыльев у страуса и др.). Этот механизм изменения органов Ламарк назвал законом упражнения и неупражнения органов.

С точки зрения Ламарка, длинные шея и ноги у жирафа - результат того, что многие поколения его коротконогих и короткошеих предков питались листьями деревьев, за которыми им приходилось тянуться все выше и выше; перепонки между пальцами у водоплавающих птиц возникли в результате постоянного раздвигания пальцев и растягивания кожи между ними при плавании в поисках пищи или при спасении от хищников. Некоторые органы при постоянном неупражнении их в ряду поколений постепенно исчезают (конечности у змей).

Таким образом, изменения органов, возникающие как прямым, так и косвенным путем, становятся, по Ламарку, сразу полезными, приспособительными. Если изменения организмов, вызванные прямым или косвенным воздействием условий среды, повторяются в целом ряду поколений, то они наследуются и становятся признаками новых видов. Например, незначительное удлинение шеи и ног у жирафа, происходившее в каждом поколении, передавалось следующему поколению, пока эти части тела не достигли своей нынешней длины (закон наследования приобретенных признаков).

Ламарковское толкование причин изменения видов в природе имеет серьезные недостатки. Так, влиянием упражнения или неупражнения органов нельзя объяснить изменения таких признаков, как длина волосяного покрова, густота шерсти, жирность молока, окраска покровов животных, которые не могут упражняться. Кроме того, как теперь известно, не все изменения, возникающие у организмов под влиянием окружающей среды, наследуются.

Эволюция


Говоря об эволюции, обычно подразумевают биологическую эволюцию, то есть постепенное изменение живых существ. Но что такое живое ? Это еще одно основополагающее понятие, над которым задумываются немногим чаще, чем над тем, что такое пространство и время. Участие в обмене веществом и энерги ей с окружающей средой и способность к самовоспроизведению не являются исчерпывающими признаками. Нетрудно вообразить робота, периодически меняющего батарейки, задача которого состоит в сборке себе подобных. Другой подход к определению живого апеллирует к химии: жизнь - это способ существования белковых тел. С этим невозможно спорить, как и с любым логико-позитивистским определением. Однако общественное сознание усилиями фантастов давно готово к встрече с небелковой жизнью (и скорее удивится, не обнаружив ее). Это означает, что понятие "жизнь" шире, чем его конкретное проявление.

Оставляя в стороне такие интригующие понятия, как "сознание", "разум", "душа", применяемые к человеку, постараемся понять для начала, чем отличается живой жук от заводного, не выходя за рамки нашего предмета. Достаточно сложный биологический объект, каковым является, например, жук, состоит из клеток. Они имеют собственное устройство и выполняют определенные функции. Это же можно сказать и про отдельные детали сложной машины. Однако сборка клеток и машин осуществляется на различных принципах. Клетка растет постепенно, и в нее включаются только атомы и молекулы, соответствующие физико-химическим свойствам уже накопленных элементов, представляющих собой зачаток самой клетки. В машине же все решает конечная - внешняя - функция, для выполнения которой и строится машина. В зависимости от этой функции и выбирается материал и устройство вновь присоединяемых элементов. Но это не все. Рибосома, например, состоит из РНК трех типов и 55-и белков. Можно создать условия, при которых произойдет их разделение, и их можно будет выделить (и распознать) в растворе. Однако если теперь создать другие - благоприятные - условия, то они снова соберутся в рибосому. С развалившимися (например, от продолжительной вибрации) часами так не произойдет ни при каких новых условиях. Наконец, машина работает, используя разность уровней энерги и. Клетка же способна накапливать энерги ю, а затем канализировать ее, то есть использовать строго определенным образом.

Пример с часами чрезвычайно показателен, поскольку иллюстрирует самую общую из известных физических закономерностей: упорядоченность физических систем не возрастает . Это в том числе означает, что не существует чисто механических систем, в которых сохраняется полная механическая энерги я, всегда имеются ее потери (например, в тепло), которые постепенно гасят и в конце концов прекращают тот или иной упорядоченный процесс. Тогда можно сказать, что материю можно считать живой, если она продолжает "делать что-либо" (двигаться, участвовать в обмене с окружающей средой и т.д.) в течение более длительного отрезка времени, чем по нашим понятиям могла бы делать неживая материя в подобных условиях. Пародоксальным образом можно сказать, что живая материя строго подчиняется законам механики, вопреки термодинамике. Кроме того, живым образованиям присуще их самоусложнение с течением времени.

Как мы полагаем в настоящее время, основой живой материи являются молекулы ДНК. Но живы ли они - эти химические соединения, набор атомов, каждый из которых "подчиняется" установленным для него законам неживой природы?

Посмотрим на эволюцию с более традиционно-биологической точки зрения. Теор ия Дарвина является одной из наиболее известных концепций биологической эволюции на нашей планете. Несмотря на то, что она основана на обширном эмпирическ ом материале, собранном и осмысл енном Ч.Дарвиным и его предшественниками и последователями, происхождение ее не является, строго говоря, естественнонаучным. Книга Дарвина называется "Происхождение видов", и основная ее идея состоит в использовании концепции естественного отбора для объяснения многообразия видов живых существ, обитающих на Земле. Однако уже сам Дарвин указывал, что эта концепция была взята им из социологии, где она присутствовала в так называемой доктрине Мальтуса. Борьба за существование и выживание сильнейшего в сообществах людей послужила моделью для описания биологических трансформаций в природе. По-видимому, внутривидовые изменения действительно могут происходить подобным образом. Однако уже "спуск" на следующий уровень, то есть род, вызывает вопросы. Что же касается распространения теор ии естественного отбора еще более глубоко в классификацию живых существ (классы, типы и т.д.), то она представляется мало удовлетворительной. Кроме того, можно перечислить некоторые факты эволюции, которые в рамках теор ии Дарвина представляются совершенно загадочными. Так, например,

* изменение зубов и копыт у лошадей в процессе эволюции указывает на то, что у эволюции может быть определенное направление, никак не обусловленное борьбой за существование;

* многократное возникновение в процессе эволюции одного и того же явления (биолюминисценция у различных классов организмов, одни и те же последовательности ДНК обнаруживаются в одном и том же месте белковых молекул у разных видов) указывает на то, что они обусловлены скорее внутренними, чем внешними причинами;

* формирование определенных структур может происходить до того , как они стали необходимы (так называемая преадаптация). Так, перо возникло до того, как сформировались птицы, а возникновение глаз нельзя объяснить отбором;

* существуют организмы (и гены), которые почти не эволюционируют (акула, опоссум, таракан).

Не находит объяснения и часто задаваемый вопрос, почему в настоящее время не происходит превращения обезьяны в человека. Обычный ответ на него, состоящий в том, что обезьяны, человекообразные обезьяны и люди есть оконечные ветви одного ствола, оставляет место для дальнейших вопросов о том, что явилось причиной такого расхождения. Другим примером является завоевание суши позвоночными. Обычно его представляют как весьма продолжительный процесс, явившийся результатом борьбы за выживание: произошло вытеснение менее приспособленных к водной среде видов, и они постепенно приспособились к жизни на суше. Однако некоторые обстоятельства жизнедеятельности определенных видов животных позволяют, по крайней мере, усомниться в этом. Превращение головастика в лягушку происходит без всякого отбора, а индуцируется синтезируемым в его организме химическим соединением тироксином, концентрация которого на определенном этапе повышается примерно в десять раз. Если у головастика удалить щитовидную железу, то он благополучно живет и развивается в водной форме. Если же впрыснуть ему в кровь тиреоидный гормон, то он превратится в лягушку. Известны и другие примеры: земноводное животное аксолотль в своих фазах настолько различается, что долгое время считалось, что это различные даже не виды, а рода. Отсутствие воды стимулирует выделение тироксина в организме аксолотля, и наступает разительная метаморфоза. Могло показаться (и казалось), что для таких изменений необходимы тысячи мутаций и отбор, а оказалось, что достаточно просто химического сигнала. Никаких изменений в генетической конструкции при этом не происходит. И это означает, что глубокие структурные и функциональные превращения могут происходить и без таких изменений. Любопытно, что и процесс рождения человека сходен с трансформацией у амфибий.

Теор ия естественного отбора предполагает как бы воздействие вида на род, тип и так далее, в то время как более последовательным выглядит эволюционный процесс, протекающий от типа к виду.

Во времена Дарвина говорить о молекулярной биологии было еще рано. Однако, идеи борьбы и выживания с учетом современных представлений о молекулярной основе живых существ находят свое отражение в различных неодарвинистских теор иях. Проводятся следующие рассуждения. В первичном "бульоне", образовавшемся на поверхности планеты, под воздействием внешних факторов: тепла, излучения, электрических разрядов возникают различные молекулы (в том числе и органические). Эти молекулы могут существовать какое-то время, распадаться, взаимодействовать с другими молекулами, образуя с ними соединения. В результате всех этих процессов возникает своеобразный тип молекул - так называемых репликаторов, - которые способны создавать и отщеплять собственные копии, составляемые из "обломков" химических соединений, содержащихся в окружающей среде ("бульоне"). Понятно, что с течением времени число таких молекул будет все более возрастать за счет этого копирования. Предположим, что свойством реплицироваться обладает несколько различных молекул. Кто же уцелеет? Во-первых, долгоживущие. Чем дольше молекула сохраняет стабильность, тем больше копий она сумеет воспроизвести. Во-вторых, размножающиеся быстро. В-третьих, размножающиеся точно, с наименьшими отклонениями от исходных. И вот весь бульон съеден. В нем не осталось обломков, пригодных для использования в репликации, они поступают в него только с разрушением уже существующих молекул. Если по каким-то причинам у одного из видов репликаторов возникает механизм расщепления других молекул, то его численность возрастает. С другой стороны, вид репликаторов, обладающий по каким-то причинам механизмом защиты от такого воздействия - протооболочкой, также уцелевает в процессе такой эволюции. По мере усложнения "атакующих" усложняются и "защитные" механизмы. При этом необязательно говорить о целенаправленном усложнении, просто по прошествии достаточно большого промежутка времени останутся лишь те молекулы, в которых эти механизмы так или иначе возникли. Путь от протооболчки ведет к протоклетке. Ее внутренняя часть содержит "исходную" реплицирующуюся молекулу. Это модель гена. И все дальнейшее есть лишь создание все более совершенных "машин" для выживания гена. Те сложные, часто многоклеточные, многофункциональные существа, которые мы теперь называем живыми (в том числе и человек), есть наиболее приспособившиеся потомки молекул-репликаторов.

Обсудим еще одну концепцию, известную как автоэволюция формы и функции . Ее возникновение связано со стремлением найти закономерности эволюции как живой, так и неживой природы, найти ее движущие силы. В ней выделяются четыре уровня рассмотрения, связанные между собой общими закономерностями.

Эволюция элементарных частиц

Элементарные частицы делятся на две категории: кварки и лептоны. Из кварков образуются барионы (такие трехкварковые частицы, как протон и нейтрон) и мезоны (состоящие из пары кварк-антикварк). Примером лептона является электрон. Различия между кварками и лептонами соответствуют изменению типа симметрии. Первоначально полагали, что элементарные частицы неизменны и неродственны. Теперь же есть основания думать (и имеются экспериментальные подтверждения, полученные в лабораториях, где наблюдались взаимные превращения элементарных частиц), что они образованы ранее существовавшими частицами и происходят от них. В самом начале существования Вселенной (до момента 10-9 секунды, если все же пытаться говорить о времени в этот период) возникли кварки, антикварки, позитроны, тау-лептоны, нейтрино, фотоны и другие, которые непрерывно и очень быстро превращались друг в друга. На эту эволюцию были наложены ограничения, определяемые симметрией возникающих объектов, которые позволяли процессу идти только определенным образом. Изменчивость свойств различных получающихся частиц была обусловлена тем, что были возможны различные комбинации исходных. Изменение свойств от частицы к частице происходит не непрерывно, а скачком, что как раз и связано с переходом от одного типа симметрии к другому. В последующий период большую роль играло существование неизменного реликтового излучения, воздействовавшего на дальнейшие процессы как постоянный фактор.

Эволюция химических элементов

До того как возникло представление об элементарных частицах, основой имеющихся в природе веществ признавались химические элементы. Они также поначалу считались неизменными и не взаимосвязанными (хотя алхимия одной из своих важнейших задач видела трансмутацию элементов. В золото, конечно.). Когда английский химик У.Праут в 1815 году высказал предположение об эволюции химических элементов, - с его точки зрения все они были продуктами полимеризации водорода, - это вызвало насмешки. Теперь же считается общепринятым, что все химические элементы образованы на основе водорода, сначала они возникают внутри звезд, а затем попадают в межзвездное пространство в результате взрывов. Число устойчивых элементов невелико, чуть более сотни. При этом важно отметить, что при радиоактивном распаде ядра атомов превращаются не в произвольн ые ядра, а во вполне определенные, а число видов превращений ограничено. Все разнообразие известных веществ получается в результате комбинирования составляющих их существующих химических элементов, причем это комбинирование происходит по строгим правилам.

Эволюция минералов

Минералами называются химические соединения (как правило, говорят о твердых телах), образовавшиеся в результате природных процессов. Их известно порядка 3000, и все они также прошли свой путь эволюции. Все известные минералы принадлежат к одной из семи кристаллографических симметрийных систем. Можно обнаружить, что различные по химическому составу минералы часто образуют одинаковые кристаллические структуры (изоморфизм). С другой стороны, вещества, обладающие одним и тем же химическим составом, могут образовывать различные кристаллические структуры (наиболее известным примером являются алмаз и графит: оба они представляют собой чистый углерод, но атомы его в этих двух случаях образуют различные решетки, и свойства получающихся веществ различаются очень сильно). Процесс роста кристаллов весьма сложен. Ясно, тем не менее, что получающаяся структура обусловлена факторами, связанными с взаимодействием на атомном уровне. В процессе комбинирования атомов между собой может возникнуть множество конфигураций, форм на основе одной системы, но возникают и остаются лишь достаточно строго определенные, и именно они участвуют в дальнейших процессах взаимодействия, выполняя в них определенные функции.

Интересен в этом смысл е известный опыт Пастера. Он исследовал процесс ферментации вин. В нем образуются два рода кристаллов одной и той же соли, которые представляют собой зеркальное отображение друг друга. При пропускании поляризованного света через водный раствор соли, состоящей из кристаллов одной формы, плоскость поляризации поворачивается вправо, если кристаллы другой формы - плоскость поляризации поворачивается влево. При пропускании поляризованного света через водный раствор смеси солей с кристаллами различных форм плоскость поляризации не поворачивается совсем. Фермент при образовании вина взаимодействует только с одной из этих форм. Таким образом, функция фермента неотделима от формы вещества, участвующего в процессе. Таким образом, асимметрия порождает функцию.

Можно сказать, что в основе описанных явлений лежит взаимосвязь между симметрией, веществом и формой, которые характеризуют устойчивость, с одной стороны, и асимметрией, энерги ей и функцией, характеризующих изменчивость, с другой стороны. Именно эта взаимосвязь и обусловливает все эволюционное развитие на нашей планете: форма порождает функцию, функция порождает форму. Не исключение и биологическая эволюция.

Эволюция в живой природе

Основные характеристики паттернов - устойчивых, хорошо различаемых форм, - свойственных минералам, имеются и у растений и в животном мире. Можно предположить, что дендрит ные (внешне напоминающие растения) и спиралеобразные формы неслучайно встречаются и в живой, и в неживой природе (дендрит ные кристаллы, рога у животных и спиралевидные молекулы). Фундаментальный в живой природе процесс сегментации протекает и в царстве минералов. Без эволюции минералов эволюция клеток могла не состояться. И в процессе роста кристаллов, и в процессе роста организмов велика роль поверхности. Кристаллизация минералов обладает практически всеми чертами репликации органических молекул. Типы симметрии, характерные для живого, произошли от соответствующих свойств молекул и минералов. И там, и там имеются и существенное различие правого и левого, и существуют спиралевидные формы. Долгое время считалось, что у кристаллов имеются оси симметрии лишь 1, 2, 3, 4, и 6-го порядка, в то время, как для живого (существа) характерна ось симметрии 5-го порядка. И в связи с этим указывалось на то, что, скажем, треугольниками, квадратами и шестиугольниками можно замостить плоскость (океанского дна) без промежутков, что и приведет к неподвижности образовавшейся поверхности. В то же время пятиугольниками замостить плоскость без просветов нельзя, и пятиугольные формы могли проявить подвижность и, таким образом, сделать первый шаг в сторону живого. Однако теперь известны квазикристаллы, обладающие осью симметрии 5-го порядка, и таким образом "симметрийный разрыв" между мирами живого и неживого заполнился.

Живая клетка - единица органического мира - образуется в процессе самосборки. Но можно наблюдать это явление на всех уровнях организации материи: от первозданных элементов до человеческих сообществ. Самосборка детерминирована определенными правилами, и разнообразие получающихся форм есть результат комбинаций исходных элементов. Даже мутационный процесс не полностью случаен, но ограничен составом и формой нуклеиновых кислот и белков.

Основная мысль теор ии автоэволюции состоит в том, что как в основе эволюции частиц, химических элементов и минералов, предшествующей биологической эволюции, так и в ней самой лежат физические и химические факторы. Физические - это электромагнетизм (взаимодействие атомов и молекул, фотосинтез, прохождение нервного импульса), теплота (возможность протекания и интенсификация процессов), гравитация (слоистость расположения атомарных и молекулярных комплексов). Химические состоят в частности в том, что в состав живых организмов входит только порядка тридцати основных органических молекул, а все существенно необходимые для жизнедеятельности растений элементы находятся в начале периодической системы.

Одним из глубоких и важных для мировоззре ния является вопрос о существовании цели эволюции - ее телеологичности и содержании этой цели. Самомнению человека трудно допустить как то, что он просто не слишком удачная обезьяна, выжившая в результате естественного отбора, так и то, что он есть проявление взаимодействия формы и функции со всем набором физических и химических факторов. Акт Божественного творения представляется более предпочтительным, однако, естественнонаучный подход требует исследовать этот вопрос с той же тщательностью, с какой ищутся все корни математического уравнения, и если есть возможность найти ответ без привлечения принципиально непознаваемого, сделать это.

Рассмотрим один из возможных вариантов, при котором возникновение человека является обусловленным, и биологическая эволюция имеет цель. Будем называть потенциал ьно живыми те вечные (при определенных постоянных условиях) химические соединения, которые присутствуют в ядрах клеток всех живых существ, и актуально живыми те связанные с ними биологические единицы, которые претерпевают смерть, то есть разрушение и распад. Отметим затем, что только 2% молекулы ДНК, определяющей наследование свойств, связаны с признаками, то есть определяют фенотип живого существа, а остальные 98% ни с чем испытывающим воздействие среды, окружающей актуально живое существо, не связаны. При этом они передаются из поколения в поколение. Тогда вопрос состоит в том, почему потенциал ьно живое превращается в актуально живое и зачем удерживается во времени наибольшая из двух часть наследуемой информации.

Для ответа на первый из этих вопросов прибегнем к аналогии из техники. Как поступает конструктор, когда ему требуется обеспечить безусловное выполнение какой-либо функции устройства? Конечно, он требует, чтобы все детали были выполнены из высококачественных материалов. Однако стопроцентной гарантии это не дает, поскольку имеется риск случайного дефекта (трещинки в отливке) или изменения окружающих условий. Поэтому применяется принудительная периодическая замена деталей конструкции. Это позволяет и вносить изменения в материалы или части конструкции при изменении внешних условий. Таким образом, возможный смысл превращения потенциал ьно живого в актуально живое состоит в том, чтобы использовать постоянно возобновляемое и заменяемое устройство для того, чтобы обеспечить выполнение некоторой важной функции. Приспособление к окружающей среде происходит буквально и именно за счет фенотип ических признаков.

Что же происходит помимо этого? Сохраняется информация, записанная в ДНК-кодах, не связанных с признаками. Она довольно велика. Длина одной молекулы ДНК достигает нескольких сот тысяч звеньев. Этих звеньев насчитывается двадцать типов, и возможно рассмотреть их последовательность в качестве текста и счесть ее посланием. Но кому и от кого? Тому, кто прочтет. Пославший же, вероятно, подписался в конце. Но где взять того, кто прочтет? Адресат, обладающий мозгом-дешифратором, может быть сформирован самим посланием в процессе биологической эволюции, живое усложняется по мере своего развития. Это напоминает известную гипотез у панспермии, когда зачатки живого, какие-нибудь вирусы или бактерии, способные существовать в условиях космического пространства, путешествуют по нему, как споры или пыльца в атмосфере Земли, пока не попадут в условия, благоприятные для эволюции. В данном случае панспермия оказывается целенаправленной, то есть содержит в себе не просто возможность для развития жизни, но и предпосылки для создания мозга, способного к прочтению послания. Прочитавший его - фактически создавший, приписавший и обнаруживший смысл , станет одновременно и автором, и адресатом. Текст может содержать, например, приглашение к галактическому сотрудничеству и указывать средства к его реализации.

Действия, которые можно предпринять для развития этой идеи, сводятся к выделению общей части в последовательностях ДНК, присутствующих в различных белковых молекулах, и рассмотрению ее как текста. Подходящими являются, например, 28s- и 18s- последовательности рРНК (различные белки необходимы, поскольку эволюция могла пойти разными путями, но текст, скорее всего, один). Это и будет тем критическим экспериментом, который может подтвердить или опровергнуть данную теор ию. Опыт подобной дешифровки у человечества имеется: прочтены египетские иероглифы, найдена Троя, математические абстракции реализовывались в физических экспериментах. Конечно, сказанное есть лишь смещение цели эволюции с Земли в сферу деятельности загадочных космических операторов. Но так происходило и в других разделах естественных наук, о которых мы говорили в предыдущих главах.

Наконец, обсудим концепции, возникшие в результате появления генетики. Дарвин (ошибочно) полагал, что естественный отбор обусловлен небольшими случайными изменениями в облике живого существа. Возьмем большое количество растений, например, ячменя и построим диаграмму (рис.5), на вертикальной оси которой отложено число особей, а на горизонтальной - длина ости колоса. Существует такая (характерная) длина ости, которой обладает наибольшее число растений. Если взять на семена растения, соответствующие той части диаграммы, где длина ости несколько больше характерной, с целью получить ячмень с длинной остью, то ничего не получится. У новых растений распределение остей будет прежним, а их характерная длина той же. Такие отклонения не унаследуются. Однако если выбрать на семена те растения, длина остей которых существенно превосходит характерную (таких обычно бывает 2-3 на 10000), то примерно у 50% новых растений длина остей будет столь же велика, то есть наследование признака произойдет. Такое событие Де Фриз назвал мутацией - скачкообразным изменением. Как мы теперь знаем, мутации обусловлены изменением в определенной области одной из хромосом ядра половой клетки. Такая область называется геном , а раздел биологии, изучающий законы наследственности, - генетикой. Впервые (на эмпирическ ом уровне) законы генетики были установлены Менделем. (Представление о генах позволило недавно осуществить клонирование млекопитающего - ставшей знаменитой овцы Долли. Ядро соматической (неполовой) клетки, содержащей парный (полный) набор хромосом, было помещено в яйцеклетку с предварительно удаленным ядром, наступила беременность и родилось живое существо, генетически тождественное своему родителю - той овце, чье ядро соматической клетки было использовано).

Наиболее важной идеей генетики является переход от "непрерывности" в описании наследуемых свойств к "дискретности". Можно сказать, что существуют некоторые состояния, между которыми возможны переходы, нет непрерывных изменений, а есть скачкообразные. Возможность пересчета таких состояний приводит к возможности использования статистических закономерностей - хорошо разработанной области математики, дающей возможность делать прогно з. В этом смысл е генетику можно сравнить с квантовой механикой, о которой пойдет речь в следующей главе.

Заключая эту главу, отметим важное обстоятельство. С какой стороны ни рассматривать эволюцию, всегда выполняется следующее: эволюция шла таким образом, что в ее процессе возникали все более сложные системы , наиболее сложной из которых является мозг человека. Именно мозг генерирует (самостоятельно или под воздействием окружающей среды) все те рациональные схемы, к которым человек приспосабливает себя и свою деятельность, все те концепции, которые в том числе касаются и естествознания.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Эволюция - процесс длительных, постепенных,

медленных изменений, которые в конечном итоге

приводят к изменениям коренным, качественным,

завершающимся возникновением новых

материальных систем, структур, форм и видов.

Первые эволюционные теории были созданы двумя великими учеными 19 века - Ж.Ламарком и Ч.Дарвином.

Ламарк впервые выделил два самых общих направления эволюции: восходящее развитие от простейших форм жизни ко все более сложным и совершенным и формирование у организмов приспособлений в зависимости от изменений внешней среды (развитие "по вертикали" и "по горизонтали").

В своих трудах Ламарк отмечал историческое развитие организмов, которое имеет не случайный, а закономерный характер и происходит в направлении постепенного и неуклонного совершенствования.

Движущей силой развития живого Ламарк считал "стремление природы к прогрессу", "стремление к совершенствованию", изначально присущее всем организмам и заложенное в них Творцом.

Дарвин в своем основном труде "Происхождение видов путем естественного отбора" (1859) раскрыл основные факторы эволюции органического мира. Гипотезу происхождения человека от обезьяноподобного предка Дарвин предложил в книге "Происхождение человека и половой отбор" (1871).

В основе теории эволюции Дарвина - понятие наследственности, которое понимается как свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом.

Наследственность вместе с изменчивостью обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.

Дарвин называет главные причины эволюции – борьбу за существование и естественный отбор.

Понятие "борьба за существование" отражает те факты, что каждый вид производит больше особей, чем их доживает до взрослого состояния, и что каждая особь в течение своей жизнедеятельности вступает во множество отношений с биотическими и абиотическими факторами среды.

Дарвин выделял три вида борьбы за существование:

1. Внутривидовая

2. Межвидовая

З. Борьба с неблагоприятными условиями неживой природы.

Основной природный инструмент эволюции - изменчивость. При этом на первое место по значению для эволюции видов Дарвин поставил индивидуальную (неопределенную) изменчивость.

Неизбежным результатом борьбы за существование и наследственной изменчивости организмов, по Дарвину, является процесс выживания и воспроизведения организмов, наиболее приспособленных к условиям среды, и гибели в ходе эволюции неприспособленных - естественный отбор.

По иному Дарвин определял и цель эволюции: видообразование.

Слабым местом в учении Дарвина были представления о наследственности. Шотландский инженер Флеминг Дженкин вошел в историю биологии, выдвинув возражения против теории Дарвина: «Если отбор оставляет в живых те особи, которые лишь незначительно отличаются от других, то уже при следующем скрещивании наступает «поглощение» новых признаков, т.к. партнер по скрещиванию вероятнее всего не имеет этого нового свойства - произойдет растворение признаков в потомстве».

Это означает, что в результате скрещивания особей с полезными признаками с другими особями, которые ими не обладают, первые передадут эти признаки потомству в ослабленном виде, и полезный признак быстро растворится в потомстве.

Сам Ч.Дарвин вынужден был признать эти доводы весьма убедительными, и не мог дать ясного и четкого ответа. Эти возражения могут быть опровергнуты только в рамках современной теории эволюции.

Синтетическая теория эволюции (СТЭ) - современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма.

Синтетическая теория эволюции (СТЭ) отличается от дарвиновской по ряду важнейших пунктов:

  1. СТЭ выделяет элементарную структуру, с которой начинается эволюция.

Это - популяция (т.е. совокупность индивидов одного вида, способных скрещиваться между собой), а не отдельная особь или вид, который включает в свой состав несколько популяций;

  1. В качестве элементарного явления или процесса эволюции современная теория рассматривает устойчивое изменение генотипа популяции;
  2. СТЭ шире и глубже истолковывает факторы и движущие силы эволюции, выделяя среди них основные и неосновные. К ведущим факторам относят сейчас мутационные процессы, популяционные волны численности и изоляцию.
  3. Материалом для эволюции являются мутационная и рекомбинационная изменчивость.
  4. Естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов.
  5. Дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков.

Таким образом, синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически.

Напомним, что вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен; видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции.

Важнейшим фактором эволюции является мутационный процесс, который исходит из признания неоспоримого факта, что основную массу эволюционного материала составляют различные формы мутаций - изменений наследственных свойств организмов, возникающих естественным путем или вызванных искусственными средствами. Исходя из этого, нетрудно опровергнуть нападки Дженкина: ясно, что аппарат наследственности сформирован отдельными структурными и функциональными единицами – генами и передается по наследству без изменения.

Предложим следующие основные вехи эволюционного развития организмов:

1. Появление простейших клеток - прокариотов.

Около 3,9 млрд лет назад появились одноклеточные организмы, которые, вероятно, выглядели, как современные бактерии, и архебактерии. Как древние, так и современные прокариотные клетки устроены относительно просто: они не имеют оформленного ядра и специализированных органелл, в их желеподобной цитоплазме располагаются макромолекулы ДНК – носители генетической информации, и рибосомы, на которых происходит синтез белка, а энергия производится на цитоплазматической мембране, окружающей клетку.

2. Появление клеток - эукариотов.

Почти 2 млрд лет понадобилось природе, чтобы появились сложноорганизованные эукариотные клетки, когда одноклеточные организмы усложнили свое строение за счет поглощения других прокариотных клеток. Одни из них – аэробные бактерии – превратились в митохондрии – энергетические станции кислородного дыхания. Другие – фотосинтетические бактерии – начали осуществлять фотосинтез внутри клетки-хозяина и стали хлоропластами в клетках водорослей и растений. Эукариотные клетки, имеющие эти органеллы и четко обособленное ядро, включающее генетический материал, составляют все современные сложные формы жизни – от плесневых грибов до человека.

3. Объединение клеток эукариотов с образованием многоклеточных организмов; функциональная дифференциация клеток в организмах.

1,2 млрд лет назад произошел взрыв эволюции, обусловленный появлением полового размножения и ознаменовавшийся появлением высокоорганизованных форм жизни – растений и животных. Образование новых вариаций в смешанном генотипе, возникающем при половом размножении, проявилось в виде биоразнообразия новых форм жизни.

4. Появление организмов с твердыми скелетами.

Примерно 400 млн лет назад появились органические беспозвоночные формы с твердым скелетом (моллюсков, членистоногих).

Затем появляются земноводные, примитивные рептилии, спиралевидные моллюски, и наконец, динозавры.

5. Возникновение у высших животных развитой нервной системы.

6. Формирование мозга.

7. Формирование разума - высшей формы деятельности мозга.

8. Образование социальной общности людей.

Не имея возможности останавливаться на всех этапах эволюции живого, обсудим вопрос о возникновении человека.

В современной антропологии наиболее распространенной является точка зрения, по которой "эволюция человеческой линии заняла не свыше 10 млн. лет, а обезьяний предок гоминид имел черты сходства с шимпанзе, был по существу "шимпанзеподобен"...

(Так, недавно на основе известных сведений об ископаемых приматах была высказана гипотеза о том, что разделение ветвей человек - шимпанзе произошло около 4 млн лет тому назад.)

Основные этапы развития человека на Земле показаны на рис.1.

Рис.1. Генеалогическое древо человека.

1 - плезиадацис, 2 - дриопитек африканский, 3 - рамапитек, 4 - австралопитек, 5 - австралопитек войсен, 6-7 - Homo erectus, 8 - неандерталец, 9 - Homo sapiens, 10 - современный человек.

1970-х годах в Восточной Африке были открыты остатки необычайно древних человеческих видов Ното habilius и Ното erectus , костные остатки из Эфиопии, принадлежащие так называемой «Люси» и ее австралопитековым сородичам (рис.2).

Рис.2. Австралопитеки

Долгое время ученые считали, что эволюция человека была более-менее линейной: одна форма сменяла другую, и каждая новая была прогрессивнее, ближе к современному человеку, чем предыдущая. Сейчас ясно, что все было гораздо сложнее. Эволюционное древо гоминид оказалось весьма разветвленным. Временные интервалы существования многих видов сильно перекрываются. Иногда несколько разных видов гоминид, находящихся на разных "уровнях" близости к человеку, сосуществовали одновременно. Например, еще в сравнительно недавнем прошлом - всего-навсего 50 тысяч лет назад - на Земле существовало как минимум целых 4 вида гоминид: Homo sapiens, H.neandertalensis, H.erectus и H.floresiensis.

На рис.3 показана реконструкция черепа «Пекинского человека» («синантропа»).

Рис.3. Реконструкция черепа «Пекинского человека» (в современной антропологии классифицируется как Homo erectus .)

Возникновение современных людей, вида Ното sapiens .

Под действие отбора могут попасть и отдельные особи, и целые популяции. Он определяет направление эволюции, собирая и интегрируя многочисленные случайные отклонения, сохраняя не признаки, а комплекс признаков или фенотипы, т. е. определенные комбинации генов, свойственных организму. Выделяют несколько форм отбора.

Движущий отбор проявляется при изменении условий существования вида. Его давление направлено в пользу особей, имеющих отклонение определенного признака от нормы. Происходит сдвиг общей нормы и возникает новая. Дивергенция между старой и новой нормами ведет к видообразованию. Движущий отбор лежит в основе появления популяций насекомых, устойчивых к определенному яду. Эти особи приобретают преимущества при размножении, и их потомки занимают места умерших насекомых, которые не обладали этим признаком. Таким путем исчезли и многие органы, не используемые несколькими сотнями поколений.

Стабилизирующий отбор действует в почти неизменных условиях существования. Он оказывает давление в пользу особей, имеющих средние значения какого-то признака. В результате происходит их укрепление, предохранение от разрушающего действия мутаций. И в местностях, где условия жизни не менялись, сохранились древние виды, вымершие в других местах. Например, сохранился реликтовый таракан, голосеменное растение гинкго, кистеперая рыба латимерия.

Разрывающий отбор действует при изменении условий существования, его давление направлено в пользу организмов, имеющих отклонения от нормы в обе стороны. И формируется новая норма реакции. Так, на островах, где сильны ветры, мухи с нормальными крыльями сдуваются и гибнут. Преимущество у мух или с недоразвитыми крыльями (они ползают), или с длинными крыльями (они хорошо летают и оказывают сопротивление ветру).

Биологический прогресс - результат успеха в борьбе за существование. Он характеризуется возрастанием численности особей, расширением ареала обитания, увеличением числа групп более низкого ранга. Биологический регресс характеризуется обратными признаками и ведет к вымиранию. К биологическому прогрессу ведут следующие факторы:

Морфологический прогресс - усложнение организма, поднятие его на более высокий уровень. Строение организма изменяется не вследствие приспособления к изменяющимся условиям среды, оно позволяет расширить использование условий внешней среды. При дальнейшей эволюции эти изменения, называемые арогене-зом, сохраняются и ведут к возникновению новых групп, видов;

Аллогенез - эволюционное направление, сопровождающееся идиоадаптацией - приспособлением к специальным условиям среды, полезным в борьбе за существование, но не меняющим уровня организации. Пример - колючки растений или изменение окраски животных;

После возникновения морфологического прогресса начинается приспособление отдельных популяций к условиям существования путем идиоадаптации. Например, класс птиц при расселении по суше дал огромное разнообразие форм. Хотя основы их строения одинаковы, частные приспособления отличны. Поэтому чередование этих главных направлений отражает эволюционную тенденцию в филогенезе почти всех групп.

Биологическая эволюция отлична от эволюции атомов, Земли, общества и др. В ее основе - "уникальные процессы самовоспроизведения макромолекул и живых организмов, которые таят в себе почти неограниченные возможности преобразования живых систем в ряду поколений", - отмечает известный эволюционист А. В. Яблоков. Биологическая эволюция - необратимое и в известной степени направленное историческое развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптаций, образованием и вымиранием видов, преобразованиями биогеоценозов и биосферы в целом, отмечает он. С возникновения жизни органическая природа непрерывно развивается сотни миллионов лет, и результатом процесса эволюции является то разнообразие форм живой материи, которая еще не полностью описана, классифицирована и изучена. Формы живой материи - и предмет, и объект эволюции. Результаты биологической эволюции многообразны, это всегда соответствие развивающейся живой системы условиям ее существования.

Основные теории эволюции живой природы

В 18 веке появились идеи, связанные не только с признанием градации, но и постоянного усложнения органических форм. Швейцарский естествоиспытатель Ш. Бонне впервые использовал понятие эволюции как процесса длительного, постепенного изменения, приводящего к появлению новых видов.

В единую теорию идеи градации и идеи эволюции слились в 19 веке в эволюционной теории Ж. Б. Ламарка (1744-1829) в научном труде "Философия зоологии". Ламарк полагал, что первые самозародившиеся организмы дали начало всему многообразию ныне существующих живых форм. Причиной эволюции Ламарк считал присущее живой природе заложенное Творцом стремление к усложнению и самосовершенствованию своей организации, путем "упражнения" органов. Вторым фактором эволюции и неограниченной изменчивости видов он называл влияние внешней среды: пока она не изменяется, виды постоянны, как только она становится иной, виды также начинают меняться.

Заслугой Ламарка является и то, что он первым предложил генеалогическую классификацию животных, построенную на принципах родственности организмов, а не их сходства.

С точки зрения современной науки, доказательства причин изменяемости видов, приводимые Ламарком, не были достаточно убедительными. Поэтому теория Ламарка не получила признания у современников. Но она не была и опровергнута.

Большой вклад в становление эволюционной теории внёс Ж. Кювье (1769-1832), который сам исходил из идеи постоянства вида. Кювье систематически проводил сравнение строения одного и того же органа или системы органов у разных животных. Он установил, что все органы любого живого организма представляют собой части единой целостной системы. Поэтому строение каждого органа закономерно соотносится со строением остальных. Такое соответствие Кювье назвал принципом корреляций. Безусловной заслугой Кювье стало применение этого принципа в палеонтологии, что позволило восстановить облик давно исчезнувших с Земли животных.

Большой популярностью в начале 19 века пользовалась теория катастроф, также сформулированная Кювье, на основе его изучения истории Земли, земных животных и растений. В результате Кювье пришёл к выводу, что на Земле периодически происходили катаклизмы, уничтожавшие целые материки, а вместе с ними и их обитатели. Позднее на их месте появлялись новые организмы. Последователи Кювье утверждали, что катастрофы охватывали весь земной шар. После каждой катастрофы следовал акт божественного творения. Таких катастроф и актов творения они насчитали 27.

Позиции теории катастроф пошатнулись лишь в середине 19 века. Немалую роль в этом сыграл принцип актуализма Ч. Лайеля (1797-1875). Он исходил из того, что для познания прошлого Земли нужно изучить её настоящее. Лайель пришёл к выводу, что медленные, ничтожные изменения на Земле могут привести к поразительным результатам, если будут долго идти в одном направлении. Так был сделан ещё один шаг к эволюционной теории, создателем которой стал Ч. Р. Дарвин (1809 – 1882).

Если до Дарвина биология делала акцент на устойчивости биологических организмов и смогла выявить определенные структурные закономерности, например связи органов и целостности живых организмов, то теория эволюции принципиально изменила саму постановку вопросов в теоретической биологии. Исходным пунктом теории эволюции стала проблема изменчивости, а вопрос об устойчивости изменений стал рассматриваться как механизм отбора изменений, их стабилизации.

Дарвин проанализировал явления индивидуальной изменчивости организмов, подчеркивая, что источником изменений является влияние измененных условий существования. Механизмом, обеспечивающим накопление индивидуальных различий, является естественный отбор, обусловленный борьбой за существование. Благодаря этой борьбе незначительные, неопределенные различия способствуют сохранению особей и наследуются их потомством.

В наши дни целый ряд слабых пунктов эволюционной теории Дарвина и, прежде всего присущая ей идея селектогенеза, подвергнуты критике.

Одно из возражений состояло в том, что она не могла объяснить причин появления у организмов структур, кажущихся бесполезными. Однако, как выяснилось впоследствии, многие морфологические различия между видами, не имеющие значения для выживания, представляют собой просто побочные эффекты действия генов, обуславливающих незаметные, но очень важные для выживания физиологические признаки.

Слабым местом в теории Дарвина также были представления о наследственности. В дальнейшем были выявлены и некоторые другие недостатки теории Дарвина. Теория нуждалась в дальнейшей разработке и обосновании с учетом последующих достижений всех биологических дисциплин.

В теории эволюции Дарвина несколько научных компонентов. Во-первых, это представление об эволюции как реальности, что означает определение жизни как динамической структуры естественного мира, а не статической системы. Виды не только изменяются во времени, но и связаны друг с другом происхождением от общих предков. Этот компонент эволюционной теории обеспечивает логическую программу для систематики, исследований по сравнительной анатомии, эмбриологии, биогеографии и т. д. Эволюция рассматривается как постоянный процесс. Изменения видов - результат влияния естественного отбора на незначительные унаследованные отличия.

Rumyantsev 11 марта 2017 в 23:35

Эволюция природы

  • Научно-популярное

Совместно с Игорем Сунчелеем


В работе сделана попытка расширить теорию эволюции Дарвина на неживую природу, показать, что биологическая эволюция является одним из этапов развития природы, и предсказать направление эволюционного развития после него. Кроме того, авторы дают свою версию определения жизни и ее эволюционного смысла.

1 Первый и второй уровни эволюции

Термином «эволюция» обычно называют переход материи от простого состояния к более сложному и одновременно к более совершенному состоянию. Эволюция считается процессом развития материи «вперед», а противоположный процесс развития материи «назад» от сложного состояния к более простому состоянию принято называть разложением или деградацией. Направление движения «вперед» мы пока оставим на интуитивном уровне понимания, однако ниже будет сформулировано более точное определение эволюции.


Эволюционирует ли неживая природа? Рассмотрим общеизвестные состояния неживой материи:

  1. Элементарные частицы;
  2. Атомы химических элементов;
  3. Молекулы.

Каждое следующее из перечисленных состояний можно считать совершенней и сложней предыдущего. На интуитивном уровне понимания направление движения «вперед» присутствует, значит, эволюция неживой природы, по крайней мере, была. Вспомним основные движущие факторы биологической эволюции Дарвина:

  1. Борьба за существование;
  2. Естественный отбор;
  3. Наследственная изменчивость.

Из допущения возможности эволюции неживой природы вытекает следующий вопрос. Какие у нее могут быть основные движущие факторы? Выдвинем следующую, кажущуюся невероятной, гипотезу: движущие факторы эволюции живой и неживой природы одинаковые, их отличие только в механизмах действия. Для ее проверки переформулируем три основных движущих фактора биологической эволюции в более общий вид для произвольного материального объекта и добавим четвертый фактор, который, вероятно, Дарвин подразумевал по умолчанию:

  1. Сопротивление объекта неизбежным изменениям с целью сохранения его текущей формы существования;
  2. Количественное или качественное изменение формы существования объекта;
  3. Модификация способов сопротивления объекта неизбежным изменениям;
  4. Изменение условий существования объекта.

На рисунке 1 показана условная последовательность действия факторов эволюции. На самом деле все они, конечно, действуют одновременно.



Очевидно, что наши модифицированные формулировки движущих факторов эволюции остались эквивалентными движущим факторам Дарвинизма при их применении к живым формам существования. Введем два определения.


Эволюция первого уровня – это способ эволюции неживой природы.
Эволюция второго уровня – это способ эволюции природы, основанный на факторах биологической эволюции Дарвина.


Общую сущность факторов эволюции на обоих уровнях можно сформулировать так: текущую форму существования сохраняют только наиболее приспособленные к изменившимся внешним условиям материальные объекты. В этом смысле факторы эволюции первого и второго уровней эквивалентны. Рассмотрим механизмы действия переформулированных в более общем виде факторов эволюции на ее первом уровне.

Сопротивление объекта неизбежным изменениям с целью сохранения его текущей формы существования

Смысл первого фактора в том, что материя стремится сохранить свое достигнутое состояние, сопротивляясь его изменению. Изменения неизбежны, потому что противное означало бы остановку времени, но сопротивление изменениям влияет на то, какими именно будут изменения.


Механизм сопротивления неживого материального объекта неизбежным изменениям основан на третьем законе Ньютона – сила действия равна силе противодействия. Привносящая изменения сила наталкивается на противоположную силу сопротивления изменениям, например, твердые материальные тела стремятся сохранить свою форму, противодействуя внешним силам.


В отличие от неживых объектов живые могут сопротивляться неизбежным изменениям еще одним качественно новым энергетически затратным способом. Они сами изменяют окружающую среду таким образом, чтобы продлить свое существование в живом виде. Поскольку живая природа находится под воздействием одновременно двух уровней эволюции, то появление у нее дополнительной возможности самой вносить изменения в окружающую среду с целью борьбы за существование фактически означает усиление сопротивления изменениям.


Пример. Чтобы не замерзнуть зимой, человек построил деревянный дом. Изменения в природе: раньше деревья росли, а теперь из них построены стены дома.


Мы изменяем поверхность планеты Земля благодаря действию фактора эволюции второго уровня – борьбы за существование, или, что эквивалентно, – сопротивления неизбежным изменениям.


Итак, в сравнении с эволюцией первого уровня на втором уровне сопротивление живой природы неизбежным изменениям возрастает, однако достигается это ценой ускорения изменений в окружающей ее неживой и живой природе. У эволюции второго уровня рост сопротивления изменениям приводит не к замедлению, а к ускорению изменений и эволюции.

Количественное или качественное изменение формы существования объекта

Поясним действие второго движущего фактора. Это природный механизм принятия решения о результате сопротивления объекта изменениям. Если объект успешно сопротивляется изменениям, то он продолжает существование в своей прежней форме, получая лишь количественные изменения. Если сопротивление объекта сломлено внешними силами, то его материя вынуждена менять форму своего существования. На втором уровне эволюции слом внешними силами сопротивления объекта изменениям означает смерть особи.


На первом уровне эволюции фактор естественного отбора действует по-другому механизму, ведь материя неуничтожима. В случае недостаточно сильного сопротивления изменениям второй фактор эволюции принуждает неживой материальный объект менять форму существования. Однако суть действия от этого не меняется – в своем прежнем виде материальный объект уже более не существует.


Пример. Метеорит падает на Луну. В момент удара и Луна, и метеорит сопротивляются изменившимся внешним условиям в стремлении сохранить свои формы. Масса Луны многократно больше, поэтому второй фактор эволюции вносит в ее форму существования лишь количественные изменения – на ее поверхности появляется еще один кратер. Но материи метеорита приходится качественно менять форму своего существования – часть его переходит в газообразное состояние и медленно оседает на поверхность Луны в виде пыли, а оставшаяся рассыпается на мелкие куски.


Отметим, что после качественной смены формы существования материя бывшего объекта всегда оказывается приспособленной к существованию в изменившихся условиях.

Модификация способов сопротивления объекта неизбежным изменениям

В разных условиях внешней среды способы сопротивления неживой материи изменениям являются разными. Мы знаем, что одни и те же материальные объекты ведут себя по-разному в условиях сверхнизких и сверхвысоких температур, давлений, гравитационных и электромагнитных полей, в разной по химическому составу окружающей среде и так далее. При действии в совокупности эти и многие другие свойства окружающей среды порождают огромное количество разных способов сопротивления неживой материи неизбежным изменениям.


Таким образом, в эволюции первого уровня источником модификации способов сопротивления объекта неизбежным изменениям является окружающая среда. Ниже это утверждение будет подробнее пояснено.

Что такое эволюция природы?

Мы предполагаем, что эволюция обязательно должна нести в себе элемент новизны. Поведение неживой природы подчиняется жестко определенным законам физики. У неживой материи нет никакого выбора – например, строение атомов и молекул однозначно следует из современной Стандартной модели элементарных частиц. Если при атмосферном давлении нагреть воду до 100°C, то она всегда начнет закипать, а при охлаждении до 0°C всегда начнет превращаться в лед. Здесь нет никакого элемента новизны, и все полностью предопределено. Действительно, эволюции неживой природы не хватает чего-то еще, что позволило бы ей проявлять новые свойства материи в условиях действующих законов физики. Где здесь эволюция?


Для ответа на этот ключевой вопрос нам придется прибегнуть к аксиоматике и сформулировать аксиому необратимости эволюционных процессов, которая расширяет гипотезу Луи Долло [i] на неживую природу.


Текущее состояние материи вселенной неповторимо в будущем.


Обратное означало бы, что время вселенной может течь по замкнутому контуру. Смысл аксиомы в том, что каждое текущее состояние вселенной уникально. Это означает, что в каждый момент времени в состоянии материи вселенной появляется элемент новизны относительно всех ее прошлых состояний, который и дает возможность эволюции неживой природы.


Пока внешние условия существования меняются незначительно, мы можем не замечать эволюции неживого объекта. Однако, в конце концов условия существования изменятся настолько, что проявят его ранее нам неизвестные, «дремавшие» его свойства.


При изменении температуры вода может оставаться водой или превращаться в лед или в пар, однако внешние условия ее существования всегда будут уже новыми. Эти новые внешние условия создают новые уникальные внутренние состояния и свойства молекул воды, и если мы этого не замечаем, то это значит, что мы пока недостаточно внимательны.


В подтверждение этого утверждения приведем еще один пример с водой. Как известно, в белковых телах преобладают углеродосодержащие молекулы и вода. Синтез белков в организме представляет собой сложный процесс, напоминающий процесс производства молекулярного завода, работающего по заданной программе. Причем молекулы воды тоже являются частью этого завода и управляющего им молекулярного компьютера, о принципах работы которого мы пока имеем лишь самое смутное представление. В белковой среде молекулы воды проявляют новые пока неизвестные нам свойства, участвуя в обработке и передаче информации.


Следствием нашей аксиомы является то, что эволюция неживой природы продолжается и в настоящее время, причем мы обнаруживаем, что она ускоряется благодаря параллельно идущей биологической эволюции. Все искусственные химические материалы производятся людьми благодаря помещению сырья и полуфабрикатов в новые внешние условия, самопроизвольное возникновение которых в условиях неживой природы крайне маловероятно.


А теперь все предыдущие умозаключения уже позволяют нам дать более точное определение понятия эволюции природы, формализующее наше интуитивное представление о движении «вперед».


Эволюция природы – это процесс создания природой новых, ранее не существовавших, форм и условий существования материи.

2 Определение жизни

Во второй части работы мы попробуем найти ключевые признаки, отличающие живую природу от неживой, и на их основе сформулировать определение, формализующее понятие жизни. Свои версии определения феномена жизни дали многие исследователи, однако, общепринятого определения у нас нет до сих пор.


Поставим задачу более строго. Предположим, что у нас есть возможность наблюдать не только за поведением знакомого или не знакомого нам объекта, но и за внутренним состоянием его материи. Тогда будем искать такое определение, которое по результатам этого наблюдения однозначно позволило бы отнести объект к живой или к неживой природе.


Поведение объекта определяет первый фактор эволюции. Поэтому ключевые отличия живой и неживой природы будем искать в отличиях их способов сопротивления неизбежным изменениям. Живой объект сам является источником изменений, причем он имеет возможность выбора из набора доступных ему видов реакций на внешние и внутренние условия. Технически живой объект можно представить как систему управления, блок-схема которой приведена на рисунке 2.



Рис. 2


Обратим внимание, что для алгоритма управления F внутреннее состояние материального тела живого объекта, в сущности, является только одним из видов внешних условий. Внутренние изменения могут быть следствием внешних изменений, а могут и не быть. Приведем по одному примеру обоих случаев.


Понижение температуры окружающего воздуха может грозить живой особи переохлаждением. Здесь изменение внутреннего состояния особи является следствием изменения внешних условий.


Напротив, главная причина старения организма особи заключается не в изменении внешних условий, а в том, что механизм старения клеток закодирован в полученной особью от родителей наследственной информации.


Алгоритм управления F работает с учетом прошлого опыта. Прошлый опыт может возникать двумя способами:

  1. Передаваться с наследственной информацией;
  2. Накапливаться в процессе жизнедеятельности.

Память для хранения прошлого опыта, переданного с наследственной информацией, является частью алгоритма управления. Обратим внимание, что для живого объекта наличие накопленного в процессе жизнедеятельности опыта не является обязательным, в противном случае новорожденных детей нельзя было бы признать живыми. Поэтому для живого существа не является обязательным и наличие у него показанного пунктиром блока памяти для хранения накопленного в процессе жизнедеятельности опыта.


Любой алгоритм управления основан на попытке приближения наблюдаемых параметров к набору неких целевых значений. Целями алгоритма управления F могут быть: противостояние вредоносным бактериям и вирусам, утоление голода, отдых, воспитание детей, победа на соревнованиях, зарабатывание денег и так далее. Очевидно, что главной целью живого существа должна быть борьба за жизнь. Эта цель всегда должна иметь наивысший приоритет, все остальные цели возникают только в такие моменты времени, когда алгоритму управления удалось создать условия, при которых угроза жизни временно устранена.


А теперь, после всех предыдущих умозаключений, мы, наконец, дадим свою версию определения жизни.


Материальный объект является живым, если в целях борьбы за свое существование он может использовать хотя бы один управляемый им энергетически затратный способ влияния на свое внутреннее состояние и/или окружающую среду.


Приведем два важных следствия из определения жизни.


Следствие 1. Все живые материальные объекты ведут энергетически затратный способ существования.


Датчики, процессор, память и исполнительные механизмы не являются вечными двигателями, для их работы требуется источник энергии.


Следствие 2. Все материальные объекты, ведущие энергетически не затратный способ существования, являются неживыми.


Следствие 2 логически следует из следствия 1.


Теперь проверим наше определение на примерах. Отметим, что следствие 2 сразу позволяет отнести к неживой природе все объекты с энергетически не затратным способом существования, такие как: камни, озера, карандаши, ложки и многие другие. Этот вывод совпадает с нашим жизненным опытом.


Теперь проверим определение на объектах с энергетически затратной формой существования.


Костер. Когда дров в костре много, огонь разгорается, когда дров остается меньше, огонь постепенно затухает. Может быть, огонь становится меньше потому, что костер хочет дольше гореть? Нет, интенсивность реакции горения определяется только количеством и качеством дров и состоянием внешней среды. Это не костер управляет интенсивностью горения, а человек, подкладывая в костер дрова. Вывод: неживой.


Жертвующий жизнью или идущий на суицид человек. На уровне своего сознания он отказался от борьбы за жизнь и управляет своими конечностями таким образом, чтобы ее прекратить. Но его организм от жизни еще не отказался. Организм продолжает управлять другими исполнительными механизмами тела в целях продолжения жизни: сердцем, мышцами дыхания, пищеварительной системой и так далее. Вывод: живой.


Человек в состоянии клинической смерти. Сердце остановилось, но смерть не наступает одномоментно, организм умирает постепенно по мере прекращения энергетически затратного обмена веществ, который в разных частях организма наступает в разные моменты времени. Вывод: человек считается живым до тех пор, пока хотя бы одна клетка организма продолжает обмен веществ.


Ребенок в чреве матери. Для своего роста он использует энергетически затратный способ синтеза белка, который ему нужен для последующего рождения. Вывод: живой.


Выводы из приведенных примеров показывают, что у них нет противоречий со здравым смыслом. Предлагаем читателям самим проверить определение на Солнце, летящей пуле, растениях, на семенах растений, на яйцах птиц и земноводных, на сперматозоиде, молекуле белка и на любых других объектах.


Мы же проверим наше определение на самом сложном и одновременно самом интересном примере с, казалось бы, заранее известным ответом.


Представим себе созданного людьми несложного робота, который запрограммирован на выполнение правила стропальщика: «Не стой под грузом!» Робот может ездить на четырех колесах по огороженной со всех сторон забором площадке. Подъемный кран держит над площадкой груз, а крановщик старается расположить его над роботом. Робот следит за положением груза и, стараясь не оказаться под ним, все время отъезжает в сторону.


По нашему определению такой робот оказывается живым. В тоже время, наш здравый смысл отказывается считать такой ответ истиной.


Борется ли робот за свое существование, когда он отъезжает из-под груза? Он ведь не понимает, зачем он это делает. Значит, он отъезжает не в целях борьбы за существование, и, может быть, поэтому перестает соответствовать нашему определению жизни? Однако определение не случайно не требует, чтобы живой объект что-то осознавал. Наши безусловные рефлексы действуют аналогично программе робота из примера. Если мы случайно дотронемся до горячего предмета, то отдернем руку еще до того, как осознаем, зачем мы это сделали. Объекты растительного мира, который мы причисляем к живой природе, тоже вряд ли что-то осознают в процессе своей жизнедеятельности.


Зададимся следующим вопросом. Основывается ли вывод нашего здравого смысла, что робот не живой, на его поведении? Оказывается, нет. Наш здравый смысл причисляет робота к неживой природе только на основе нашего прошлого опыта о том, что роботы живыми не бывают. В доказательство этого утверждения представим, что вместо робота на нашей огороженной забором площадке будет живое существо – собака. Собака может бегать, лаять, бросаться на забор, но меньше всего ее будет беспокоить тот факт, что груз окажется над ней. Она тоже не осознает опасности от нависшего над ней груза, а ее условные и безусловные рефлексы не заставляют ее отбежать в сторону. В нашем примере робот борется за свое существование более адекватно сложившимся внешним условиям, чем собака, и, тем не менее, наш здравый смысл продолжает считать собаку живой, а робота нет. Полное игнорирование поведения робота при отнесении его к неживой природе порождает первые сомнения в истинности выводов нашего здравого смысла.


И все-таки что это – ошибка в формулировке определения или определение предсказывает возможность существования новой, отличной от биологической формы жизни? Может быть, наш здравый смысл относит робота из примера к неживой природе, исходя из стереотипа мышления, что жизнь может существовать только в биологической форме? Поиску ответов на эти вопросы посвящена третья часть работы.

3 Третий уровень эволюции

Наш последний пример показывает, что возможность существования созданных людьми роботов, которые в той или иной форме способны бороться за свое существование, не вызывает сомнений. Остался открытым вопрос: живые они или нет?


Предположим, что они живые, тогда, поскольку они созданы представителями биологической жизни, их форму жизни далее будем называть вторичной, а биологическую первичной. Термин «вторичная форма жизни» подчеркивает то, что она не может возникнуть из неживой природы, а может быть создана только «первичной формой жизни», то есть биологической.


Доказать возможность существования вторичной формы жизни можно теоретическим способом. Если мы сумеем найти движущие факторы эволюции вторичной формы жизни и доказать, что в сравнении с движущими факторами биологической эволюции Дарвина они приводят к дальнейшему усилению борьбы за существование и к ускорению эволюции, то тогда будем считать доказанной и саму возможность существования вторичной формы жизни.
Вспомним, что эволюция Дарвина объясняет появление новых биологических видов, а не эволюцию отдельно взятой живой особи. Более того, Дарвинизм даже исключает эволюцию отдельно взятой живой особи, потому что механизм приспособления биологической жизни к изменяющимся внешним условиям заключен в наследственной изменчивости. Следствием этого является то, что приспособиться к новым внешним условиям имеет шанс не сама живая особь, а только ее потомки.


Поэтому по аналогии с первичной формой жизни движущие факторы эволюции вторичной формы жизни мы будем искать, рассматривая не отдельно взятого ее представителя, а на воображаемом примере некоторого социума представителей вторичной жизни по аналогии с биологическим видом. То есть в своем допущении о возможности существования вторичной формы жизни нам придется пойти еще дальше и предположить, что сначала с помощью людей, а позже и самостоятельно представители вторичной формы жизни смогут создавать себе подобных.


Мы не имеем в виду завод, с конвейера которого сходят неотличимые друг от друга роботы. Внешне они действительно могут быть неотличимыми, но мы исходим из того, что по аналогии с биологической жизнью каждая особь вторичной жизни должна быть уникальной и для сохранения единства вида обладать изменчивой наследственной информацией не менее чем от двух родителей. Опишем один из многих теоретически возможных способов создания себе подобных представителями вторичной формы жизни в процессе спаривания двух бесполых особей.


Наследственной информацией существа вторичной формы жизни будем считать только управляющий алгоритм , рис.2. Принципиальным отличием такого подхода к наследственной информации от биологической жизни является то, что в ней наследственной информацией является еще и строение всего организма живого существа, то есть еще и датчиков, процессора, исполнительных механизмов. Новый подход к наследственной информации позволяет сделать алгоритм работы и накопленный в процессе жизнедеятельности опыт отделяемыми от остального тела существа вторичной формы жизни. Появляется возможность их переноса в новое, например, построенное на усовершенствованной элементной базе тело. Это делает представителей вторичной формы жизни защищенными от старения их тел.


Здесь мы находим первое необходимое условие для нашего доказательства возможности существования вторичной формы жизни – это ее усиление борьбы за существование по сравнению особями биологической жизни. Возможность избежать смерти от старости, конечно, означает усиление борьбы за существование, то есть за жизнь.


Вернемся к процессу спаривания особей вторичной формы жизни. Подобно тому, как кодируется ДНК в дискретных генах, управляющий алгоритм F может быть закодирован частями. Допустим, что у нас есть два бесполых представителя вторичной формы жизни с управляющими алгоритмами и и накопленным в процессе жизнедеятельности опытом и . В процессе их спаривания будут образованы два новых управляющих алгоритма и . Каждый из них составлен из частей родительских алгоритмов, которые случайным образом выбираются или из , или из . Далее новые алгоритмы управления обратно загружаются в прежние тела двух представителей вторичной формы жизни – загружается в тело первого, а в тело второго, на места , и соответственно. Обратим внимание, что в результате спаривания данные в памяти о накопленном в процессе жизнедеятельности опыте каждого из двух представителей вторичной формы жизни не изменились.


В результате такой процедуры как было два живых существа, так и осталось, причем, благодаря сохраненной памяти о своем прошлом, каждое из них продолжает считать себя прежней личностью, то есть осталось живым. Изменился только образ мышления каждого из них. Теперь он имеет некоторые черты их партнера. Сами партнеры могут выбираться случайным образом из представителей социума, проживших больше наперед заданного количества лет. Таким образом, в процессе жизни представитель вторичной формы жизни может пройти через через эту процедуру многократно.


В целях воспроизводства по этой процедуре могут создаваться в новых телах и новые особи. Они будут иметь новый алгоритм управления вместе с переданными с наследственной информацией безусловными рефлексами родителей, аналогичными тем, которые передаются детям в биологической жизни. У только что созданных новых особей память для хранения накопленного в процессе жизнедеятельности опыта будет совершенно пустой. В этом случае первое время их придется воспитывать как малых детей.


Имеет ли описанная процедура спаривания какие-то преимущества относительно полового размножения в биологической жизни? Преимуществ много, но мы рассмотрим только два главных из них.


Во-первых – это возможность искусственного отбора. У социума вторичной формы жизни имеется возможность оценки того, насколько полезно для социума провел отрезок жизни его представитель между прошлым спариванием и предстоящим. Сравнивая оценки двух выбранных для спаривания особей, социум может увеличить вероятность выбора наследственных частей из управляющего алгоритма той особи, оценка которой выше. Допустим, оценка была выше у первой особи, тогда в и в частей из , окажется больше, чем из . Негативная наследственность может искусственно подавляться социумом. Искусственный отбор тоже не лишен недостатков, однако известно, что в сравнении с биологическим естественным отбором он в тысячи раз ускоряет закрепление в наследственной информации желаемых признаков.


Во-вторых, в биологической жизни элементы новизны в изменчивости наследственной информации несут ее случайные мутации. Они вносят в наследственную информацию признаки, которых не было ни у одного из родителей. Природу к этому вынуждает то, что внешние условия жизни постепенно тоже начинают нести в себе принципиальные отличия от прошлых условий, в которых жили прежние поколения. Поэтому одним только прошлым опытом родителей решить задачу приспособления потомства к новым условиям жизни нельзя. Случайными мутациями природа вслепую пытается угадать в каком направлении следует направить адаптацию к внешним условиям. Лишь очень малая часть случайных мутаций оказывается полезной и закрепляется в наследственной информации через многие поколения. Особей с вредными для жизни мутациями из дальнейшей эволюции устраняет естественный отбор.


В описанном механизме спаривания особей вторичной формы жизни источник новизны в наследственной информации не упомянут потому, что в механизме спаривания его нет. Источником новизны для управляющего алгоритма F станут научно-исследовательские работы самих членов социума. Чтобы понять, насколько это эффективней случайных мутаций, достаточно представить, что новые модели наших электронных гаджетов разрабатывались бы методом внесения случайных изменений в их конструкции. Например, путем замены мест на принципиальной электрической схеме конденсатора и резистора. А потом, чтобы понять насколько полезными оказались изменения, разработчики ждали бы реакцию на них рынка.


Мы нашли и второе необходимое условие для доказательства возможности существования вторичной формы жизни – это ускорение ее эволюции по сравнению особями биологической эволюции Дарвина. Дадим очередное определение.


Эволюция третьего уровня – это способ эволюции природы, основанный на факторах эволюции вторичной формы жизни.


Движущие факторы эволюции третьего уровня остаются теми же, что и на двух предыдущих уровнях, рис.1, но отличаются от них только особенностями механизмов действия. Вот они:

  1. Борьба за существование;
  2. Естественный отбор;
  3. Искусственный отбор и самосовершенствование внутреннего строения объекта;
  4. Изменение условий существования.

Обратим внимание, что в сравнении с движущими факторами эволюции второго уровня, то есть эволюции Дарвина, изменениям подвергся только третий фактор эволюции, а именно фактор, определяющий способ модификации сопротивления неизбежным изменениям.


Механизм действия третьего фактора уже описан выше. Отметим, что искусственный отбор и самосовершенствование внутреннего состояния объекта означают, что на третьем уровне эволюции природа предоставляет представителям вторичной формы жизни самим решать, как им самим себя видоизменять. Это большой шаг вперед и первое качественное отличие эволюции третьего уровня от эволюции первых двух уровней.


Видно, что первый и третий факторы относятся к ведущему борьбу за свое существование материальному объекту. Четвертый фактор относится к внешним и внутренним условиям существования объекта, на которые сам объект начинает оказывать влияние уже на втором биологическом уровне эволюции. Вспомним пример о том, как чтобы не замерзнуть зимой, человек построил дом.


Вторым качественным отличием эволюции третьего уровня от первых двух уровней является то, что под частичный контроль объекта попадает даже и естественный отбор. Дело в том, что в случае уничтожения существа вторичной формы жизни естественным отбором его алгоритм управления и накопленный в процессе жизнедеятельности опыт, то есть память о его прошлом, в основном, хотя и не полностью, могут быть восстановлены с их резервной копии.

Добавить метки

Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта